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Simple Summary: Acute kidney injury can result from multiple factors. The main cause is reduced
renal perfusion. Kidneys are susceptible to ischemia due to the anatomy of microcirculation that
wraps around the renal tubules. In the kidney, cortical and medullary superficial tubules have a
large share in transport and require the supply of oxygen for energy production, while it is the
cortex that receives almost 100% of the blood flowing through the kidneys and the medulla only
accounts for 5–10% of it. This difference makes the tubules present in the superficial layer of the
medulla very susceptible to ischemia. Impaired blood flow causes damage to the inner layer of
vessels and thrombosis. The next stage is the disintegration of these vessels. The phenomenon of
destruction of small vessels is called peritubular rarefaction, attributed as the main cause of further
irreversible changes in the damaged kidney leading to the development of chronic kidney disease. In
this article, we will present the characteristic structure of renal microcirculation, its regulation, and
the mechanism of damage in acute ischemia, and we will try to find methods of prevention with
particular emphasis on the inhibition of the renin–angiotensin–aldosterone system.

Abstract: Acute kidney injury (AKI) can result from multiple factors. The main cause is reduced renal
perfusion. Kidneys are susceptible to ischemia due to the anatomy of microcirculation that wraps
around the renal tubules–peritubular capillary (PTC) network. Cortical and medullary superficial
tubules have a large share in transport and require the supply of oxygen for ATP production, while it
is the cortex that receives almost 100% of the blood flowing through the kidneys and the medulla
only accounts for 5–10% of it. This difference makes the tubules present in the superficial layer of
the medulla very susceptible to ischemia. Impaired blood flow causes damage to the endothelium,
with an increase in its prothrombotic and pro-adhesive properties. This causes congestion in the
microcirculation of the renal medulla. The next stage is the migration of pericytes with the disin-
tegration of these vessels. The phenomenon of destruction of small vessels is called peritubular
rarefaction, attributed as the main cause of further irreversible changes in the damaged kidney
leading to the development of chronic kidney disease. In this article, we will present the characteristic
structure of renal microcirculation, its regulation, and the mechanism of damage in acute ischemia,
and we will try to find methods of prevention with particular emphasis on the inhibition of the
renin–angiotensin–aldosterone system.

Keywords: kidney microcirculation; acute kidney injury; renin–angiotensin–aldosterone system

1. Introduction

Acute kidney injury (AKI) can result from multiple factors. The main cause is reduced
renal perfusion [1]. AKI is associated with longer and more costly hospitalization, an
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increased risk of chronic renal failure, and a higher mortality rate [2]. Twenty percent of
hospitalized patients develop AKI [2,3]. In developed countries, approximately 2 million
people die each year due to AKI-related complications [4,5]. A reduction in blood flow is the
common pathway into the pathophysiology of ischemic AKI. The causes of this disturbance
can be different: Decreased intravascular volume, hypotension, drug-induced ischemia,
and sepsis. Rather than alterations in whole-organ perfusion, it may be regional changes in
renal blood flow that explain the loss of kidney function. The outer medulla, for instance,
has been shown to be particularly vulnerable to ischemia. The mechanism of ischemic injury
in this area can be explained by the anatomy of the capillary network microcirculation.
The capillary network in this area is poor, and even in healthy individuals, the outer
medulla is poorly oxygenated. The proximal straight tubule PST-S3 fragment present in
this area cannot switch to anaerobic glycolytic metabolism, which is why it needs sufficient
oxygen supply for ATP production to maintain active transport. Impaired flow in the
microcirculation of the renal medulla causes damage to these vessels, which results in the
initial damage to the endothelium, with an increase in its prothrombotic and pro-adhesive
properties. This causes congestion in the microcirculation of the renal medulla. The next
stage is the migration of pericytes, which causes the complete disintegration of these vessels.
Pericytes transform into cells causing fibrosis. The phenomenon of destruction of small
vessels is called peritubular rarefaction, the main cause of further irreversible changes in
the damaged kidney leading to the development of chronic kidney disease. In this article,
we will present the characteristic structure of renal microcirculation, its regulation, the
mechanism of damage in acute ischemia, and we will try to find methods of prevention
with particular emphasis on the inhibition of the renin–angiotensin–aldosterone system.

2. The Anatomy of Renal Microcirculation

Renal circulation supplies blood to every glomerulus in the nephron. The nephron,
together with the blood vessels, is referred to as the nephrovascular unit. As mentioned
earlier, 25% of the blood volume flows through the kidneys, although this much blood
only passes through the cortex to maintain glomerular filtration [6]. The renal artery
divides into interlobar, arcuate, and interlobular arteries, the latter of which gives rise
to the afferent glomerular arterioles. In a healthy kidney, blood first flows through the
glomerulus and then exits through the efferent arteriole. The efferent arteriole gives rise to
the so-called the postglomerular circulation that wraps around the renal tubules to form
the peritubular capillary (PTC) network. The efferent arterioles running from the cortical
glomeruli vascularize the cortical tubules, while the glomeruli present close to the medulla—
known as juxtamedullary glomeruli—give rise to the efferent arterioles responsible for
blood supply to the medullary tubules—its name is juxtamedullary circulation [7,8]. The
superficial nephrons have short efferent arterioles that form a capillary network primarily
around the proximal and distal convoluted tubules. The efferent arterioles of the glomeruli
located close to the medulla are longer and wider, and form vasa recta (VR)—straight
descending arterioles (or descending vasa recta—DVR) and straight ascending venules (or
ascending vasa recta—AVR), which give rise to the dense capillary plexus penetrating the
medullary interstitium. The straight vessels run a similar route to the loop of Henle, while
the direction of the flow is identical to the flow of urine in the loop of Henle. This system is
responsible for blood supply to the proximal straight tubule (PST) and the medullary thick
ascending limb (mTAL) of the loop of Henle. Both the cortical proximal and distal tubules,
as well as the PST and the ascending limb of the loop of Henle, are considerably involved
in tubular transport. The proximal straight tubule is the S3 segment of the proximal tubule.
The tubular segments in the deep part of the medulla—the collecting duct and the thin
descending and thin ascending limbs of the loop of Henle—have only a slight share in
tubular transport and can hence draw their energy from anaerobic metabolism. Although
both the compartments—cortical and medullary superficial—have a large share in the
transport and require the supply of oxygen for ATP production, it is the cortex that receives
100% of the blood flowing through the kidneys, while the medulla only accounts for 5–10%
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of it. This discrepancy results from their anatomy—blood to the medulla only flows from
the efferent arterioles of the juxtamedullary glomeruli (a small number). Additionally,
the angle at which the arterioles exit the glomeruli is acute. This looks very different in
the cortex, with plentiful glomeruli and efferent arterioles and a mild exit angle. It is
for this reason that the S3 fragment, namely, the PST, is considered the most sensitive to
ischemia. Importantly, this problem also affects the mTAL fragment [9]. While the PST
cannot produce ATP from anaerobic glycolysis, the mTAL is capable of that, although on a
small scale that prevents active transport from being maintained [9,10] (Figure 1).
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PTC—peritubular capillary, EA—efferent arteriole, AA—afferent arteriole, PCT—
proximal convoluted tubule, DCT—distal convoluted tubule, CD—collecting duct, DVR—
descending vasa recta, AVR—ascending vasa recta, mTAL—medullary thick ascending
limb, PST—proximal straight tubule, JMG—juxtamedullary glomeruli.

3. Outer Medulla of the Kidney—A Region Most Vulnerable to Ischemia

Investigations of ischemic AKI pathophysiology have shown that the pathologies
behind it are diverse: Tubular damage, inflammation, and vascular damage. Many re-
searchers claim that the part that is most exposed to ischemia is not the cortex but rather
the outer portion of the medulla [11]. As early as 20 years ago, multiple studies on an-
imal models proved that it is primarily the tubules—the PCT and the mTAL—that are
damaged during ischemia [12–14]. Parts of the PST and the mTAL are located within
the cortex, which is why there is no visible clinical sign of injury, which only manifests
through disturbed sodium and potassium reabsorption as exemplified by the reduced
activities of Na-K ATPase and the NaH exchanger. The partial pressure of oxygen also
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varies between the cortex and the medulla: The former is approximately 50 mmHg and the
latter is approximately 10–20 mmHg. The core can be claimed to be exposed to hypoxia in
its physiological state [15]. A slight drop in renal perfusion may cause medullary injury.
The medulla defends itself against reduced blood supply. Less oxygen, and therefore fewer
ATPs, reduces NaK-ATPase activity, which prevents the operation of the sodium-potassium-
chloride cotransporter, thus decreasing Na, K, and Cl reabsorption in the mTAL. A higher
sodium concentration in the collecting duct provides an osmotic stimulus to the macula
densa, which releases ATP/adenosine and paracrine vasopressin that constricts the afferent
arteriole, thus reducing perfusion through both the glomeruli and glomerular filtration,
thereby reducing the Na load flowing to the macula densa. Reduced glomerular filtration,
meaning a reduced Na load, leads to lower oxygen consumption in the medulla. This
phenomenon is referred to as tubuloglomerular feedback (TGF). The mechanism by which
macula densa constricts the afferent arterioles is not fully understood. In experiments
on animal models administered with furosemide, tissue partial pressure of oxygen in the
medulla increased—Na-K-Cl cotransporter inhibition reduced Na/K-ATPase activity in
the basal part of the tubular epithelium, which reduced oxygen consumption [16–18].

In their very well-conducted animal model experiment, Zhang et al. proved that the
first to suffer injury in hypoxia is medullary capillary circulation. The injury occurred when
there was no inflammatory infiltration, no damage to the tubules, no reduced glomerular
flow, no glomerular capillary obliteration, and no glomerulosclerosis. It manifested through
a decrease in the density of the tubular capillaries. It was only when examined at a later
stage after ischemia that the kidneys revealed a typical histopathological picture that is
observed in AKI, i.e., inflammatory infiltration in the parenchyma, glomerular lesions,
and fibrosis. Another rapidly emerging change in this experiment was the increased
expression of hypoxia-inducible factor HIF-1α, an element that appears in hypoxia [19].
This experiment showed that during ischemia, the first part of the kidney to be injured was
the medullary capillaries. Any other changes were a consequence of this disorder.

In an attempt to examine the medullary hypoxia proposal, one researcher produced
systemic hypoxia in rats and failed to observe reduced filtration or fractional excretion of
sodium [20,21]. In a second group of animals, the same author caused renal ischemia by
closing renal arteries for 45 min, which caused renal function impairment after 24 h [20].
This experimental model showed that it was not hypoxia but the impaired flow that was
the main factor causing damage to the peritubular capillaries in the medulla. Other studies
have shown that the real weakness of the kidneys, or more specifically the medulla, is
circulatory congestion during reduced kidney flow. It is characterized by erythrocytes
aggregating in the outer part of the medulla in a process referred to as vascular congestion
due to hypoperfusion. This has been observed both in human and animal kidneys. More
importantly, even after renal perfusion is restored, congestion is maintained in the outer
section of the medulla, causing a lack of reperfusion in the peritubular capillaries [22–24].
Congestion has been observed to be maintained for 24 h after reperfusion [22]. More
recently, this phenomenon has been studied in patients with circulatory insufficiency.
The main prognostic factor for the development of cardiorenal syndrome in heart failure
has been found to be venous congestion in the renal medulla, rather than reduced renal
flow [9,25]. Attempts to reduce hematocrit or increase volemia through the supply of
mannitol have mitigated this effect [22,26]. In hypoperfusion, erythrocyte aggregation in
the peritubular capillaries is the primary driver of the lesions, hence the importance of
hemodilution and hydration in patients with renal hypoperfusion. This phenomenon is a
consequence of anatomical factors. The peritubular capillary network is very branched,
which results in a naturally slow flow and difficulty mobilizing aggregated erythrocytes.
Another explanation is that the swollen tubular epithelial cells suck water out of the
surrounding parenchyma. Parenchyma also has a network of capillaries that are thus
deprived of water. These theories have been tested in an experimental animal model—
rats [22,26]. Blood congestion is observed in all areas of the kidney, but it goes away
immediately after reperfusion, only being maintained in the medulla. The cortex receives
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a larger volume of blood flow with a higher perfusion pressure and a higher velocity.
Therefore, after reperfusion, the cortical flow becomes normal in an instant. Medullary
circulatory congestion occurs even after a mere reduction, and not necessarily an arrest,
of renal perfusion, as a rat model experiment suggests [27]. In his experiment, Owji et al.
clamped the renal artery in one group and the renal vein in a second group for 30 min and
found that the most profound damage was to the tubular epithelium in the PST and the
mTAL after the closure of the renal vein and that the damage occurred not in the cortex
but in the corticomedullary region. This experiment showed that the most extensive injury
takes place due to blood congestion in the renal medulla [28]. The question arises as to
why evolution has allowed for such poor microcirculation to develop in the renal medulla.
The answer is that this is all due to urine concentration and so-called countercurrent
multiplication. In the urine concentration process, the gradient of osmolality increasing
from the outer part of the medulla to the renal papilla is of key importance. Osmotically
active compounds (NaCl and urea) move from the AVR to the medullary interstitium
and then to the DVR. This system retains these compounds in the medullary interstitium
through recycling between the AVR and the DVR to maintain the countercurrent exchange.
The high medullary osmolality facilitates urine concentration in the loop of Henle, which
has variable permeability for water and other substances [29]. A slow flow through the
straight vessels is crucial to maintain this high gradient, hence the kidney’s exposure to
ischemia [10]. In summary, the renal medulla is exposed to ischemic damage due to the
tubules’ high oxygen demand, the reduced blood supply of the PST and mTAL resulting
from the anatomy of the nephrovascular unit, and the superficial part of the medulla being
prone to persistent hyperemia as a consequence of ischemia.

4. Regulation of Renal Circulation-Microcirculation

Renal circulation is highly capable of adapting to systemic pressure (a MAP between
80 and 180 mmHg) without changing the glomerular filtration rate. Cortical and medullary
blood flow and distribution are regulated by way of the paracrine system—nitric oxide (NO)
and other vasoactive substances, the myogenic mechanisms, tubuloglomerular feedback
(TGF), connecting tubule glomerular feedback (CTGF), the renin–angiotensin–aldosterone
(RAAS) system, and the sympathetic nervous system (SNS) [30–32]. Afferent arteriole
resistance has a major impact on glomerular perfusion regulation. Intraglomerular pressure
and glomerular filtration are regulated by afferent and efferent arteriole tension. Despite
the arterial pressure changes during the day, these arterioles maintain constant pressure
in the renal glomerulus [33]. Their tension is regulated by vasodilators such as NO and
prostaglandin E2, or by vasoconstrictive factors such as endothelin, angiotensin II, and
adenosine [33]. The afferent arteriole contains mechanoreceptors, which cause the arteriole
to constrict where systemic pressure is high and dilate where it is low. This is referred to
as ‘myogenic regulation’. On the one hand, it maintains glomerular flow at low pressure,
while on the other, it protects the glomerulus and postglomerular circulation from damage
due to high pressure [32]. The TGF and CTGF systems operate in opposition. A high
sodium level in the distal tubule entering the macula densa causes the afferent arteriole to
constrict, while high sodium in the collecting duct causes the afferent arteriole to dilate.
Tubuloglomerular feedback (TGF) is an important intrarenal regulatory mechanism, which
acts to stabilize renal blood flow, GFR, and the tubular flow rate. The main part of this
negative feedback system is the Juxtaglomerular Apparatus (JGA). This is located between
the thick ascending limb of TAL and the vascular pole of the glomerulus. The JGA consists
of the macula densa, the mesangial cells, and the afferent arteriole, the main effector site
for the TGF. A higher sodium concentration in the collecting duct provides an osmotic
stimulus to the macula densa, which releases ATP/adenosine and paracrine vasopressin
that constricts the afferent arteriole, thus reducing perfusion through both the glomeruli and
glomerular filtration, thereby reducing the Na load flowing to the macula densa. Reduced
glomerular filtration, meaning a reduced Na load, leads to lower oxygen consumption
in the medulla [16–18]. The RAAS is activated by the macula densa in the event of a low
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sodium level in the distal tubule, low arterial pressure, and sympathetic system activation,
which activates the juxtaglomerular cells inducing them to secrete renin. It converts
angiotensinogen into angiotensin I and then into its active form—angiotensin II—using
a converting enzyme. Angiotensinogen is supplied to the kidney from the outside (as
produced in the liver). It is also produced locally by proximal tubular cells. Angiotensin II
causes constriction of both the afferent and efferent arterioles. Angiotensin II stimulates
vasopressin release by the pituitary gland and aldosterone secretion by the adrenal cortex.
In the kidney, vasopressin work via receptors V1 and V2. V1 receptors are found on
vascular smooth muscle. They are coupled through phospholipase C, their activation
produces vasoconstriction via the elevation of intracellular calcium. V2 receptors mediate
the antidiuretic effect by adenylyl cyclase, the activation of protein kinase A, and the
insertion of water channels (aquaporins) into the luminal membranes of renal collecting
duct cells to absorb water [33]. The medullary microcirculation is particularly sensitive
to the vasoconstrictor effects of the vasopressin works by the V1 receptor. Studies on
rats by Cowley et al. have shown that renal medullary interstitial infusion of selective
V1 agonists can reduce medullary blood flow by 20–40%. Cowley et al. showed that
V2 receptor stimulation in the presence of a V1 receptor antagonist increased blood flow
to this region. They proved the opposite effect of vasopressin on renal microcirculation
depending on the stimulated V1 or V2 receptors. Vasopressin stimulates the release of nitric
oxide (NO) via the stimulation of V2 receptors on the medullary-collecting duct. NO have
the opposite effect to the vasoconstrictive effect of activation receptor V1. In the case of
prolonged action of vasopressin, the effect of increased NO synthesis in the outer medulla
dominates. These changes are essential to maintain blood flow through the medulla [34,35].
In a study on rats by Edwards et al. vasopressin at physiological concentrations caused
contraction of the efferent arteriole of the glomerulus. This action increases glomerular
filtration, but additionally reduces renal microcirculation [36]. In patients with septic shock,
Wang et al. administered terlipressin and performed renal contrast-enhanced ultrasound
(CEUS). In the group treated with terlipressin, they found a better flow in the renal cortical
microvasculature than in the group without the drug [37]. A post hoc analysis of the VASST
trial “ addition of terlipressin to norepinephrine in septic shock and effect of renal perfusion:
A pilot study” using creatinine-based Risk, Injury, Failure, Loss, End-stage renal disease
(RIFLE) criteria demonstrated that in patients with the RIFLE category ‘Risk’, vasopressin
was associated with a decrease in mortality, a decrease in progression to RIFLE ‘Injury’
and ‘Failure’, a decrease in creatinine, and a decrease in the need for renal replacement
therapy. In human clinical trials, the effect of vasopressin in septic shock is beneficial to
renal circulation. Due to the different results of different experiments, further research is
necessary [38,39].

The SNS is activated as a response to a signal from the carotid artery and aortic
arch baroreceptors. Other factors activating this system are hypoxia and the activation of
chemoreceptors in the carotid arteries. The sympathetic system constricts all renal vessels.
Sympathetic innervation has been found in the glomerular arteries, the vasa recta, the
macula densa, and the renal tubules [33,40–42]. The endothelium lining of the renal vessels
plays an important role in regulating the homeostasis of microcirculation as an endocrine
organ [43]. The endothelium produces NO, endothelin-1, adrenomedullin, adenosine,
and cyclooxygenase metabolites, i.e., thromboxane and prostacyclin. Their imbalance
causes flow disturbances in the microcirculation [44,45]. Endothelin is one of the strongest
vasoconstrictors in the kidney. Its production in the kidney, especially the medulla, is many
times higher than it is in other organs [46,47]. Endothelin has a very strong constrictive
effect on the glomerular arteries and on the descending vasa recta, thus having the capacity
to exacerbate medullary damage [47]. The endothelial surface is covered by the glycocalyx
composed of proteoglycans and glycosaminoglycans. It forms a coating that protects the
structure and functioning of the endothelium and controls the tightness of the vessels
preventing macromolecules from escaping. It also has an effect on the endothelium’s
interaction with leukocytes. The kidney contains arteriovenous fistulae. In the cortex,



Biology 2023, 12, 327 7 of 16

they bypass microcirculation and are a protective mechanism against excessive oxygen
loads, thus preventing oxidative stress [47,48]. In the medulla, they connect the VRD to the
VRA, which appears to be necessary to maintain the operation of the urine condensation
mechanism [49].

5. Microcirculation in AKI

What happens in the event of hypovolemia and/or hypotonia-hypoperfusion? Firstly,
the RAAS is activated, which causes the afferent and efferent arterioles to constrict. This
reduces glomerular filtration and sodium flow to the PST and mTAL tubules, thus de-
creasing their consumption of ATP, but unfortunately, glomerular hypoperfusion entails
microcirculatory hypoperfusion, especially affecting the medulla. Secondly, the sympa-
thetic nervous system is activated, which not only causes the afferent arteriole but also
medullary microcirculation (vasa recta) to constrict. Thirdly, in response to hypovolemia,
the myogenic mechanism constricts the afferent arteriole. Moreover, arteriovenous fistulae
may open in the renal medulla and cortex, exacerbating hypoxia. In an animal model, it
was demonstrated that despite renal hypoperfusion and hypoxia, high oxygen pressure
in the renal vein was maintained—which could indicate that fistulae were being opened
under these pathological circumstances. [18] Microcirculatory ischemia causes damage to
the glycocalyx layer on the endothelial surface, endothelial damage, abnormal reactions to
vasoactive substances, increased permeability, leukocyte migration causing inflammation,
and the production of reactive oxygen species causing microcirculatory failure and in-
creased hypoxia. A detailed description of the damage mechanism can be found in the next
chapter. A patient hospitalized in this condition receives fluids, often with a high sodium
content. With a constricted efferent arteriole, this will result in increased filtration of water
and salt and their elevated supply to the medulla, boosting oxygen consumption in the
PST and the mTAl and elevating the amount of sodium delivered to the collecting duct.
This activates the TGF and increases the contraction of the afferent arteriole. It appears
that while applying fluid resuscitation, which is the first step in treating ischemic AKI, it is
important to increase the flow in medullary microcirculation, although the improvement
of macrocirculation is not always associated with the improvement of microcirculation.
Researchers have observed a lack of correlation between macrocirculation and microcircu-
lation during hypoperfusion [50,51]. Some papers have shown that fluid resuscitation itself
is insufficient to restore renal perfusion with cortical and medullary oxygenation [52–54].
In a study on an animal model, Lima et al. concluded that the restoration of blood flow
through renal microcirculation, together with systemic MAP compensation, failed to re-
verse hypoperfusion in the microcirculation, in which congestion and blocked vessels were
identified [55]. The previously mentioned AKI animal model experiment carried out by
Zahn et al. showed that the first lesions to develop in ischemia took the form of damage to
medullary microcirculation and its rarefaction [19]. In his work, Chvojka et al. proved that
blood congestion in microcirculation is a major early-ischemia-related disorder. He did not
notice any other lesions developing in the kidney. He stressed that a well-preserved renal
flow—macrocirculation—does not guarantee microcirculatory flow [56]. Another investi-
gator also confirmed the decrease in the partial pressure of oxygen in the renal medulla
during experimentally induced sepsis with renal hypotension and hypoperfusion [57]. A
growing number of publications have been highlighting that renal microcirculation is the
most important aspect of ischemic AKI prevention and treatment.

6. Peritubular Capillary Rarefaction as a Consequence of Acute Ischemia and a Cause
of Progression to Chronic Kidney Disease

AKI may follow various courses, from full recovery to progression toward CKD. In a
meta-analysis of 13 cohort studies, CKD and end-stage internal failure (ESRF) were found in
25.8 persons/100 patients who had had AKI [58,59]. The risk ratio for developing CKD is 8.8
and for ESRF it is 3.1 in persons with a history of AKI [58,59]. The exact mechanism behind
acute injury transforming into chronic damage is not known. Investigators have implicated
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many different explanations. One of the proposals is referred to as peritubular capillary
rarefaction, where the capillary density is reduced. As mentioned above, some researchers
believe that this is the first lesion to develop in ischemic AKI. It seems that this lesion, as a
primary one, exacerbates hypoxia and predisposes the kidney to the progression into and
development of CKD. PTC rarefaction has been described in diabetic nephropathy, hyper-
tensive nephropathy, advanced IgA nephropathy, congenital nephrotic syndromes, lupus
nephritis, and allograft nephropathy, suggesting that PTC loss is common in CKD [60–69].
Renal cells have a high regenerative potential, but this does not apply to proximal tubular
and renal capillary cells [30]. In their inner layers, the cortical peritubular capillaries and the
straight ascending venule (AVR) capillaries have endothelial cells (ECs), which have large
pores 60–80 nm in diameter allowing the easy movement of molecules and water. These
pores are spanned by diaphragms made of fibers and glycosaminoglycans [29,70–72]. The
ECs are covered by the aforementioned glycocalyx. On the outside, these vessels are lined
by pericytes. The straight descending arteriole (DVR) capillaries have a different design,
with no pores, and are lined by smooth muscle cells [32]. The DVR acts as both a transport
vessel (a capillary) and a resistance vessel (an arteriole). Some of the disturbances typical of
a developing PTC rarefaction do not apply to the DVR. In many studies on mouse models,
PTC density correlated with the GFR better than the degree of fibrosis did. The atrophy of
PTCs and straight vessels exiting the efferent arteriole affects the GFR. It has been proven in
a rat model that tubular atrophy causes the GFR to fall [73]. The main mechanism leading
to PTC rarefaction is damage to these vessels’ endothelial cells by reducing angiogenic
factor expression. In response to renal injury/ischemia, endothelial cells initially proliferate
and then die through apoptosis [69]. The initial proliferation is associated with increased
vascular endothelial growth factor VEGF expression. However, the next step involves a
reduction of the expression of VEGF and its receptor. This causes endothelial cell apopto-
sis. [30,74]. The expression of another angiogenic factor—angiopoietin-1 (Angpt-1)—is also
significantly reduced [64]. Anti-angiogenic factors such as thrombospondin-1 and Angpt-2
are stimulated [30,71,72,75]. The damage causes an infiltration by macrophages, which
secrete inflammatory cytokines—Il1B, IL-6, and TNF-alpha—which counter VEGF activ-
ity [76–78]. The initial lesions to the capillaries also consist of endothelial cell thickening
and losing pores. These changes occur very quickly [79,80]. Endothelial cell thickening
indicates that the cells have been activated. When activated, they secrete heparanases
and hyaluronidases that destroy glycocalyx. Without its glycocalyx, the capillary endothe-
lium becomes procoagulant and proadhesive [81]. This disturbance may explain why the
medullary capillaries experience congestion and erythrocyte aggregation, which does not
go away after reperfusion. One medical experiment concluded that the GFR correlated neg-
atively with the degree of damage to glycocalyx [81]. For a reason that is yet unknown, the
renal capillary endothelium in an animal model and in humans has a very low proliferative
potential compared to the vessels in other organs. Only 0.5–1% of the cells proliferate [82].
In the cortical and AVR capillaries, the endothelial cells are covered by a layer of pericytes
responsible for the synthesis of the basement membrane and the maintenance of the struc-
ture of these vessels [81]. In injury/ischemia, pericytes have been observed to migrate from
vessels causing their disintegration [83]. During their migration into the parenchyma or the
tubules, they change their profibrotic potential to become fibroblasts and myofibroblasts
and initiate fibrosis. This phenomenon also speeds up endothelial damage [83]. Two animal
model studies of toxin-induced acute kidney injury showed renal capillary rarefaction on
the fourteenth day of the toxic agent’s action [84,85]. A rat unilateral ureteral obstruction
model showed PTC rarefaction as well [74]. An animal ischemia-reperfusion model also
revealed medullary capillary rarefaction as early as week 4 [85]. Similarly, models with
induced glomerulonephritis also confirmed the rarefaction of these vessels [1,63,86,87].
Ehling et al. created three mouse models of renal injury—ischemia-reperfusion, obstructive,
and Alport syndrome. Using micro-computed tomography imaging, they noticed grad-
ual renal capillary rarefaction. In repeated studies, they confirmed that microcirculatory
changes preceded the development of fibrosis [80]. Microcirculation disorder within the
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renal medulla initiates a series of events that not only damage the peritubular vessels but
also result in tubular atrophy and fibrosis of the parenchyma. These changes are irreversible
and are the main cause of the progression of acute renal failure to chronic renal failure
over a longer period of time. Figure 2 shows the damage to peritubullar capillaries and the
formation of the peritubular rarefaction phenomenon.
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In response to renal ischemia, endothelial cells (ECs) die through apoptosis. The
causes of ECs apoptosis are the reduction of expression of angiogenic factors—the vascular
endothelial growth factor (VEGF) and angiopoietin-1 (Angpt-1)—and the elevation of
anti-angiogenic factors such as thrombospondin-1 and Angpt-2. ECs secrete heparanases
and hyaluronidases that destroy glycocalyx, and the endothelium becomes procoagulant
and proadhesive. This disturbance may explain why the medullary capillaries experience
congestion and erythrocyte aggregation, which does not go away after reperfusion. Then
pericytes migrate from vessels causing their disintegration. During their migration into the
parenchyma or the tubules, they change their profibrotic potential to become fibroblasts
and myofibroblasts and initiate fibrosis.
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7. Therapy for Medullary Hypoperfusion

As mentioned above, the renin–angiotensin–aldosterone system is activated in the
event of hypotension, hypoxia, and sympathetic system activation. All three stimuli are
present in ischemic AKI. The most potent compound within the RAAS system is angiotensin
II (AngII). As discussed above, AngII is created both in the systemic circulation and in the
kidney itself, with its concentration in the kidney being multiple times higher. All elements
of the RAAS are found within the kidney, the system can therefore be produced locally and
exert an autocrine effect [58,88]. It reduces glomerular flow and the glomerular filtration
rate, but most importantly, it decreases the volume of blood exiting the glomerulus through
the efferent arteriole, thus curbing the cortical and medullary tubular capillary flows. Ef-
ferent arteriole constriction increases glomerular pressure and hyperfiltration, promoting
sclerosis [89]. Blocking the RAAS during AKI can reduce the risk of PTC rarefaction with
subsequent progression to CKD. In the event of hypovolemia and hypotension, the use of
drugs that inhibit the RAAS system will exacerbate these disorders. Therefore, it seems
best to start using these drugs after normalizing the blood pressure and volume. Excessive
intrarenal RAAS activity has been observed to occur in AKI. This activity was studied
by measuring the urine concentration of angiotensinogen. Its concentration correlated
with the severity of AKI and was a predictor of the development of AKI [89,90]. Multi-
ple studies have demonstrated an upregulating effect of angiotensin II on the expression
levels of various agents adversely impacting the progression of chronic lesions. It pro-
motes parenchymal fibrosis by inducing fibroblast proliferation through the upregulated
expression of transforming growth factor-beta (TGF-β), connective tissue growth factor,
fibronectin, and type 1 collagen [91–93]. AngII causes the extracellular matrix to accumulate
by activating plasminogen activator inhibitor-1 (PAI-1) and the tissue inhibitor of matrix
metalloproteinase-1 (TIMP1) that counters metalloproteinase activity [94–96] AngII acti-
vates the proinflammatory transcription factor nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) [97]. AngII also upregulates the expression of vascular cellular
adhesion molecule-1, intra-cellular adhesion molecule-1, integrin, and chemokines such
as monocyte chemoattractant protein-1, and activates T cells. All of these exacerbate the
inflammatory infiltration of the glomerulus and the renal parenchyma [98,99]. A study
performed by Wu et al. found that losartan (an AngII receptor inhibitor) administered to
rats subjected to hypoxia-restricted capillary rarefaction in the renal cortex, damage to the
renal tubules and HIF-1α expression, and reduced angiotensin II concentration in the renal
cortex and in the plasma [100]. Another study on rats proved that shortly after reperfusion,
the concentration of AngII increased, with prolonged maintenance of the receptor-bound
AngII in the glomerulus—also 120 h after reperfusion. It has also been demonstrated that
in rats administered with losartan at the time of reperfusion, renal function was quick to go
back to normal (as measured according to the creatinine level) [101]. In their study on rats,
Zhang et al. concluded that the administration of ACEi or an AngII receptor blocker prior to
kidney injury induced by the excision of five-sixths of the kidney prevented the occurrence
of PTC rarefaction compared to the control group [102]. Zhang claimed that the lower PTC
rarefaction involved downregulated expression of HIF-1α. This implied that the inclusion
of angiotensin II blockers reduced renal ischemia [102]. A large study involving patients
undergoing coronary artery bypass surgery using extracorporeal circulation showed that
AKI developed less frequently in those who had received a preoperative administration of
the angiotensin-treatment enzyme inhibitor (ACEi) [103]. Another clinical study involving
patients undergoing cardiac surgeries showed that the administration of ACEi reduced the
postoperative risk of developing CKD [104] Similar results were achieved by Roberts et al.,
who, within 30 days of cardiac surgery, included an ACEi inhibitor, thus reducing AKI
incidence [105]. In 40% of the 96,983 patients hospitalized due to AKI (stages II and III), a
RAAS inhibitor was included upon discharge. During a year-long follow-up, no recurrence
of AKI was found in either the study or control groups. A higher mortality rate was found
in untreated patients. As the follow-up lasted for one year only, it was not long enough to be
able to assess CKD progression. However, it showed that it is worthwhile to include RAAS
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inhibitors at least for a short time after the AKI episode [106]. Bidulka et al., as well as Brar
et al., came to similar conclusions [107,108]. In hemodynamic disorders, we often tend to
discontinue ACEi and AngII receptor inhibitor administration to reduce the risk of AKI
developing. However, judging by the above-described mechanisms, we should not do so.
One large meta-analysis showed that the discontinuance of RAAS inhibitors prior to cardiac
surgeries or coronary catheterization failed to reduce AKI incidence [109,110]. Another
large meta-analysis by Cheng et al. showed that the inclusion of RAAS inhibitors after the
onset of AKI (most after recovery, but in one study, during AKI treatment) resulted in a
lower risk of AKI recurrence and development of CKD [111]. Hypovolemia and hypoten-
sion are connected to the vasoconstriction of precapillaries. Vasopressor agents, despite
the arterial pressure rise, frequently do not overcome precapillary vascular resistance. We
call this phenomenon the vascular bottleneck. There are clinical trials that have tried to
combine vasopressors and vasodilalatators to overcome this phenomenon and improve
circulation, especially in septic shock. Dobutamine, nitroglycerin, and prostacyclin analogs
were used as dilatators [112].

8. Conclusions

The inclusion of ACEi or AngII receptor inhibitors in AKI is often associated with
a certain degree of resistance because efferent arteriole dilation reduces the glomerular
filtration rate. It needs to be remembered, however, that failure to administer these agents
will increase renal medullary ischemia. If one does not intend to administer them in the
acute stage of the condition, they should include them quickly in order to counter the
progression of chronic lesions. Long-term follow-up of AKI patients is necessary to be able
to assess how many will develop CKD in the long term. Clinical trials with the inclusion of
RAAS blockers for AKI prevention and CKD development prevention are also required.
The undeniable difficulty is that AKI has very different underlying pathophysiologies.
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