
Citation: Cirino, C.; Marostegan,

A.B.; Hartz, C.S.; Moreno, M.A.;

Gobatto, C.A.; Manchado-Gobatto,

F.B. Effects of Inspiratory Muscle

Warm-Up on Physical Exercise: A

Systematic Review. Biology 2023, 12,

333. https://doi.org/10.3390/

biology12020333

Academic Editors: Gianpiero Greco,
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Simple Summary: In physical training, it is common to perform preparatory activities to improve
the performance of subsequent exercise. One of these activities is inspiratory exercise, which has been
increasingly applied as a muscle-warm-up strategy due to the demands on the respiratory muscles in
high-intensity effort. Generally, inspiratory exercise is performed by a device that works as an inspi-
ratory exerciser, imposing resistance to the respiratory muscles in the inspiratory phase by restricting
airflow. This resistance is based on the assessment of the individual’s global inspiratory-muscle
strength (maximum inspiratory pressure). Our review aimed to systematically review the literature in
order to examine the effects of inspiratory muscle warm-up on the inspiratory, metabolic, respiratory
and performance parameters of a main exercise performed by athletes and healthy and active indi-
viduals, taking into account the protocols applied as well as the equipment used as the inspiratory
exerciser. According to the results, the inspiratory-muscle warm-up was mostly performed in two
series of thirty inspirations at 40% of the maximum inspiratory pressure, using POWERbreathe® (IMT
Technologies Ltd., Birmingham, UK). Our review demonstrated that inspiratory-muscle warm-up
can be a practical and simple additional resource to improve performance in high-intensity physical
exercise, taking into account its individualized prescription.

Abstract: This study aimed to systematically review the literature to examine the effects of inspiratory-
muscle warm-up (IMW) on the inspiratory, metabolic, respiratory and performance parameters of a
main exercise performed by athletes and healthy and active individuals. Methods: This systematic
review included randomized studies in English based on the criteria of the PICOS model. The
exclusion criteria adopted were studies that applied inspiratory exercise to: i. promote long-term
adaptations through inspiratory training (chronic responses); ii. obtain acute responses to inspiratory
load (overload) during and in breaks from physical effort and in an inspiratory-exercise session
(acute training effect); iii. evaluate the effects of IMW on participants with cardiorespiratory and/or
metabolic disease. Data Sources: PubMed, Embase, MedLine, Scopus, SPORTDiscus and Google
Scholar (until 17 January 2023). Results: Thirty-one studies were selected. The performance and
respiratory parameters were the most investigated (77% and 74%, respectively). Positive effects of
IMW were reported by 88% of the studies that investigated inspiratory parameters and 45% of those
that evaluated performance parameters. Conclusions: The analyzed protocols mainly had positive
effects on the inspiratory and performance parameters of the physical exercises. These positive effects
of IMW are possibly associated with the contractile and biochemical properties of inspiratory muscles.

Keywords: respiration; respiratory muscles; sports

1. Introduction

The respiratory muscles are responsible for the flow of air into (inspiration) and out of
(expiration) the lungs, while respiratory demand is associated with the metabolic rate to
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ensure homeostasis. In intense exercise, the cardiorespiratory and neuromuscular systems
undergo several modulations to sustain the effort. Alveolar ventilation must increase
proportionally to the consumption of oxygen (O2) and the production of carbon dioxide
(CO2), consequently improving cardiac output. Furthermore, the higher respiratory rate
intensifies the work of the respiratory muscles, requiring adjustments to the breathing
pattern and increasing muscle recruitment so as to reduce the metabolic cost of breathing.
As a consequence, these adjustments increase the demand for blood flow and O2 transport
to these muscles during effort [1,2]. Due to these physiological challenges, the inspiratory
muscles in particular become more intolerant of exercise when the energy demand exceeds
the supply [2] since, in fatigue, these muscles consume 10–15% of the total O2 [3] and the
blood flow corresponds to up to 16% of the cardiac output [4]. Of the muscles activated
during inspiration, the main groups are the diaphragm and the external and parasternal
intercostals, while the accessory muscles include the sternocleidomastoid, the scalene, the
pectoralis major and minor, the serratus anterior and the iliocostalis cervicis [5–7], which
perform functions related to inspiratory and motor tasks concomitantly. They are more
prone to fatigue during main tasks of greater intensity.

In addition to being a type of training used in clinical practice, inspiratory exercise has
become an interesting strategy in the sports field, given the importance of the participation
of the respiratory muscles in high-intensity efforts [8]. Clinical trials have shown that this
resource can reduce blood pressure, since breathing is a modulator of the autonomic ner-
vous system and the baroreflex [9], as well as, helping in the prevention and rehabilitation
of diseases that cause respiratory damage, such as dyspnea and exercise intolerance [10–12].
In athletes and active and healthy individuals, inspiratory exercise has brought benefits
when used chronically in association with long-term training [8,13–16], or applied acutely
to obtain exercise responses with inspiratory overload [17], in a single inspiratory training
session [18] or to assist in the recovery from high-intensity efforts [19]. Moreover, inspira-
tory exercise has been widely used as a preparatory activity for physical exercise. This is
known as the inspiratory-muscle warm-up (IMW) [20–24], which is the particular focus of
this systematic review. The application of specific previous activities can provide positive
effects for physical exercises by controlling the intensity and duration of previous stimuli,
as well as recovery between tasks [25]. The exercise performed in the warm-up before a
more intense effort can be a resource for post-activation potentiation, whose effects can
improve physical performance [26,27].

The first investigation of IMW was based on the hypothesis that a specific warm-up
would affect the global strength of this musculature [28]. After confirming this hypothesis,
several studies sought to assess the effects of this intervention not only on the overall strength
of the inspiratory muscles [29–33], but also on sports performance, especially in high-intensity
efforts, taking into account metabolic and respiratory parameters [20–24,29,31,34–38].

Although the literature has reported the positive effects of IMW on athletes and healthy
and active individuals while performing several tasks, there are still gaps regarding the
protocols to be applied in relation to the prescription of inspiratory load, as well as the
characteristics of the warm-up protocol, such as the number of repetitions (breaths), pauses
between efforts and the equipment used as the inspiratory exerciser. Since IMW has been
used as a strategy to improve performance, it seems pertinent to discuss the subject in a
systematic review, providing robust information both for its proper prescription and for the
indication of new paths for future investigations. Therefore, this study aimed to systemati-
cally review the literature in order to examine the effects of inspiratory-muscle warm-up on
the inspiratory, metabolic, respiratory and performance parameters of a physical exercise
performed by athletes and healthy and active individuals, taking into consideration the
protocols applied as well as the equipment used as the inspiratory exerciser.



Biology 2023, 12, 333 3 of 19

2. Methods

This systematic review was conducted according to the methodological guidelines of
the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) [39].
This systematic review was not recorded.

2.1. Eligibility Criteria

This review addressed randomized studies that applied inspiratory exercise as a mus-
cle -warm-up strategy with the aim of improving the performance of subsequent activity.
Only English -language studies were considered for the analysis. The exclusion criteria
adopted were associated with the types of studies published in the form of an editorials,
letters to the editor, comments, reviews, abstracts, lectures or opinion articles. Regarding
the types of intervention, we excluded studies that applied inspiratory exercise to: i. pro-
motes long-term adaptations through inspiratory training (chronic responses); ii. obtain
acute responses to inspiratory load (overload) during and in breaks from physical effort
and in an inspiratory exercise session (acute training effect); and iii. investigate its effects
on participants with cardiorespiratory and/or metabolic disease. The definition of the
inclusion criteria was based on the PICOS structured-questions model (P—Population;
I—Intervention; C—Comparison; O—Outcome; S—Study design; Table 1). Only studies
conducted with athletes and healthy and active individuals aged over 18 years with-
out any motor limitations were considered. No restriction was adopted as to the sex of
the participants.

Table 1. Inclusion criteria based on the PICOS method.

Population Intervention Comparison Outcome Study Design

Athletes and
healthy and
active adults

Inspiratory-
muscle

warm-up

Experimental
condition X

Control and/or
placebo

Parameters
associated with

the physical
exercise *

Randomized
studies

* Performance (field and laboratory tests), inspiratory, metabolic and respiratory parameters.

2.2. Data Sources and Search Strategy

The comprehensive literature search was performed on the following electronic
databases PubMed, Embase, MedLine, Scopus and SPORTDiscus and Google Scholar
(additional search). Database queries were restricted to the period between 1999 and 17 Jan-
uary 2023. On all electronic databases, the following combinations of terms were applied:
“inspiratory” OR “respiratory” AND “warm-up” OR “pre-activation” AND “exercise”
OR “performance.”

2.3. Quality Assessment

The PEDro (Physiotherapy Evidence Database) scale was used to assess the method-
ological quality of the studies included in this review [40]. This scale considers 11 items:
1. eligibility criteria specified; 2. random allocation; 3. concealed allocation; 4. groups simi-
lar at baseline; 5. subject blinding; 6. therapist blinding; 7. assessor blinding; 8. dropout rate
lower than 15%; 9. intention-to-treat analysis; 10. between-group statistical comparisons;
11. point measures and variability data. The classifications of the methodological quality of
the studies were determined as poor (scores ≤3), fair (scores 4–5), good (scores 6–8) and
excellent (scores 9–10). The quality assessment was not applied as an inclusion criterion.
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2.4. Risk of Bias Assessment

The risk of bias was assessed according to the Cochrane Collaboration guidelines
(Review Manager software, version 5.4.1, Copenhagen, DK. The bias risk was analyzed in
the selection, performance, attrition and reporting domains. The judgement was classified
as high, low, or unclear risk of bias [41]. The risk-of-bias assessment was not applied as an
inclusion criterion.

2.5. Data Extraction and Management

The literature search, screening and selection of articles were carried out by two
authors independently (CC and ABM). After consulting the databases, the screening was
conducted considering the title, abstract and keywords according to the eligibility criteria.
Duplicate references were removed. At a different point in the study, the same authors
analyzed the texts in full. In cases of divergence, decisions were taken by a third author
(FBMG). The two authors used a customized data-extraction form, taking into account the
criteria established based on the PICOS model. This form extracted information about the
participants (characteristics, sex, age and sample size), IMW protocols (inspiratory load,
number of sets and repetitions, interval between sets and between intervention and physical
exercise), performance parameters analyzed and results obtained (IMW effects). Regarding
the effects of the interventions, the parameters investigated were: inspiratory (variables
related to inspiratory measurements), sports performance (variables provided by the tests
to determine the sports performance), respiratory (physiological and psychophysiological
variables related to ventilatory measurements) and metabolic (variables associated with
the metabolic products of the exercise).

3. Results
3.1. Study Selection

Initially, a total of 764 studies were selected, of which 176 were from PubMed, 243 were
from Embase, 163 were from MedLine, 85 were from Scopus, 87 were from SPORTDiscus
and 10 were from Google Scholar (additional database). Next, 375 duplicates were excluded,
resulting in 389 studies. Of these, we excluded three-hundred and fifty titles for not being
in accordance with the study topic, twenty-one titles with warm-up protocols applied
to general exercises, six titles with inspiratory-muscle training, one title with expiratory-
muscle warm-up, three titles with respiratory-muscle warm-up associated with disease
(conference abstract), three titles with IMW (conference abstract) and one study published
as a graduation thesis. From the remaining thirty-nine studies, we extracted three that
were applied to sedentary groups, two that were applied to groups of adolescents (aged
below 18 years), three that were applied to a group of children and one that was applied to
a group of paraplegics. Finally, a total of 31 studies were included in this systematic review
(Figure 1).

Among the selected studies, the chronological analysis of the publications (Figure 2)
showed an exponential increase in investigations related to IMW from 1999 (the first study
on the subject) to 2020. It should be noted that between 2021 and 2022, 7 studies were
published prior to this review (17 January 2023).
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Figure 1. Flow diagram of the study’s screening process.

Biology 2023, 12, 333 5 of 19 
 

 

 

Figure 1. Flow diagram of the study’s screening process. 

 

Figure 2. Distribution of published studies on inspiratory muscle warm-up applied to athletes and 

healthy and active individuals (period analyzed: 1999 to 2023). * First publication. ** Reviewed until 

17 January 2023. 

  

1999*-2000 2001-2005 2006-2010 2011-2015 2016-2020 2021-2023**

0

2

4

6

8

10

12

14

Chronological Publications

S
tu

d
ie

s
 I

n
c

lu
d

e
d

Figure 2. Distribution of published studies on inspiratory muscle warm-up applied to athletes and
healthy and active individuals (period analyzed: 1999 to 2023). * First publication. ** Reviewed until
17 January 2023.

3.2. Quality Assessment

Table 2 presents the assessment of the methodological quality of the studies. According
to the PEDro scale, 77% of the studies had good methodological quality, while the others
were classified as being of excellent quality. However, most of the studies did not score on
items related to randomization and blinding.
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Table 2. Assessment of the methodological quality of studies (PEDro Scale).

Authors (Year)
Items

Total Quality
1 2 3 4 5 6 7 8 9 10 11

Volianitis et al. (1999) [28] 1 0 0 1 0 0 0 1 1 1 1 6 G

Volianitis et al. (2001) [42] 1 1 0 1 0 0 0 1 1 1 1 7 G

Volianitis et al. (2001) [29] 1 0 0 1 0 0 0 1 1 1 1 6 G

Tong and Fu (2006) [43] 1 1 1 1 1 0 0 1 1 1 1 9 E

Hawkes et al. (2007) [44] 1 0 0 1 0 0 0 1 1 1 1 6 G

Lin et al. (2007) [20] 1 1 1 1 1 0 0 1 1 1 1 9 E

Lomax and McConnell (2009) [30] 1 1 0 1 0 0 0 1 1 1 1 7 G

Lomax et al. (2011) [31] 1 1 0 1 0 0 0 1 1 1 1 7 G

Cheng et al. (2013) [21] 1 1 1 1 1 0 0 1 1 1 1 9 E

Johnson et al. (2014) [34] 1 1 0 1 0 0 0 1 1 1 1 7 G

Wilson et al. (2014) [22] 1 1 1 1 1 0 0 1 1 1 1 9 E

Arend et al. (2015) [35] 1 1 0 1 0 0 0 1 1 1 1 7 G

Ohya et al. (2015) [32] 1 1 1 1 1 0 0 1 1 1 1 9 E

Thurston et al. (2015) [45] 1 1 0 1 0 0 0 1 1 1 1 7 G

Arend et al. (2016) [33] 1 1 0 1 0 0 0 1 1 1 1 7 G

Ozdal (2016) [46] 1 1 0 1 0 0 0 1 1 1 1 7 G

Ozdal et al. (2016) [23] 1 1 0 1 0 0 0 1 1 1 1 7 G

Faghy and Brown (2017) [47] 1 1 0 1 0 0 0 1 1 1 1 7 G

Hartz et al. (2017) [48] 1 1 0 1 0 0 0 1 1 1 1 7 G

Ozdal and Bostanci (2018) [49] 1 1 0 1 0 0 0 1 1 1 1 7 G

Richard and Billaut (2018) [50] 1 1 1 1 1 0 0 1 1 1 1 9 E

Merola et al. (2019) [51] 1 1 0 1 0 0 0 1 1 1 1 7 G

Richard and Billaut (2019) [52] 1 1 1 1 1 0 0 1 1 1 1 9 E

Tong et al. (2019) [53] 1 1 0 1 0 0 0 1 1 1 1 7 G

Avci et al. (2021) [54] 1 1 0 1 0 0 0 1 1 1 1 7 G

Arend et al. (2021) [55] 1 1 0 1 0 0 0 1 1 1 1 7 G

Barnes and Ludge (2021) [24] 1 1 0 1 0 0 0 1 1 1 1 7 G

Cirino et al. (2021) [36] 1 1 1 1 1 0 0 1 1 1 1 9 E

Silapabanleng et al. (2021) [56] 1 1 0 1 0 0 0 1 1 1 1 7 G

Manchado-Gobatto et al. (2022) [37] 1 1 0 1 0 0 0 1 1 1 1 7 G

Marostegan et al. (2022) [38] 1 1 0 1 0 0 0 1 1 1 1 7 G

PEDro Scale Items: 1. eligibility criteria specified; 2. random allocation; 3. concealed allocation; 4. groups similar
at baseline; 5. subject blinding; 6. therapist blinding; 7. assessor blinding; 8. dropout rate lower than 15%; 9.
intention-to-treat analysis; 10. between-group statistical comparisons; 11. point measures and variability data.
Quality score = total score (YES = 1). Poor (P): scores ≤3; fair (F): scores 4–5; good (G): scores 6–8; and excellent
(E): scores 9–10.

3.3. Risk-of-Bias Assessment

Figure 3 demonstrates the risk-of-bias analysis of the included studies on a percentage
scale. In general, most of the studies omitted methodological information that indicated
an unclear risk of bias for all domains, except for incomplete outcome data. This domain
has a low risk of bias for all studies because it is used to investigate acute interventions,
facilitating data collection. Some of the investigations showed a high risk of bias in domains
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related to randomization and blinding. Thus, the risk-of-bias analysis raised concerns, since
the studies did not explicitly present methodological information.
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3.4. Study Characteristics

Table 3 presents the characteristics and effects of the IMW protocols applied prior
to a physical exercise. The IMW protocols were characterized by the measure used to
determine inspiratory load, the prescription of the volume and intensity of inspiratory
exercises, the pause between efforts, the type of intervention and the equipment used. The
effects of IMW on inspiratory, performance, respiratory and metabolic parameters were also
evaluated. A Venn diagram (Figure 4a) was used to quantify the studies in relation to the
parameters investigated. According to Figure 4b, of the thirty-one studies considered in this
review, nine simultaneously investigated the effects of the intervention on the performance,
respiratory and metabolic parameters, six analyzed only the inspiratory parameters, five
addressed the inspiratory, performance and respiratory parameters in the same investi-
gation, four quantified all the parameters investigated, four evaluated the effects of the
intervention only on the performance and respiratory parameters, two considered only the
performance parameters and one analyzed the inspiratory and respiratory parameters in
the same investigation.

Table 3. Description of the IMW protocols. a POWERbreathe®. b PowerLung®. c Flow-restriction
device. d Not informed.

Authors (Year)
Subjects

IMW Protocol Physical Exercise Results
Population Age (Years)

a Volianitis et al.
(1999) [28]

23 subjects
12 non-rowers

11 rowers

20 ± 1
20 ± 2

Control: without IMW
IMW: 2 × 30 (40%

MIP)
MIP assessment ↑MIP

a Volianitis et al.
(2001) [42] 14 healthy subjects 26 ± 3

Control: without IMW
IMW: 2 × 30 (40%

MIP)
(2 min before physical

exercise)

Repeated
measurement of
MIP(after each

series)

↓ “Learning effect”
between repeated

measurements of MIP

a Volianitis et al.
(2001) [29]

14 competitive
club rowers

7 Male
7 Female

19.9 ± 0.7
20.1 ± 0.9

Control: without IMW
IMW: 2 × 30
(40% MIP)

MIP assessment
6-min all-out

rowing

<MIP decrease (%) in
the post-test
↑ Power (W)
↑ Distance (m)
↓ Dyspnea
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Table 3. Cont.

Authors (Year)
Subjects

IMW Protocol Physical Exercise Results
Population Age (Years)

a Tong and Fu
(2006) [43]

10 healthy male
subjects 21.3 ± 1.2

Control: without IMW
Placebo: 2 × 30 (15%

MIP)
IMW: 2 × 30

(40% MIP)
IMW performed
between specific

warm-up activities
Physical exercise

performed
immediately after
specific warm-up

activities and IMW

Dynamic
inspiratory-

muscle-function
Ttest

Yo-Yo intermittent-
recovery

test

↑MIP at zero flow
↑Maximal

inspiratory-muscle
power

↑ Optimal pressure
↑Maximal inspiratory
flow↑Maximal rate of
pressure development

↓ Dyspnea
No changes in
performance
parameters

a Hawkes et al.
(2007) [44]

12 healthy subjects
(6 male) 25 ± 9

Control: without IMW
IMW: 2 × 30 (40%

MIP)
MIP assessment

↑MIP
↑ EMG activity of the

diaphragm and
intercostal muscles on

the MIP assessment

a Lin et al.
(2007) [20]

10 male badminton
players 23 ± 2

Control: without IMW
Placebo: 2 × 30 (15%

MIP)
IMW: 2 × 30
(40% MIP)

Dynamic
inspiratory-

muscle-function
test

Maximum
incremental
badminton-
footwork

test

↑MIP at zero flow
↑Maximal rate of

pressure development
↑ Distance (m)
↓ Dyspnea

↓ [Lac] (ISO trial)

a Lomax and
McConnell
(2009) [30]

8 healthy and
active subjects
(7 females and

1 male)

29.1± 6.3

Control: without IMW
IMW: 2 × 30

(40% MIP)
(60 s pause)

MIP assessment ↑MIP

b Lomax et al.
(2011) [31]

12 healthy and
semi-professional

male football
players

24.6 ± 1.3

Control: without IMW
IMW: 2 × 30

(40% MIP)
(60 s pause)

(3 min before physical
exercise)

MIP assessment
Yo-Yo intermittent-

recovery
test

↑MIP
↑ Distance (m)
No changes in

respiratory parameters

a Cheng et al.
(2013) [21]

10 female soccer
players 19.9 ± 1.4

Control: without IMW
Placebo: 2 × 30 (15%

MIP)
IMW: 2 × 30
(40% MIP)

2 sets of 6-min
cycling exercises
6 × 10 s sprints

No changes in
performance,
metabolic or
respiratory

parameters, except ↓ ∆
TSI

a Johnson et al.
(2014) [34]

10 trained
competitive road

cyclists
32 ± 9

1: Without any
preliminary activity
2: Control without

IMW
3: IMW-2 × 30

(40% MIP)
(30s pause)

10-kilometer-
cycling time-trial

tests

No changes in
performance,
metabolic or

respiratory parameters
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Table 3. Cont.

Authors (Year)
Subjects

IMW Protocol Physical Exercise Results
Population Age (Years)

a Wilson et al.
(2014) [22]

15 elite swimmers
(9 male) 21.2 ± 1.6

1: Control without
IMW

2: Only IMW-2 × 30
(40% MIP)

3: IMW-2 × 30 (15%
MIP)

4: IMW-2 × 30 (40%
MIP)

100-m
freestyle-sprint

time trial

↓ Time
No changes in
metabolic or

respiratory parameters

a Arend et al.
(2015) [35]

10 competitive
male rowers 23.1 ± 3.8

Control: Without IMW
IMW: 2 × 30

(40% MIP)
(2 min pause)

Submaximal-
intensity rowing

test (90% VO2
max)

No changes in
performance,
metabolic or
respiratory

parameters, except ↓
breathing frequency

a Ohya et al.
(2015) [32]

10 healthy and
active male

subjects
25.1 ± 4.8

Placebo: 2 × 30 (15%
MIP)

IMW: 2 × 30
(40% MIP)

(60 s pause)

5 × 5-s cycling
sprints (25-s active

recovery)

↑MIP post-IMW
No changes in
performance,
metabolic or

respiratory parameters

c Thurston et al.
(2015) [45]

11 recreationally
active male

subjects
24.9 ± 4.2

Airflow restriction
Control: Without IMW

Low: 2 × 30
(13-millimeter

opening)
Medium: 2 × 30

(8-millimeter opening)
High: 2 × 30

(3-millimeter opening)
(60 s pause)

Cycling test to
exhaustion (85%

VO2max)
Pulmonary-

function testing
(spirometry)

No changes in
performance,
metabolic or

respiratory parameters

a Arend et al.
(2016) [33]

10 healthy male
subjects 26.4 ± 4.1

Control: Without IMW
1: IMW—2 × 30 (15%

MIP)
2: IMW–2 × 30 (40%

MIP)
3: IMW—2 × 12 (60%

MIP)
4: IMW—2 × 6 (80%

MIP)
(5 min before physical

exercise)

MIP assessment ↑MIP (IMW at 40 and
60% MIP)

a Ozdal (2016)
[46]

26 healthy male
subjects 26.31 ± 4.39

Control: Without IMW
Placebo: 2 × 30 (15%

MIP)
IMW: 2 × 30 (40%

MIP)

MIP assessment
Pulmonary-

function testing
(spirometry)

↑MIP
↑ Pulmonary function
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Table 3. Cont.

Authors (Year)
Subjects

IMW Protocol Physical Exercise Results
Population Age (Years)

a Ozdal et al.
(2016) [23]

30 field hockey
players 20.5 ± 2.0

Control: Without IMW
IMW: 2 × 30

(40% MIP)
(2 min pause)

Wingate test ↑ Performance
parameters

a Faghy and
Brown (2017)

[47]

9 healthy and
active male

subjects
26.4 ± 9.1

1: Control without
IMW

2: Only IMW 2 × 30
(40% MIP)

3: Only placebo (5-min
breathing using a

sham device)
4: IMW 2 × 30

(40% MIP)
5: Placebo (5-min
breathing using a

sham device)

2.4-kilometer-
running timetrials

(25-kilogram
thoracic load)

MIP Assessment

↓MIP post physical
exercise (no difference
among protocols)No

changes in
performance,
metabolic or

respiratory parameters

a Hartz et al.
(2017) [48]

14 female handball
athletes 19 ± 1

Control: Without IMW
Placebo: 2 × 30 (15%

MIP)
IMW: 2 × 30
(40% MIP)

Yo-Yo endurance
test

No changes in
performance,
metabolic or

respiratory parameters

a Ozdal &
Bostanci (2018)

[49]

30 male elite field
hockey players 20.50 ± 1.98

Baseline: MIP/MEP
values

Control: Without IMW
IMW: 2 × 30

(40% MIP)
(2-min pause)

MIP/MEP
assessment

Incremental test
with cycle

ergometer (VO2
peak)

↑MIP/MEP
(comparison with

baseline)
↑ Respiratory
parameters

a Richard and
Billaut (2018) [50]

7 elite male
long-track speed

skaters
23.4 ± 3.3

Protocols combined
with chronic ischemic

preconditioning
Placebo: 2 × 30

(15% MIP)
IMW: 2 × 30

(40% MIP)
(60-s pause)

600-m ice-skating
time-trials

No changes in
performance or

respiratory parameters

a Merola et al.
(2019) [51] 11 judo athletes 22.3 ± 2.3

Control: Without IMW
Placebo: 2 × 15

(15% MIP)
IMW: 2 × 15

(60% MIP)
(with one breath

immediately after each
movement during
specific warm-up

activities)

Special judo fitness
test

MIP and MEP
assessment

No changes in
inspiratory,

performance or
respiratory parameters
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Table 3. Cont.

Authors (Year)
Subjects

IMW Protocol Physical Exercise Results
Population Age (Years)

a Richard and
Billaut (2019) [52]

8 elite speed
skaters

(5 Male)
21.4 ± 3.5

Placebo: 2 × 30 (15%
MIP)

IMW: 2 × 30 (40%
MIP)

(60 s pause)

3000-m ice-skating
time-trials

No changes in
performance or

respiratory parameters

a Tong et al.
(2019) [53]

9 male college
athletes (soccer
and handball)

20.6 ± 0.9

Control: Without any
preliminary activity

IMW: 40% MIP
(IMW was performed
simultaneously with
four exercises for the
trunk musculature)
Interventions were
performed between

exercises on the
treadmill

2 × intermittent
efforts on a

non-motorized
treadmill at

progressive speeds
up to all-out speed

(15-min pause)
MIP assessment
Sport-specific-

endurance plank
test (trunk-muscles

strength)

Accelerated recovery
of MIP and

trunk-muscle strength
↑ Performance

parameters (sprints)
No changes in
metabolic or

respiratory parameters
in the recovery period

d Avci et al.
(2021) [54]

30 male hockey
players 21.50 ± 2.98

Control: Without IMW
Placebo: 2 × 30

(5% MIP)
IMW: 2 × 30

(40% MIP)
(60-s pause)

Hockey Tests:
Hockey drag-flick

and
shot-performance

test
Goal and scoring

Drag-flick-
performance test
Hit-performance

test

↑ Drag-flick and
shooting performance

a Arend et al.
(2021) [55]

10 high-level male
rowers 23.1 ± 3.8

Control: Without IMW
IMW: 2 × 30

(40% MIP)
(2-min pause)

Submaximal-
intensity rowing

test (90% VO2max)

No changes in
performance or

respiratory parameters
(VO2 kinetics)

a Barnes and
Ludge (2021) [24]

17 middle-distance
runners:
10 Male
7 Female

20.3 ± 1.5
20.2 ± 1.3

Control: 1 × 30 (30
slow protracted

breaths against 3 cm of
H20 resistance)

IMW: 1 × 30 (50%
S-index)

Inspiratory-
muscle-function

test (S-index)
3200-m-run-
performance

trial

↑ Performance
parameters
↑ S-index

No changes in
respiratory

parameters, except ↓
Dyspnea

a Cirino et al.
(2021) [36]

10 male judo
athletes 22 ± 1

Control: Without IMW
Placebo: 2 × 15 (15%

MIP)
IMW: 2 × 15

(40% MIP)
(60-s pause)

(2 min before physical
exercise)

Judo match—4 min
Recovery

post-combat

↑ Technical-tactical
parameters

No changes in
metabolic or

respiratory parameters
in the recovery period
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Table 3. Cont.

Authors (Year)
Subjects

IMW Protocol Physical Exercise Results
Population Age (Years)

a Silapabanleng
et al. (2021) [56]

26 healthy males
subjects 19–23

Control: Without IMW
IMW: 2 × 30 (40%

S-index)
Physical exercise

performed
immediately after

IMW

3-min all-out test
in cycle ergometer

↓ Heart rate at the
third minute of the test

No changes in
performance

parameters or rate of
perceived exertion

(RPE)

a Manchado-
Gobatto et al.

(2022) [37]

15 physically
active young men 23 ± 1

Control: Without IMW
IMW: 2 × 15

(40% MIP)
(60-s pause)

(2 min before the
physical exercise)

30-s all-out
tethered running

on a
non-motorized

treadmill
Recovery post-test

↑ Absolute (W) and
relative power

(W.kg−1)
No changes in
metabolic or

respiratory parameters
at rest or in the
recovery period

a Marostegan
et al. (2022) [38]

16 physically
active young men 23 ± 1

Control: Without IMW
1: IMW-2 × 15 (15%

MIP)
2: IMW-2 × 15 (40%

MIP)
3: IMW-2 × 15 (60%

MIP)
(60-s pause)(2 min

before physical
exercise)

30-s all-out
tethered running

on a
non-motorized

treadmill
Recovery post-test

↑ Relative power
(W.kg−1) and force

(N.kg−1) in IMW at 15,
40 and 60% MIP
↑ Velocity (m.s−1) in

IMW at 60% MIP)
No changes in
metabolic or

respiratory parameters
in the recovery period
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Figure 4. Inspiratory-muscle-warm-up studies. (a) Venn diagram [57] of the intersection of studies on
the effects of inspiratory-muscle warm-up in relation to the investigated parameters. (b) Ranking of
the intersections of the Venn diagram (number of studies evaluating the investigated parameters). All
parameters (AP); inspiratory parameters (IP); performance parameters (PP); respiratory parameters
(RP); and metabolic parameters (MP).

Figure 5 shows that the performance and respiratory parameters were the most fre-
quently investigated (77% and 74%, respectively). The positive effects of IMW were reported
88% of the studies that evaluated inspiratory parameters, followed by 45% of those that
investigated performance parameters (Figure 5b).
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4. Discussion

This study investigated the effects of inspiratory exercise applied as a muscle-warm-up
strategy prior to physical exercise performed by athletes and healthy and active individuals.
According to our analysis, the most frequently investigated factors used to examine the
effects of IMW were performance (77%) and respiratory (74%) parameters. The positive
effects of IMW were reported in 88% of the studies that evaluated inspiratory parameters
and 45% of those that investigated performance parameters. Of the selected studies, the ma-
jority concurrently analyzed the effects of IMW on performance, respiratory and metabolic
parameters, followed by those that investigated the effects only on inspiratory parameters.
Furthermore, most of the investigations that found positive effects of this intervention
applied the traditional protocol, consisting of two sets of thirty deep breaths performed
using POWERbreathe® (IMT Technologies Ltd., Birmingham, UK), at an inspiratory load
of 40% MIP. The assessment of methodological quality and risk of bias was not used as an
inclusion criterion. Therefore, all the studies on the subject were analyzed in this review.

Most of the studies covered in this systematic review used maximal inspiratory pressure
(MIP) measures to determine effort intensity during IMW, given that these measures are a
reference in the assessment of global inspiratory-muscle strength [20–23,28–38,42–44,46–55],
enabling correct individual measurement and guidance on the inspiratory intervention
load. The inspiratory-muscle-strength levels were obtained by measuring the maximal
inspiratory pressures through the airways or diaphragm [58]. The pressure measurement
followed Laplace’s law, which refers to the tension radius of the curvature ratio, which, in
this case, was the curvature of the diaphragm dome [59]. In relation to diaphragm tension
in particular, the measure used was trans-diaphragmatic pressure (Pdi), which corresponds
to the difference between the gastric and esophageal pressures resulting from the passage
of catheters via the nasal route to the distal esophagus and stomach [60]. Although this
method is the most accurate for assessing the pressure exerted by the diaphragm [61],
it is invasive and restricted, as it provides the pressure index of only one inspiratory
muscle [60]. Thus, to determine pressure through the airways [56], the MIP is the most
commonly used measure in clinical practice [60,62] and in inspiratory-muscle training,
since it is a non-invasive method [8,13–16]. The measure that represents global inspiratory-
muscle strength [60,62,63], is obtained using a manovacuometer, by the Mueller maneuver
performed against an occluded valve that requires maximum contraction from residual
volume to total lung capacity, eliciting maximal isometric effort from the inspiratory
muscles [59,62].

Alternatively, more recent studies adopted the use of the S-index (strength-index)
measure, which dynamically assesses global inspiratory-muscle strength through the
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airflow generated in an open system during an inspiratory maneuver [62,64,65]. It should
be noted that even though this measure does not represent the MIP, it has proved to be a
valid option, capable of providing the necessary measures for the prescription of inspiratory-
muscle training [62,64]. In addition, the S-index can be advantageous due to its easy
applicability, since the device used to obtain this measure (POWERbreathe®, K-Series) can
also be employed to perform inspiratory exercises [62]. Although this measure is becoming
increasingly popular [62], only the studies by Barnes and Ludge [24] and Silapabanleng
et al. [54] adopted it for prescribing inspiratory exercise. While the former [24] applied the
protocol before the S-index and 3200-m running tests, the latter [56] used IMW based on
S-index prior to a 3-min all-out test on a cycle ergometer.

Regarding the IMW protocol, especially in relation to volume (the number of sets and
repetitions) and intensity (the percentage of maximal inspiratory pressure), most studies
applied the traditional protocol defined by Volianitis et al. [28], with two sets of thirty
breaths at 40% MIP. The use of 40% MIP in the traditional protocol can be justified by the
fact that this inspiratory load represents the highest intensity at which inspiratory-muscle
fatigue is not induced [44,66]. An IMW protocol with an inspiratory load corresponding to
15% MIP was adopted in some investigations as a placebo, since it did not differ from the
protocol without IMW intervention (control) [20–23,43,48,50,52]. However, other studies
that applied two sets of fifteen breaths at 15% MIP showed positive changes, indicating
that this inspiratory load can be used to prepare athletes for subsequent high-intensity
efforts [36,38].

Of the studies that applied the traditional protocol (2× 30), most of reported positive ef-
fects on MIP measures [28,29,31–33,42,44,46,49], in dynamic inspiratory function estimated
using different inspiratory loads [20,43], and in improved lung-function parameters [46].
Barnes and Ludge [24] observed an increased S-index in an alternative protocol (1 × 30
breaths at 50% S-index). Regarding the performance parameters, the studies that adopted
the traditional protocol found positive effects of IMW on rowing [29,55], badminton [20],
intermittent running [31], swimming [22], anaerobic fitness test [23,37,38], maximal run-
ning (sprints) [53] and hockey [54]. In these studies, the performance improvement ranged
between 2.1% and 34.4% when IMW was applied. However, other investigations that
also assessed high-intensity efforts with the intervention of the traditional IMW protocol
showed no changes in performance parameters [21,32,34,35,43,47–49,52,55]. Although all of
these studies applied the same volume and intensity, with intervals between sets of 30 s up
to 2 min [23,31,32,34,35,50,52], that is, similar stimuli, the different results found may have
been associated with the time between the IMW stimulus and the physical exercise. While
Tong and Fu [43] started the physical exercise immediately after the warm-up integrated
with the IMW, Lomax et al. [31] waited for 3 min. The other studies did not provide this
information in their experimental designs, which may have affected their understanding
of the responses to the stimuli caused by the IMW. Other interventions that can provide
the post-activation potentiation described in the literature reported short-duration effects
of around a few minutes on muscle actions [67]. In this reasoning, it is safe to say that
the duration of the IMW’s effects on high-intensity efforts is still unknown; therefore,
the time taken to start the physical exercise can affect its effect on performance. Hawkes
et al. [44] observed that the positive effects of the traditional protocol of IMW on MIP lost
their effectiveness 15 min after the intervention. Moreover, unlike the effort caused by the
MIP assessment, the high-intensity stimuli characteristic of sports practice may result in
inspiratory-muscle fatigue [1,2], which can affect the duration of the IMW effects.

Other studies sought to assess IMW protocols with different volumes and intensities of
inspiratory exercise. Arend et al. [33] assessed the effects of IMW on MIP by applying four
different protocols. According to the authors, a protocol with a more intense inspiratory
load (60% MIP) and a lower number of breaths (12 inspirations) led to positive effects on
global inspiratory-muscle strength. Marostegan et al. [38] also tested IMW at 60% MIP (two
sets with fifteen breaths) and observed an increase in mechanical parameters in 30-s all-out
tethered running. Merola et al. [51] also applied a protocol at an inspiratory load of 60%
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MIP (two sets of fifteen breaths) as a preliminary activity to a specific judo test. However,
this study did not show changes in performance or respiratory parameters.

It is worth mentioning that the most recent studies, such as those developed by Cirino
et al. [36], who evaluated a judo match, and Manchado-Gobatto et al. [37], who evaluated
performance in 30-s all-out tethered running, brought innovations to the analysis of the
effects of inspiratory-muscle warm-up, demonstrating that the complex-networks model
allows a more integrative analysis and highlighting the involvement of physiological
parameters that are important for performance.

Regarding the type of equipment used as an inspiratory exerciser in the IMW included
in the studies, Thurston et al. [45] used one that promotes inspiratory overload by restricting
airflow through holes with diameters between 3 and 13 mm. Since the individualized
intensity was not determined, this study found no changes in performance, metabolic or
respiratory parameters. Although this equipment is low-cost and easy to apply, it has
been used on a smaller scale due to the difficulty in controlling the inspiratory load, as it
does not have a mechanism to regulate load during breathing [8]. The study by Lomax
et al. [31] was based both on the MIP measure used to define the inspiratory load and
on the use of PowerLung® (Sports, USA) to control the restriction of air flow through
valves and provided the possibility of acting in the inspiratory and expiratory phases [8,68].
Nonetheless, McConnell and Romer [68] do not recommend the use of this equipment in the
expiration phase, as the addition of an expiratory load may increase intrathoracic pressure,
consequently increasing the potential risks during effort. It is important to highlight that
Lomax et al. [31] observed positive effects of IMW both on sports-performance parameters
and on MIP measures. The other studies also prescribed inspiratory exercise based on
individualized MIP using POWERbreathe® (IMT Technologies Ltd., Birmingham, UK), a
device that acts only in the inspiratory phase but has a regulation mechanism, involving a
valve that is controlled electronically, which makes it able to maintain load intensity during
inspiration [69].

The effects of IMW on MIP and sports-performance parameters [20,28,30–33,36,43,46]
may be associated with the neural control of the inspiratory muscles, since this musculature
exerts ventilatory and postural demands [70,71]. The IMW can help improve intra and
intramuscular coordination [20,28,31], as the mechanical efficiency of these muscles requires
coordinated muscle action [72], determined by the contractile and fatigue properties of the
recruited motor units [73].

With a specific emphasis on metabolic and respiratory aspects, some investigations
did not report positive effects on parameters related to responses after intense
efforts [20–22,24,29,32,34,36,55], except for tissue-oxygenation rate in active muscles [21],
respiratory rate [35] and dyspnea perception [20,24,43]. These results may be related to
inspiratory-muscle fatigue, as previously discussed [74], since high-intensity efforts in-
crease metabolites close to phrenic nerve endings, sensitizing type III and type IV afferent
fibers that activate the metaboreflex [75]. This stimulates adrenergic vasoconstriction, redis-
tributing blood flow from active to respiratory muscles [76]. Cheng et al. [21] suggested
that the application of the traditional IMW protocol in submaximal exercise performed
on a cycle ergometer may have delayed the metaboreflex, mitigating the drop in oxygen
saturation. However, this positive effect was not associated with an improved cycling
performance [21]. Furthermore, regarding submaximal exercise, Arend et al. [35] found
that the effect of IMW at 40% MIP in rowers increased the respiratory rate during effort.
The authors did not consider it a negative sign, but rather an opportunity to increase ven-
tilation without causing dyspnea [35]. With respect to the decrease in dyspnea [20,24,43],
which can be considered a limiting factor in maintaining effort, it was verified that the
positive effects of IMW on high-intensity efforts helped improve performance [43]. It can
therefore be concluded from the results that IMW facilitates chest stabilization, improving
the mechanical efficiency of ventilation and reducing the sensation of dyspnea [77–79].

In our review, the assessment of the methodological quality and risk of bias of the stud-
ies indicated strengths and limitations that must be taken into account. The methodological



Biology 2023, 12, 333 16 of 19

quality of the studies was classified as good and excellent, according to the PEDro scale.
This strengthens the description of the characteristics of the protocols and the possible
applications of inspiratory exercises for enhancing the subsequent activity. However, most
of the studies did not score items related to the randomization-and-blinding process (PEDro
Scale). The main concerns raised by the risk-of-bias analysis reflect this judgment. It is
noteworthy that this is the first exploratory review on IMW to select all the studies on the
subject in order to indicate a direction for future investigations with more methodological
details about inspiratory-muscle-warm-up effects.

5. Conclusions

Considering the above, the traditional IMW protocol (two sets of thirty inspirations at
40% MIP) was the most frequently applied to athletes and healthy and active individuals.
According to the IMW protocols analyzed in this review, there was an improvement
mainly in the inspiratory parameters related to MIP (4.0–21.2%) and in the performance of
specific tasks (2.1–34.4%). Although the application of other protocols with control over
the number of repetitions, inspiratory load and type of intervention also showed favorable
effects on the improvement of physical exercise, further investigation is still required. In
conclusion, the positive effects of IMW are associated with the efficiency of inspiratory
muscles, possibly due to the contractile and biochemical properties of motor units and
muscle fibers. We consider that the use of IMW can be a practical and simple additional
resource to improve performance in high-intensity physical exercise, taking into account its
individualized prescription.
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