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Simple Summary: We developed a lung cancer-specific database containing genetic and literature
data from over 10,000 separate studies. The cancer subtype information was meticulously curated
and quality controlled, while the subtype-specific genetics can be explored in a novel manner. In
addition, we created the Lung Cancer Gene (LCGene) database, an open-access web interface that
enables researchers and clinicians to explore these data and conduct large-scale integrative analyses.
On LCGene, users can perform gene list-based data integration to gain a quick understanding of
the shared and unique characteristics of various subtypes of lung cancer. In summary, data from
subtype-based survival analysis, comparative analysis, and CRISPR knockout provide additional
novel information for genome-wide gene/biomarker screening in lung cancer subtypes.

Abstract: The molecular subtype is critical for accurate treatment and follow-up in patients with lung
cancer; however, information regarding subtype-associated genes is dispersed among thousands
of published studies. Systematic curation and cross-validation of the scientific literature would
provide a solid foundation for comparative genetic studies of the major molecular subtypes of lung
cancer. Here, we constructed a literature-based lung cancer gene database (LCGene). In the current
release, we collected and curated 2507 unique human genes, including 2267 protein-coding and
240 non-coding genes from comprehensive manual examination of 10,960 PubMed article abstracts.
Extensive annotations were added to aid identification of differentially expressed genes, potential
gene editing sites, and non-coding gene regulation. For instance, we prepared 607 curated genes with
CRISPR knockout information in 43 lung cancer cell lines. Further comparison of these implicated
genes among different subtypes identified several subtype-specific genes with high mutational
frequencies. Common tumor suppressors and oncogenes shared by lung adenocarcinoma and lung
squamous cell carcinoma, for example, exhibited different mutational frequencies and prognostic
features, suggesting the presence of subtype-specific biomarkers. Our retrospective analysis revealed
43 small cell lung cancer-specific genes. Moreover, 52 tumor suppressors and oncogenes shared by
lung adenocarcinoma and squamous cell carcinoma confirmed the different molecular mechanisms
of these two cancer subtypes. The subtype-based genetic differences, when combined, may provide
insight into subtype-specific biomarkers for genetic testing.

Keywords: lung cancer; database; genetic; subtype; systems biology; biomarker

1. Introduction

Lung cancer (LC) is the leading cause of cancer-related deaths in both males and
females, accounting for approximately 1.6 million deaths annually worldwide [1]. In the
United States alone, there were roughly 130,180 LC-associated deaths in 2022. Small cell
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(SCLC) and non-small cell lung cancer (NSCLC) are the two main types [2]. NSCLC is
the most common type, contributing to 80–85% of all LC cases and typically growing and
metastasizing slower than SCLC. Despite ongoing efforts to develop effective treatments,
the 5-year survival rate of NSCLC patients is only 14% for Stage IIIA, 5% for Stage IIIB, and
1% for Stage IV [3]. The most common types of NSCLC are adenocarcinoma, which consti-
tutes over 30% of all diagnosed LC cases, and squamous cell carcinoma, which accounts
for less than 30% [2]. Given the importance of these two LC subtypes, a genome-wide
exploration of the molecular profile of lung adenocarcinoma (LUAD) and squamous cell car-
cinoma (LUSC) has been conducted by The Cancer Genome Atlas (TCGA) consortium [4].
Identification of the subtype is critical for developing effective treatment strategies for
LC. There exist many clinical and histological methods to identify LC subtypes; however,
molecular subtype information will independently provide reliable confirmation to guide
precision medicine.

As a heterogeneous disease, LC has complex molecular mechanisms for unrestrained
cell growth, which may be caused by promoter methylation, dysregulated gene expression,
and/or alterations in tumor suppressor genes and oncogenes [2]. Despite the focus of
thousands of publications on LC in patients with various subtypes of the disease, no
literature collection-based effort has been performed to scrutinize the common and unique
genetic information for each LC subtype. Furthermore, the majority of functional or clinical
studies are single gene-based and fail to provide a complete picture of tumorigenesis for
various cancer subtypes. Here, we created the LCGene database to provide a global genetic
representation of various LC subtypes and a reusable genetic resource for LC supported by
links to scientific literature-based evidence.

The gene-centered database, consisting of curated genes, will be useful for prioritizing
genes based on their LC-associated relevance and identifying common and unique cellular
events in different LC subtypes. Our data may be a solid starting point for the performance
of a meta-analysis of the molecular mechanisms underlying different types of LC, and
our curated literature collection may be an important indicator of the well-studied genes
in specific types. Taken together, these data will serve as a foundational computational
resource for LC biomarker discovery and validation.

2. Materials and Methods
2.1. Literature Search and Curation

The principal aim of this database is to aid LC research by maintaining a high-quality
gene list that serves as a comprehensive, fully classified, richly, and accurately annotated
platform with extensive cross-references and querying interfaces that are freely accessible
to the scientific community. As shown in the workflow (Figure 1), the LC-implicated gene
collection is primarily based on the Gene Reference Into Function (GeneRIF) database [5].
As previously described, we performed a keyword-based query against the GeneRIF
database using Perl regular expression to extract relevant sentences: [(lung OR pulmonary)
AND (cancer OR tumor OR carcinoma)] on 22 January 2021 [6]. In total, we found thousands
of short sentences that were related to LC in 15,964 unique PubMed abstracts. The abstracts
were then downloaded in Medline format and parsed into free text for manual curation.

Similarly, model species names such as mouse and rat were used to match species
information. We mapped all non-human gene homologs to their human counterparts.
Finally, we standardized all the gene descriptions by mapping them to the NCBI Entrez
gene database [7], which will be useful for gene ID-based annotations. For example, the
COX-2 gene is a common synonym for the PTGS2 gene; therefore, we saved PTGS2 and
its associated gene ID (5743, available online: https://www.ncbi.nlm.nih.gov/gene/5743)
(accessed on 12 February 2023) in our database.

https://www.ncbi.nlm.nih.gov/gene/5743
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Figure 1. Literature curation and functionally annotated workflow for the LCGene database.

Further literature curation included: (i) clustering of abstracts; (ii) extracting matched
cancer subtypes; (iii) gathering species information; and (iv) formalizing gene symbols.
Specifically, we first performed semantic similarity clustering based on sentence-keyword
matching, which is useful for curating information regarding the same gene from multiple
sources of evidence. We only included the records if the manuscript clearly stated that
they were “relevant” to the disease and their manifestations included mutations, up- or
downregulation of expression, changes in copy number, or gene fusion.

To control data quality, literature with unclear and confusing conclusions were deemed
insufficient for inclusion in the database. In total, we collected 10,960 PubMed abstracts
that were associated with LC genes. The curated sentences were then searched using LC
subtype keywords such as LUAD, LUSC, and NSCLC to extract the appropriate subtype
information. For example, in the sentence “stabilization of surviving may contribute to
the apoptosis resistance effect of COX-2 in non-small cell lung cancer”, the cancer subtype
could be assigned as “non-small cell lung cancer”.

2.2. Biological Annotation and Pre-Computed Data

To provide insight into the biology of the collected genes, we retrieved comprehensive
biological functional annotations from public resources. Firstly, basic gene information
was retrieved using curated gene IDs, including the gene alias, and crosslinked to genome
databases such as Ensembl [8]. The functional annotations were further extracted from
gene ontology annotation (GOA) [9] and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [10] for pathway mapping. The tumor suppressors and oncogenes were
obtained from the TSGene 2.0 [11] and ONGene [6] databases. These various gene sets will
aid gene categorization into tumor suppressors and oncogenes.

In addition to annotations, we retrieved all gene expression data from the BioGPS
database [12]. Co-expressed protein-coding and long non-coding RNA genes for the TCGA
LC dataset was based on the LnCaNet database [13], which provides a foundation for the
genome-wide investigation into potential long non-coding RNAs that are associated with
subtype-specific genes based on evidence from the scientific literature. Differential expres-
sion based on large-scale TCGA data was also calculated for bulk download. Differentially
expressed genes from TCGA LUAD and TCGA LUSC will be useful for exploring changes
at the mRNA transcript level, which may be overlooked by single-gene studies.

By mapping to the Catalogue of Somatic Mutations in Cancer (COSMIC) database [14],
we presented all the somatic mutations for 2507 LC-related genes. To determine potential
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interacting partners, we integrated regulatory interactors from the Transcription Factor
(TRANSFAC) [15] and Pathway Commons [16] databases. We subsequently mapped these
2507 genes to the most recently updated CRISPR knockout data in all 43 LC cell lines [17],
thus providing potential gene editing sites.

To provide an overview of the potential gene regulation, we also incorporated the
experimental validated gene regulation data, including the experimentally validated and
predicted competing endogenous RNA (ceRNA) from LncACTdb 3.0 [18].

Gene ontology (GO) functional enrichment analysis was conducted through the
g:Profiler online server [19]. Corrected p-values, calculated using all human protein-coding
genes as the baseline, were used to rank the enriched functional annotations of input genes.
The cBioPortal, an online server for visualization and analysis of multidimensional cancer
genomics data, was used for all sample-based mutational analyses [20]. Next, we integrated
additional functional information, including the metabolic network and transporters [21].

2.3. Database Construction and Web Interface Coding

All the curated literature and annotation information were saved and stored in a rela-
tional database managed by the MYSQL system (available online: https://www.mysql.com/)
(accessed on 12 February 2023). Specifically, for each annotation, we created a separate
table to store the data. Server-side programming was implemented by Perl CGI to connect
with MYSQL and print the HTML pages. To present our data, we created responsive
websites using the Bootstrap framework (available online: https://getbootstrap.com/)
(accessed on 12 February 2023). We used JavaScript library HighCharts (available online:
https://www.highcharts.com/) (accessed on 12 February 2023) to summarize and visualize
the data interactively by connecting them to the MYSQL database. For example, a word
cloud containing a set of keywords was created to display the retrieved information, with
the size and placement determined by how frequently they were mentioned in the literature.
Similarly, HighCharts was used to visualize protein-protein interaction data as a network
and to summarize various data categories on browsing pages.

3. Results and Discussion

We consolidated 2507 lung cancer (LC)-associated genes, including 2267 protein-
coding and 240 non-coding genes (Table S1). Among the 2507 LC-implicated genes,
1706 genes (68%) were curated with subtype information. We identified 71 genes based
on the curated literature, with over 30 supporting abstracts from PubMed. Only one lit-
erature reference supported 769 (or 30.67%) of the 2507 LC-implicated genes, requiring
further functional experimental validation. We identified 232 SCLC-related genes and
1324 NSCLC-related genes, which are the major subtypes of LC. For LUAD and LUSC,
535 and 251 genes, respectively, were curated.

3.1. Web Interface

Based on a systematic survey of LC-implicated genes in the literature, we developed a
web interface to make these annotations publicly available. All the LC-implicated genes can
be explored using a web browser. The genomic distribution of all the genes were plotted on
24 chromosomes, with individual charts for browsing (Figure 2A). Users may also browse
each LC subtype to access all the LC-implicated genes within that subtype (Figure 2A).
When browsing, the number of literature citations are provided for each gene, informing
the user of the importance of particular genes in LC development. Tumor suppressors and
oncogenes are also listed for quick access, and colored KEGG pathway maps allow the
exploration of genes based on biological functions (Figure 2A).

https://www.mysql.com/
https://getbootstrap.com/
https://www.highcharts.com/
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Figure 2. The LCGene database web interface. (A) Browsing the genes in the database using chro-
mosomes, cancer subtype, literature support, tumor suppressors, oncogenes, and KEGG pathways.
(B) Basic annotations for genes include the gene description, alias, crosslinks, gene ontology, path-
ways, and disease information. The associated literature is presented by a word cloud to highlight the
key message for the gene of interest. Protein-protein interaction data from the Pathway Commons
database are used to depict interacting partners. Gene expression patterns from the BioGPS database
and somatic mutation data from the COSMIC database are presented for filtering and searching.
KEGG, Kyoto Encyclopedia of Genes and Genomes.

A quick search button at the top right-hand side of each webpage can be used to
conduct queries using official gene symbols or Entrez Gene IDs (Figure 2A). Advanced
search functions are provided by typing in the gene name or its functional characteristics,
including chromosome location, interacting partners, biological processes, or name of the
associated disease. Users can search all the curated literature using keywords; this is useful
when searching for a specific topic in biology. The results page will display a list of genes
or literature that match the input keywords. The hyperlinked gene names or literature
direct users to pages that contain information that is relevant to that gene. To organize the
information for each gene, we divided our annotation details into five categories: general
information, literature, gene expression, genetic mutation, and protein-protein interactions.
When exploring the annotations, users can rapidly access any specific annotation by clicking
on the labels at the top right-hand side of each web page (Figure 2B).

This database also facilitates the bulk download of all the curated genes, which is
useful for any advanced integrative studies. Moreover, we identified 8224 differentially
expressed events for the 641 LC-implicated genes in 107 matched cancer and normal
sample pairs in the two TCGA datasets (Table S2, LUAD; Table S3, LUSC), which will be
useful for the reconstruction of co-expression-based regulatory networks. Furthermore,
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we present pre-computational results of 24,415 co-expressed pairs with protein-coding
genes (Table S4), and 361,417 co-expressed pairs with long non-coding RNAs based on the
matched TCGA cancer samples (Table S5). All these pre-computed data will be useful for
large-scale functional screening.

The most exciting development in cancer biology is the potential of gene editing
technology to revolutionize cancer therapy. For example, the results of a Phase 1 clinical
trial to evaluate the safety and feasibility of CRISPR-Cas9 gene editing in three patients
with advanced multiple myeloma and myxoid/round cell liposarcoma were recently pub-
lished [22]. In that study, T lymphocytes were removed from the patients and CRISPR-Cas9
was used to disrupt three genes encoding the endogenous T cell receptor α chain (TRAC),
TCR β chain (TRBC), and programmed cell death protein 1 (PDCD1), which substantially
improved antitumor immunity. The first CRISPR-engineered cancer immunotherapies
have also been reported for LC [23]. Interestingly, we found 607 LC-related genes that were
mapped to CRISPR knockout information in 43 LC cell lines (Table S6), which may provide
a critical foundation for functional cancer screening.

3.2. Genes Shared by Different LC Subtypes

To investigate genetic heterogeneity in LC, we overlapped LC-implicated genes with
different subtypes (Figure 3A) and found 43 SCLC-specific genes with two or more citations
in the scientific literature. It is important to note that different literature may assign
different subtypes to the same gene. Consequently, these highly overlapping genes may
play consistent roles in numerous subtypes of LC. Among these genes, the mutational
frequency in the EP300 gene was substantially different across three public SCLC and
seven NSCLC datasets (Figure 3B). Phosphorylation-mediated EP300 downregulation
enhances oncogene expression during interphase and decreases histone H3 acetylation
during mitosis, accelerating SCLC development [19]. This demonstrates that subtype-
specific gene mining with the LCGene database may identify highly and distinctly mutated
genes in LC subtypes, facilitating exploration of the underlying molecular mechanisms.

We found 52 shared tumor suppressor genes and oncogenes between LUAD and
LUSC by focusing on two subtypes of NSCLC (Figure 3C). The enriched functional anno-
tations of input genes were ranked with corrected p-values that were calculated using all
human protein-coding genes as the baseline. These 52 genes are critical for many cellular
processes and are mainly localized to the nucleoplasm (corrected p-value = 3.728 × 10−7),
intracellular organelle lumens (corrected p-value = 1.423 × 10−5), and plasma membrane-
bound cell projections (corrected p-value = 2.410 × 10−2) (Figure 3D). Therefore, these
genes are mainly related to protein kinase activity (corrected p-value = 4.669 × 10−8) and
regulated by phosphorylation (corrected p-value = 3.589 × 10−20) involving intracellular
signal transduction (corrected p-value = 1.446 × 10−17) and the regulation of intracellular
transduction (corrected p-value = 8.225 × 10−17). These data show that the 52 genes are
involved in a wide range of fundamental biological processes related to cell proliferation
and cancer progression.

KEGG pathway analysis revealed additional important cancer- and pluripotency-
related signaling pathways (Figure 3E) such as phosphatidylinositol 3-kinase (PI3K)-protein
kinase B (Akt) (corrected p-value = 6.505 × 10−12), hypoxia inducible factor 1 (HIF-1)
(corrected p-value = 4.713 × 10−11), signaling pathways regulating pluripotency (corrected
p-value = 4.753 × 10−8), thyroid hormone (corrected p-value = 1.356 × 10−7), and advanced
glycation end products receptor (RAGE) (corrected p-value = 1.201 × 10−5). Interestingly,
epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor resistance (corrected
p-value = 2.522 × 10−12) and endocrine resistance (corrected p-value = 2.459 × 10−14)
highlighted the likelihood of drug resistance for both NSCLC subtypes (LUAD and LUSC).
A few genes that were associated with choline metabolism raised the possibility of a
metabolism-based molecular diagnosis for LC (corrected p-value = 2.394 × 10−12). Finally,
these 52 genes are involved in programmed death-ligand 1 (PD-L1) expression and the
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PD-1 receptor checkpoint pathway (corrected p-value = 2.302 × 10−7), which are critical in
cancer immunotherapy.
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Figure 3. Overlapping and functional enrichment of genes that are associated with different subtypes.
(A) Venn diagram of NSCLC, SCLC, and LC genes of unknown subtypes that were mentioned twice
or more in the literature. (B) The mutational rate of EP300 in three SCLC and seven NSCLC studies.
(C) Overlapping tumor suppressor genes (TSGs) and oncogenes (ONGs) with genes related to LUAD
and LUSC. (D) Gene ontology enrichment analysis of the 52 oncogenic and tumor suppressor genes
shared by LUAD and LUSC. (E) Enriched KEGG pathways for the 52 oncogenic and tumor suppressor
driver genes shared by LUAD and LUSC. KEGG, Kyoto Encyclopedia of Genes and Genomes; LUAD,
lung adenocarcinoma; LUSC, lung squamous cell carcinoma; NSCLC, non-small cell lung cancer;
SCLC, small cell lung cancer.

We further conducted mutational analysis using the cBioPortal [18]. By examining the
mutational frequency separately in LUAD and LUSC, we found that these 52 cancer driver
genes have a distinct mutational frequency in the two subtypes of NSCLC (Figure 4A). There
are four genes (PIK3CA, SOX2, PRKCI, TP63) with high amplification in LUSC as compared
with LUAD (Figure 4B), all of which are localized to chromosome 3q [20]; however, the
LUAD-specific Kirsten rat sarcoma virus (KRAS) driver gene is more likely to be co-mutated
with serine/threonine kinase 11 (STK11) (Figure 4C), which has been used to define a novel
subtype with distinct biology, immune profiles, and therapeutic vulnerabilities [21]. This
suggests that some shared genes in different subtypes may be associated with a common
mechanism; however, because of their vastly different mutational patterns, these genes
may play entirely different roles in cancer progression. When combined, the subtype-
specific information in our LCGene database may demonstrate both common and unique
molecular properties.
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Figure 4. Mutational differences in the 52 driver genes shared by LUAD and LUSC. (A) Mutational
frequency comparison of the 52 driver genes shared by LUAD and LUSC. (B) The sample-based
oncoprint mutational profile for the top mutated genes in the TCGA LUAD dataset. (C) The sample-
based oncoprint mutational profile for the top mutated genes in the TCGA LUSC dataset. LUAD,
lung adenocarcinoma; LUSC, lung squamous cell carcinoma; TCGA, The Cancer Genome Atlas.

3.3. Potential Prognostic Biomarkers between Different Subtypes of LC

To explore potential prognostic applications of curated LC genes, we merged the
52 driver genes that were shared by LUAD and LUSC with 44 LC datasets with survival
outcomes from the prognostic PRECOG database. These 44 datasets were classified into
LUAD, LUSC, or large cell carcinoma (LCC) subtypes, and PRECOG computed Z-scores
for each gene to characterize the gene expression and clinical outcomes across multiple
datasets. In general, a positive Z-score for a gene associated with a specific dataset indicates
increased expression (adverse survival), whereas a negative Z-score indicates decreased
expression (favorable survival). The heatmap of PRECOG Z-scores for the 44 LC dataset
shows 51 of the 52 driver genes (Figure 5). The first cluster of 18 genes (e.g., TP53, TP63,
EGFR, KRAS, and STAT3) had a prognostic Z-score less than −1.96 (equivalent to a two-
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tailed p < 0.05) in the 11 LUAD datasets, indicating significantly favorable survival. For 9
LUSC datasets, the other two clusters containing MYC, PIK3CA, BRCA2, CDKN1A, and
MTOR were favorable towards survival. These distinct links to different subtypes of LC
may provide supporting evidence of specific mechanisms related to patient survival.
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Figure 5. Heatmap of the prognostic Z-scores of 51 genes from 44 LC datasets. Prognostic Z-scores
that were obtained from the PRECOG database are represented by the scale bar. The polarity of
the prognostic Z-score reflects the direction of association. LCC, large cell carcinoma; LUAD, lung
adenocarcinoma; LUSC, lung squamous cell carcinoma.

In addition, we examined the survival characteristics of 9781 samples from 7590 lung
cancer patients in 28 independent studies in order to provide an overview of these genes in
the cancer cohort. Figure S1 depicts 52 genes, including TP53 and KRAS, that are signifi-
cantly associated with survival outcome (log rank test p-value: 1.130 × 10−4, Figure S1).
Therefore, our PRECOG and survival data provide independent evidence that these genes
play crucial roles in lung cancer patient survival.

MicroRNA (miRNA) dysregulation is associated with the occurrence and progression
of cancer. We curated 204 LC-related miRNAs in our database, which when inhibited or
overexpressed, regulate the expression of their target genes, inhibiting cancer cell prolif-
eration or metastasis. miRNAs have tremendous potential as therapeutic targets in LC
since they suppress expression that is derived from thousands of mRNA transcripts. We
did not extend our analysis to those key regulators because of the limits of this study.
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Subtype-specific miRNA regulatory patterns may provide a novel approach to reversing
key oncogenic phenotypes, such as epithelial–mesenchymal transition.

Long non-coding RNAs (lncRNAs) are recent and important non-coding transcripts
in cancer biology. In our curated gene list, we found several pseudogene-based antisense
lncRNAs. We pre-computed expression profiles for thousands of lncRNAs in LUAD and
LUSC; however, only a small portion has been functionally characterized based on evidence
from the scientific literature. Our pre-computed differential expression data between tumor
and normal tissues will be invaluable in furthering our understanding of RNA-based
regulatory mechanisms, such as competing endogenous RNAs (ceRNAs). Some subtype-
specific regulatory mechanisms, such as the ceRNA model, may provide novel insight into
the imbalance in stoichiometry between target mRNAs and their postulated binding sites
on ceRNAs.

4. Conclusions

LC is the most common cancer in both males and females, accounting for over one-
quarter (25%) of cancer-related deaths. The accurate identification of LC subtypes is critical
for precise medical treatment since therapy largely depends on understanding biological
pathways and regulatory mechanisms that are associated with different subtypes. The
goal of our data curation was to assess the subtype-specific genes that are associated with
prognosis. After curating 15,964 PubMed abstracts related to LC, we collected 2507 genes
that were associated with various LC subtypes. There are 232 SCLC-related genes and
1324 NSCLC-related genes in our data collection. We curated 535 and 251 genes for LUAD
and LUSC, respectively; however, only 52 oncogenes or tumor suppressor genes were
shared by LUAD and LUSC, confirming that these two major LC subtypes share common
molecular mechanisms. A few important signaling pathways shared by LUAD and LUSC
were identified through additional functional and mutational analyses. Our prognostic
analysis provides a global perspective on the heterogeneous genetic structures of different
LC subtypes, which may aid patient survival. Our future direction is to focus further on
the subtype-unique gene set, which may help us to understand the underlying disease
mechanisms and identify novel therapies for specific LC subtypes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology12030357/s1. Table S1. General information regarding the 2507 human genes in the
LCGene. Table S2. Differentially expressed lung cancer-related genes in the TCGA LUAD dataset.
Table S3. Differentially expressed lung cancer-related genes in the TCGA LUSC dataset. Table S4.
Co-expressed long non-coding RNA for lung cancer-related genes in the TCGA LUAD dataset.
Table S5. Co-expressed long non-coding RNA for lung cancer-related genes in the TCGA LUSC
dataset. Table S6. CRISPR knockout profiles of 607 lung cancer-related genes in 43 lung cancer cell
lines. Figure S1. The overall survival analysis of 52 common genes shared in LUAD and LUSC.
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Abbreviations

LCGene Lung cancer-implicated genes database
NSCLC Non-small cell lung cancer
SCLC Small cell lung cancer
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
LCC Large cell carcinoma
TCGA The Cancer Genome Atlas
GeneRIF Gene Reference Into Function
CRISPR Clustered regularly interspaced short palindromic repeats
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