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Simple Summary: Nowadays, it is well known that the gut bacterial microbiome is crucially impor-
tant for the adaptation of multicellular organisms to their environment. In this study, we aimed to
identify the differences between the bacteriomes of two closely related marine snail species living
in sympatry but feeding in different micro-niches. Although there were significant interspecies
differences detected during the summer season, we did not observe this dissimilarity during the
cold season. Moreover, the diversity of bacterial communities associated with snails decreased in
autumn. We suggest that bacteria predominantly associated with one species degrade its toxic feeding
substrate. These results help to understand the role of bacteriomes in the adaptation and divergence
of closely related species.

Abstract: Symbiotic microorganisms may provide their hosts with abilities critical to their occupation
of microhabitats. Gut (intestinal) bacterial communities aid animals to digest substrates that are
either innutritious or toxic, as well as support their development and physiology. The role of
microbial communities associated with sibling species in the hosts’ adaptation remains largely
unexplored. In this study, we examined the composition and plasticity of the bacteriomes in two
sibling intertidal gastropod species, Littorina fabalis and L. obtusata, which are sympatric but differ
in microhabitats. We applied 16S rRNA gene metabarcoding and shotgun sequencing to describe
associated microbial communities and their spatial and temporal variation. A significant drop in the
intestinal bacteriome diversity was revealed during the cold season, which may reflect temperature-
related metabolic shifts and changes in snail behavior. Importantly, there were significant interspecies
differences in the gut bacteriome composition in summer but not in autumn. The genera Vibrio,
Aliivibrio, Moritella and Planktotalea were found to be predominantly associated with L. fabalis, while
Granulosicoccus, Octadecabacter, Colwellia, Pseudomonas, Pseudoalteromonas and Maribacter were found
to be mostly associated with L. obtusata. Based on these preferential associations, we analyzed the
metabolic pathways’ enrichment. We hypothesized that the L. obtusata gut bacteriome contributes to
decomposing algae and detoxifying polyphenols produced by fucoids. Thus, differences in the sets
of associated bacteria may equip their closely phylogenetically related hosts with a unique ability to
occupy specific micro-niches.

Keywords: bacterial microbiomes; 16S; shotgun; Littorina; cryptic species; symbiosis

1. Introduction

Microorganisms associated with metazoans can powerfully influence the adaptive scope
of their hosts. The gut (intestinal) microorganisms of both vertebrates and invertebrates can
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supply the host with enzymes, antimicrobials, nutrients and other metabolites [1–3]. The
survival of a multicellular organism or its feeding specialization may directly depend on
cooperation with bacteria [1,2,4–6]. There is evidence that microorganisms participate in
the digestion of non-nutritive and even toxic substrates. For instance, the snails Rubyspira
osteovora live in the deep-sea whale falls and feed on whale bones. The intestinal microbial
community provides these snails with the ability to ferment the bone tissue [6]. The pest
species of coffee plantations, the beetle Hypothenemus hampei, feeds on coffee bushes, despite
the presence of the toxic alkaloid caffeine. Ceja-Navarro et al. [4] showed that caffeine can be
degraded in the gut of H. hamppei and that experimental inactivation of the gut microbiota
eliminates this ability. Bacterial symbionts may also be involved in the proper development
of the digestive, immune, circulatory and nervous systems [7–11]. Moreover, prokaryotic
symbionts significantly change the physiology and behavior of their hosts [12–18]. This
explicitly demonstrates the critical importance of analyzing associated bacteriomes when
studying how metazoans adapt to their ecological niches. Intestinal bacteria are an important
mediator of hosts’ adaptation to the conditions of the inhabited niche, which has been shown
in vertebrate [19] and invertebrate [20,21] animals.

Regarding recently diverged sympatric sister-species, their ecological specialization to
different parts of the environment contributes to their reproductive isolation. In addition,
it provides an advantage in alleviating interspecies competition and promoting more
efficient exploitation of environmental resources [22–24]. The subdivision of ecological
niches within the same biocoenosis requires different adaptive complexes in young species,
which may be dependent on the associated bacteriome [20,21,25–29]. Nevertheless, the
evolutionary fate of the associated microbial community during ecological speciation is
still poorly investigated. Here, we analyzed the composition and plasticity of the bacterial
microbiomes in two sister-species of intertidal gastropods (Caenogastropoda, Mollusca).

Marine intertidal mollusks from the genus Littorina are used as an informative model
for studies on invertebrate evolutionary biology, ecology and adaptation [30–32]. Atlantic
snails of the subgenus Littorina (Neritrema) have been comprehensively studied in the con-
text of post hoc and ad hoc sympatric speciation events along environmental gradients [33].
While various trends accompanying divergence at the levels of whole genomes [34] and
single genes [32] of the Littorina snails have been broadly investigated, their bacteriomes
had been nearly ignored until recently. Over the past few years, general descriptions of
bacterial microbiome analysis of the Littorina (Neritrema) species [35] and the ecotypes of
L. saxatilis [36] were published. Moreover, a hypothesis was suggested about the role of
symbionts in the reproductive barriers’ formation in this group of species [37]. Our study
focuses on two sister-species within L. (Neritrema): L. fabalis and L. obtusata.

Littorina fabalis (Turton 1825) and L. obtusata (Linnaeus 1758) (Littorinidae: Littorina:
Neritrema) are intertidal micro-grazers living together on the rocky shores of the North
Atlantic [38]. Even being similar morphologically and physiologically, these species show
different patterns in micro-biotopic distribution. L. fabalis prefers to stay on Fucus serratus in
the lower intertidal and the upper subtidal zones while L. obtusata prefers Fucus vesiculosis
and Ascophyllum nodosum at the lower and the middle intertidal levels. Although the
distributions of these species partially overlap [38–42], they are considered to be informa-
tive models for understanding the factors, mechanisms and consequences of ecological
speciation [35,42,43].

In this study, we applied 16S rRNA gene metabarcoding and shotgun sequencing to
compare the bacteriomes of L. fabalis and L. obtusata in different parameters. The metabar-
coding method has already been successfully implemented for the molluscan bacteriome
analysis. In particular, the impact of location and host species on freshwater mussel gut
bacterial bacteriome composition [44]; the snails’ ability to accumulate new bacterial com-
munities depending on the bacteria availability [45]; and the possibility of OTU-based
metagenomic functional predictions on snails’ gut bacteriome [46] were convincingly
demonstrated. In previous studies, we have shown the geographic and micro-niche vari-
ability in Littorina bacteriomes as well as the difference between these snails’ gut and body
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surface bacterial microbiomes and between associated and environmental ones [35,36]. In
this project, we aimed at comparing the composition and spatial/temporal plasticity of
the gut bacteriomes between the two sympatric sister-species in search of a possible role
of commensal bacteria in host adaptation to their specific niches. We revealed significant
between-season and between-region variability and described interspecies differences in
the gut bacteriome composition. Particularly, we established several bacterial genera pre-
dominantly associated with one snail species and suggested hypothetical explanations for
the adaptive significance of this enrichment.

2. Materials and Methods
2.1. 16S rDNA-Metabarcoding
2.1.1. Sampling

The study was designed to assess interspecies variation in the gut- and body-surface-
associated bacteriomes of two sibling intertidal gastropod species, Littorina obtusata and
Littorina fabalis, to identify seasonal and geographic variability in bacteriomes associated
with different Littorina populations and their habitats. To assess the geographic variability
of bacteriomes, sampling was performed in two regions: the Barents Sea, Dalnye Zelentsy
and the White Sea, Kartesh cape. The samples from the Barents Sea region were collected
at two sites: Oscar Bay (Barents#1, 69◦07′01.0′′ N 36◦04′07.5′′ E) and Yarnyshnaya Bay
(Barents#2, 69◦06′22.0′′ N 36◦03′35.0′′ E) during the period 3–9 August 2021 (sampling
period average water temperature (Ta) = 12 ◦C, average salinity (Sa) = 33.5‰; these data
are consistent with typical values for the region [47]). In the White Sea region, sampling
was performed at one site, Levaya Bay (66◦20′16.7′′ N 33◦39′36.3′′ E). To estimate the
seasonal impact on bacterial microbiomes’ composition, the White Sea specimens were
collected in different seasons: autumn (1–8 November 2021; sampling period average water
temperature (Ta) = 2 ◦C, average salinity (Sa) = 24.5‰, these data are consistent with typical
values for the region [48,49]) and early summer (1–7 June 2022; Ta = 10 ◦C, Sa = 24.8‰).

The samples were collected during low tide. Pooled environmental samples were
obtained by numerous scrapings from natural substrates (fucoids and stones); a minimum
of three replicates were made for each sample. The dissection of collected snails was
carried out on the day of sampling in the field laboratory and included anatomical species
identification [38] which was sufficient in this cryptic species group as a concordance
between molecular data and anatomical features has been observed [50,51]. Each mollusk
was dissected individually. This dissection procedure was practiced in the snail bacteriome
studies [46,52]. For this process, two aseptically treated Petri dishes were used. In the first
dish, soft tissues were taken out of the shell, and the shell fragments were washed away
with sterile water. Then, in the second dish, genital morphology was first examined for
species identification, then the tentacles were excised to be pooled from four individuals,
and the resected intestinal fragments (midgut and hindgut) from every snail were fixed
individually. Immature snails and individuals infected with trematodes were excluded
from the analysis. After each dissection, Petri dishes and the instruments were routinely
disinfected to avoid cross-sample contamination. To restrain any contamination, a negative
control sample was obtained by using a sterile tampon to wipe the cleaned Petri dishes. All
samples were fixed in 96% ethanol (environmental ones were fixed directly on the shore;
snails’ samples were fixed during dissection).

2.1.2. Library Preparation and Sequencing

Library preparation and sequencing were performed as described before [35,36]. In
short: genomic DNA was extracted using PowerSoil Pro Kit (QIAGEN, Hilden, Germany)
according to the manufacturer’s protocol. Then, a dual-indexing 16S rDNA library was
prepared for sequencing on the Illumina MiSeq platform. Library preparation included
locus-specific PCR, indexing PCR, and final pooling. Amplicons after either the inner or
the outer PCR were cleaned-up with magnetic beads (Evrogen, Moscow, Russia). DNA con-
centration was measured using a Qubit 2.0 fluorometer (ThermoFisher Scientific, Waltham,
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MA, USA) with the QuDye dsDNA HS Assay Kit (Lumiprobe RUS, Moscow, Russia).
The library preparation was based on the L. Hugerth protocol [53]. The 16S rRNA gene
V4 region was amplified using 515F (5′–TGCCAGCMGCCGCGGTAA–3′) and 806R (5′–
GGACTACHVGGGTWTCTAAT–3′) primers [54]. A total of 137 samples (Tables 1 and 2)
were sequenced on the Illumina MiSeq platform by Evrogen.

Table 1. A list of the successfully sequenced samples collected on the Barents Sea coast.

Sample Barents#1 Barents#2

Environment

F. vesiculosus scraping (×2) F. vesiculosus scraping (×2)
A. nodosum scraping (×3) A. nodosum scraping (×1)
F. serratus scraping (×1) F. serratus scraping (×2)
Stones scraping (×5) Stones scraping (×3)

Red Algae scraping (×3)

Snails
L. fabalis (gut ×7, tent. ×2) L. fabalis (gut ×8, tent. ×2)
L. obtusata (gut ×13, tent. ×4) L. obtusata (gut ×15, tent. ×4)

Table 2. A list of the successfully sequenced samples collected on the White Sea coast.

Sample White, June White, November

Environment

F. vesiculosus scraping (×1) A. nodosum scraping (×3)
A. nodosum scraping (×3) Filamentous Algae scraping (×4)
Filamentous Algae scraping (×2) Stones scraping (×5)
Stones scraping (×1)

Snails
L. fabalis (gut ×6) L. fabalis (gut ×7, tent. ×2)
L. obtusata (gut ×11, tent. ×1) L. obtusata (gut ×12, tent. ×3)

2.1.3. Bioinformatic and Statistical Analysis

The reads were received demultiplexed, with adapter sequences trimmed. The quality
of the data was evaluated using the FastQC version 0.12.0 tool [55]. The data were im-
ported into the QIIME2 [56] denoising algorithm and amplicon sequence variants’ (ASVs)
formations were conducted in DADA2 [57] wrapped as QIIME 2 plugin. Reads shorter
than 250 bp, with number of expected errors higher than 2, and chimeras were discarded.
The taxonomy of the representative sequences was determined using the sklearn-based
classifier [58] trained on the sequences extracted from SILVA 16S rRNA gene database v.
138 [59]. Then, the data were filtered to exclude mitochondria and chloroplast sequences.
Additional data filtering and normalization to the median library size was conducted in R
(R Core Team 2021) using the phyloseq package [60].

To estimate alpha diversity, we used the Shannon–Wiener diversity and the Pielou
evenness indices [61–63]. Beta diversity at the ASV level was visualized using the non-
metric multidimensional scaling (nMDS) based on Bray–Curtis dissimilarity matrix [64].
The quality of ordinations was checked using the stress value [65]. Distances between
the White Sea gut samples were additionally shown as boxplots grouped by host species
and season. nMDS plots and boxplots were drawn in ggplot2 [66]. The effects of the host
species, season, region and sample type factors on the bacteriome composition were tested,
relying on permutational analysis using a linear model evaluation with a randomized
residual permutation procedure (lm.rrppp function from the RRPP package (version 1.2.3)
in R [67]) with the default parameters. The taxonomic composition of the samples was
visualized, reflecting the names and relative abundances of the most abundant genera
for samples averaged by sample type, on barplots built in the fantaxtic package [68]. We
used the Random Forest classifier [69,70] in the MicrobiomeAnalyst web-service [71] to
identify taxa important to particular sample compositions. For each pairwise comparison,
a constant random seed (123456) was used and 500 decision trees were constructed to draw
the final result. The relative abundance of the specific genera for each of the samples was
visualized using barplots constructed in phyloseq. After statistical processing of the entire
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dataset, gut samples were subsampled and normalized separately to be run through the
same analysis to avoid the loss of rare taxa and less prominent differences.

2.2. Shotgun-Sequencing and Metabolic Pathway Annotation
2.2.1. Sampling

For each species, L. fabalis and L. obtussata, pooled fecal samples (feces of 15 individuals
in one pool) were collected. Pooling material of several individuals is a generally accepted
approach that allows for obtaining DNA concentrations sufficient for analysis [72–74]. Sam-
pling was performed at the Oscar Bay site, the Barents Sea, in September 2022. Feces was
collected via aseptic dissection, pooled in a tube for a species and fixed with 96% ethanol.

2.2.2. Sequencing

DNA was extracted using PowerSoil Pro Kit (QIAGEN, Hong Kong, China) according
to the manufacturer’s protocol. The DNA samples were transported to the Evrogen com-
mercial service sequencing lab. The quality of genomic DNA was checked using agarose gel
electrophoresis. Genomic DNA samples were prepared for sequencing using the Illumina
DNA Prep kit. The quality of the resulting library pool was checked using an Agilent
2200 TapeStation instrument. Quantitative analysis of the pool was performed using qPCR.
After quality control and DNA quantity assessment, the libraries were sequenced on the
Illumina MiSeq device (read length 300 bp on both sides of the fragments) using MiSeq
Reagent Kit v3 (600 cycles).

2.2.3. Assembly and Annotation

The program FastQC (v. 0.12.0) [55] was used to check the quality of the obtained
reads. Then, based on the quality results, the program fastp (v. 0.23.4) was used to
remove sequences with total phred scores below 20, as well as adapter sequences [75].
Complete metagenomes were assembled using the SPAdes program in metaspades mode
with a k-mer size of 23 and a minimum contig length of 200 [76]. Next, the program
Kaiju (v. 1.9.2) was used for taxonomic classification [77]. The subset of NCBI BLAST nr
database containing Archaea, bacteria and viruses (10 May 2023 data version) was used
as the database. Taxonomic classification in Kaiju resulted in the generation of tables
for the microbial genera and species associated with L. obtusata and L. fabalis. For each
taxonomic unit in the table, information about its percentage composition relative to the
entire sample, the number of reads mapped to the respective taxon, and its NCBI identifier
were included. Species with an abundances of less than 0.01% were filtered out as noise.
In the Kaiju output, for each target genus with a composition greater than 1% based on
16S data, corresponding species were identified. GCF (Genome Reference Consortium)
files in fasta format were downloaded for each of these species. Subsequently, these files
were annotated using the Prokka tool, v. 1.11 [78]. The program output yielded fasta files
containing information on annotated protein sequences predicted from the genomic data.
The annotation results for each genome were uploaded to the KEGG Automatic Annotation
Server (KAAS) [79] for the prediction of metabolic pathways. Based on the predicted data,
a table was compiled that provided information on the number of annotated genes related
to the metabolic pathway present in the genome of the species of interest. At least two-fold
differences in gene numbers involved in a particular metabolic pathway between genera of
different comparison groups were accepted as significant (metabolic pathways represented
by one or two genes were not considered).

3. Results and Discussion
3.1. General Patterns

The bacteriomes (bacterial microbiomes) from different sources were analyzed: the
environmental biofilms (EB) from diverse living (algae) and non-living (stones) substrates
of the intertidal zone, and the communities associated with body surfaces (BSB) and the
guts (GB) of two periwinkle species, L. fabalis and L. obtusata. A comparison of the bacterial
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species’ compositions showed that the GB grouped mostly separately from the EB, while
the BSB were located on the ordination in the middle zone between the GB and EB samples
(Figure 1). Generally, this is consistent with the previously published thorough comparative
analyses of the bacteriomes associated with the Littorina species [35,36]. In this study, we
focused on the detailed comparison between the GBs of the cryptic sister-species L. fabalis
and L. obtusata. Notably, the BSB and GB of both host species partially overlapped with the
EB samples from A. nodosum, F. serratus and stones—the substrates where snails of both
species can be found [42]. Only samples of L. obtusata tended to be ordinated closer to the
EB of the F. vesiculosus from the middle shore level, where L. fabalis do not live (Figure 1).
This corroborates the dependency of the composition of the snail-associated bacteriomes
on the EB of a particular micro-biotope [35].
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Figure 1. Comparison of bacteriome composition of all samples. nMDS ordination of the bacteriome
in different sample types. EB—environmental bacteriome, GB—gut bacteriome, BSB—body surface
bacteriome.

3.2. Sources of Variability in the Bacteriome Composition

We evaluated the variability of the GB composition in space and time: there were
two collection sites in the same season (at the Barents Sea) and one site in two different
seasons (at the White Sea) in our analysis. The dominant bacterial genera and overall
community characteristics (species richness and evenness) remained consistent between
the two Barents Sea sites. Moreover, there were no significant effects of the collection site
(PERMANOVA p > 0.05). Notably, the differences between host species were found to
be significant for bacteriome composition at the Barents Sea (PERMANOVA p = 0.012)
(Figures 1 and S1). The analyzed sites were not a long distance from each other and one
of them (the Oscar Bay) was in close proximity to human habitation and to a docking
area, which were expected to have impacts on coastal microbiota composition (e.g., high
polyaromatic hydrocarbon concentrations were registered in the intertidal and subtidal
sediment of the Oscar Bay, [80]). Accordingly, bacteria of the genus Acinetobacter were
highly abundant in the EB and the BSB samples from the Oscar Bay exclusively; these
bacteria were also registered in the GB samples of both host species, though were less
abundant (Figure S2). The genus Acinetobacter is a common inhabitant of soil and ocean
sediment, including polar regions, being enriched in the hydrocarbon-polluted sites [81].
Since the 1990s, it has also been recognized as an important infectious agent in humans
worldwide [82], being associated with skin and gastrointestinal diseases and transmitted,
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e.g., via feces [83]. Thus, though some signs of anthropogenic impact in the Oscar Bay were
registered, the scale of differences did not reach a significant level in this case.

On the White Sea coast, the gut bacteriome samples obtained from the same site
in early summer and in autumn differed drastically (Figures 1 and S3; PERMANOVA
p = 0.001). These between-season compositional alterations were accompanied by a drop
in the mean bacterial diversity (both alpha and beta diversity; Figure 2a,b); moreover, the
bacteriomes’ compositional differences due to the host species became insignificant in
autumn, though were detectable in early summer (PERMANOVA p < 0.01). Importantly,
although the microbial diversity in the GB decreased in autumn, the dominant genera were
detected in both seasons (Figures 2a and 3).
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Figure 2. Diversity overview. (a) Shannon diversity index values. The index was calculated for the
White Sea samples on the subsampled gut dataset. Index values for samples from a host species
are combined into a boxplot. (b) Beta diversity measures. Bray–Curtis dissimilarity indices for the
White sea samples. Distances were calculated on the subsampled gut dataset and shown as boxplots
grouped by host species and season. (c) Shannon diversity index values (previously published
data [32]). The general trend of the associated bacterial community alpha diversity value to decrease
and can be demonstrated by latitudinal comparison. The Shannon diversity index values for our
previously published data on three Littorina species (L. littorea, L. saxatilis and L. obtusata) are in
consistency with this trend.

Studies on the seasonal variation in the gut bacteriome composition of marine inver-
tebrates are still quite rare. Season was revealed to be a significant predictor of microbial
community structure in guts of Eastern oysters Crassostrea virginica [84,85] and the urochor-
date ascidian Halocynthia roretzi [86], with the cold season being inferior to the summer
months in the community richness in both cases. In the former case, the abundance of
heterotrophic bacteria and carbon source utilization in the mollusk-associated bacteriomes
correlated with the seawater temperature. The role of temperature as a factor structuring
the bacteriome associated with the hemolymph of the Crassostrea oysters was also demon-
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strated in scales of temporal and spatial variation, as well as experimental conditions,
with bacterial alpha diversity increasing along with warming [85,87,88]. Interestingly, we
recalculated data published earlier [35], and revealed that the values of the gut bacteriome
alpha diversity in three Littorina species (L. littorea, L. saxatilis and L. fabalis) tended to be
lower in the northern collection sites (Norway, Tromso) compared to the southern ones
(Sweden, Tjarno) (Figure 2c).
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Obviously, temperature can affect the bacterial community, directly influencing its
metabolic activity, production rate and assortment of organic compounds, and thus the
bacterial diversity, which was demonstrated both within microbial mats and in plank-
ton [89,90]. Such effects of environmental temperature are fairly expected also for bacterial
communities associated with poikilothermic animals. Temperature also affects metabolic
rates and moving activity (including foraging and grazing) of the poikilothermic hosts. The
feeding activity of intertidal grazers has seasonality in temperate and polar latitudes. For
instance, the Patella limpets demonstrated a clear decline in grazing activity during the cold
season and its general positive correlation with the seawater temperature [91]. Seasonal pat-
terns are also known in periwinkles; moreover, it was hypothesized that the winter decline
in gastropod grazing activity may be a factor eliciting the recovery of algal abundances [41].
A decrease in feeding activity suggests a reduction in the engulfment of bacteria as a food
substrate, which may impoverish the diversity of the gut-associated community.

Another important point is that movement restraints caused by low temperatures
affect the foraging activity of snails, limiting the diversity of microbiotopes where every
particular individual can be encountered. Moreover, both L. fabalis and L. obtusata are prone
to abandon the macroalgal canopy and hide at the base of the stones and rocks during the
cold season [40]. That is, during autumn and winter, the two flat periwinkle species not
only make contact with a lesser amount and a lesser diversity of EB bacteria, but also the
sets of bacteria these species make contact with are more similar than during the summer
season (due to the similarity of the occupied microbiotope). This explains why L. fabalis
and L. obtusata harbor non-differing bacteriomes of relatively low diversity in the autumn
samples. In addition, the cold-season-lowered foraging activity can explain the diminishing
of not only the alpha but also the beta diversity observed in this study (Figure 2b).
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3.3. Associated Bacteriome Composition

The general composition of the gut bacteriomes associated with the Littorina snails
was described in detail earlier [35,36]. Our present results on L. obtusata and L. fabalis
corroborated the tendencies established previously for the Littorina (Neritrema) and Littorina
(Littorina) species:

1. The community is dominated by a limited number of bacterial lineages (3–5);
2. The most abundant taxon is Proteobacteria, especially Gammaproteobacteria;
3. Those less abundant, but inevitably present in the GB groups, are Fusobacteria (Fu-

sobacteriales), Bacteroides (Flavobacteriales) and Planctomycetes (Pirellulales);
4. Cytophagales are predominantly enriched in the BSB (Figure 3a).

The principal bacterial genera in the GB were Psychromonas (Gammaproteobacteria, Al-
teromonadales), Psychrilyobacter (Fusobacteria), Vibrio and Aliivibrio (Gammaproteobacteria,
Vibrionales), and the less abundant Pseudomonas (Gammaproteobacteria, Pseudomon-
adales), Blastopirellula (Planctomycetes, Pirellulales), Luteolibacter (Verrucomicrobia), as well
as the unclassified Alphaproteobacteria g. sp., Flavobacteria g. sp., Verrucomicrobia g. sp.
and Pirellulales g. sp.

3.4. Interspecies Differences in the Gut Bacteriome Composition

During the summer season, we analyzed the between-species differences of the gut
bacteriome in two geographic regions: the White Sea and the Barents Sea. We expected
that in the White Sea the between-host-species differences in the associated bacteriome
composition may be less pronounced compared to in the Barents Sea. We hypothesized this
based on the differences between the Barents and the White seas in the distribution patterns
of fucoids which the host snails are predominantly associated with. For instance, F. serratus
(preferentially inhabited by L. fabalis) in the White Sea is present only sporadically and does
not form zones of high density because it is sensitive to low salinity [92,93]. Indeed, we
revealed distribution patterns for both L. obtusata and L. fabalis in the White Sea to be a little
dissimilar to those in the Barents Sea. However, there still were clear ecological differences
between them in both regions. In particular, in the White Sea, L. obtusata mainly inhabited
the depth of the F. vesiculosus canopies (but A. nodosum in the Barents Sea, [42]), while L.
fabalis was most often associated with A. nodosum, both on its surface and under the canopy
(Figure S4), but preferred F. serratus in the Barents Sea [42].

Although, generally, the composition of high-rank taxa and the list of abundant
genera in the GB of both host species were similar (Figure 3a,b), the statistically significant
differences due to the host species were registered in both the White and the Barents Sea,
which corresponds to the ecological differences described above. We applied the Random
Forest analysis to identify some marker bacterial lineages strictly specific to the host species
(exclusively detected in either L. fabalis or L. obtusata on a regular basis) and failed to find
any. Yet, several bacterial genera tended to be enriched in one of the two host species,
being the so-called soft markers (Figure S5). We considered only genera showing non-
contradictory trends in different collection sites (even if not in all sites a particular genus
was identified as a marker by the Random Forest). In this way, Vibrio, Aliivibrio, Moritella
and Planktotalea were revealed as being predominantly associated with L. fabalis, while
Granulosicoccus, Octadecabacter, Colwellia, Pseudomonas, Pseudoalteromonas and Maribacter
were found to be primarily associated with L. obtusata.

We applied the Kaiju classifier to the shotgun DNA-sequencing data to establish the
exact species in each target genus with relative abundances in the GB above 0.01 in at least
one collection site. Then, based on the full bacterial lineage taxonomy, we performed an
analysis of the enrichment of metabolic pathways in the soft marker genera compared to
other abundant genera (≥0.01 mean relative abundance, with no clear distribution trends)
using the number of genes involved in a certain pathway as a variable. Only one path-
way (‘Phosphotransferase system PTS’, ID 02060), related to the uptake of carbohydrates,
particularly hexoses, hexitols, and disaccharides, was found to be specifically enriched in
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bacterial genera associated with L. fabalis. In contrast, there were a number of pathways
enriched in the bacteria predominantly present in the L. obtusata gut (Figure 4; Table S3).
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Figure 4. The mean number of genes involved in particular metabolic pathways. (a) Fluorobenzoate
degradation. (b) Chlorocyclohexane and chlorobenzene degradation. (c) Toluene degradation. (d) Xy-
lene degradation. (e) Aminobenzoate degradation. (f) Styrene degradation. (g) Benzoate degradation.
(h) Arachidonic acid metabolism. Interestingly, a slight trend for genes of this pathway to be enriched
in L. obtusata is compatible with the results of a recent metabolomics study, where arachidonic acid
was identified as a compound specifically enriched in L. obtusata [42]. (i) Phosphotransferase system
(PTS). The numbers of considered species were in the reference group (ref)—Psychromonas: 2 (P. ingra-
hamii, P. sp. CNPT3); Luteolibacter: 2 (L. ambystomatis, L. luteus); and Rubripirellula 1 (R. lacrimiformis).
In the group of species predominantly present in L. fabalis (L. fab)—Photobacterium 4 (P. gaetbulicola
Gung47, P. damselae, P. profundum, P. ganghwense); Aliivibrio 3 (A. fischeri ATCC 7744, A. fischeri MJ11, A.
salmonicida); Vibrio 5 (V. breoganii, V. sp VB16, V. algicola, V. ciclytrophicus, V. splendidus); and Moritella 1
(M. marina). In the group of species predominantly present in L. obtusata (L.obt)—Pseudomonas 1 (P.
stutzeri); Pseudoalteromonas 3 (P. carrageenovora, P. sp. A25, P. tunicata); Colwellia 1 (C. psychrerythraea);
and Granulosicoccus 1 (G. antarcticus).

Among those pathways was, for instance, ‘Arachidonic acid metabolism’ (ID 00590).
Interestingly, arachidonic acid was revealed through metabolomic profiling as being specif-
ically abundant in the L. obtusata compared to other Littorina species [42]. The list of
pathways revealed now as specifically enriched in the L. obtusata were ‘Fluorobenzoate
degradation’ (ID 00364), ‘Benzoate degradation’ (ID 00362), ‘Aminobenzoate degradation’
(ID 00627), ‘Chlorocyclohexane and chlorobenzene degradation’ (ID 00361), ‘Styrene degra-
dation’ (ID 643), ‘Toluene degradation’ (ID 00623) and ‘Xylene degradation’ (ID 00622).
These pathways are associated with the genera Pseudomonas and Granulosicoccus; the former
is most abundantly present in the L. obtusata GB of the White Sea samples, while the latter is
in those of the Barents Sea; though both genera were registered in all populations analyzed
(Figures S6 and S7).
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The genus Granulosicoccus was reported from marine environments, including the
seashore zone in the polar regions. It is known to be associated with brown macroalgae
such as F. vesiculosus [94–96]; it was not previously reported in association with meta-
zoans. Granoulosicoccus species are photoheterotrophs equipped with several metabolic
functions of high relevance, such as nitrogen- and sulfur-transformation, the potential to
synthesize cobalamin (B12), etc. [97]. Bacteria of the Pseudomonas genus are involved in
antagonistic interactions and a variety of metabolic abilities related to synthesis of toxins
and degradation of xenobiotics [98]. Species of the Pseudomonas genus were described in
the gut-associated bacterial microbiomes of marine invertebrates [99,100]. The mentioned
metabolic competencies rely on diverse pathways, including those listed above. Among
the products/intermediates/substrates that can be processed in those metabolic pathways
are phenolic and polyphenolic compounds [101–103]. This fact is of high importance with
regard to the ecological differences between the host snail species L. fabalis and L. obtusata.

L. fabalis and L. obtusata demonstrate different, though partially overlapping, pref-
erences to the shore levels, the host fucoid species and the placement in (on/under) an
algal canopy [40,42]. One more feature differing in these two snail species is the structure
of the radula, reflecting their divergence in feeding behavior [38,41]. While the diet of L.
fabalis mainly includes epiphytic microbiota of the macroalgal surface, L. obtusata is able to
excavate the depth of the seaweed thalli because its radular outer marginal teeth are armed
with numerous angular cusps [40,41]. Brown algae (Phaeophyta) are well-known producers
of diverse toxic phenolic and polyphenolic metabolites (e.g., phlorotannins), which defend
them against fouling and grazing by micro- and macro-organisms [104–106]. Moreover,
F. vesiculosus and A. nodosum, preferred by L. obtusata, contain higher concentrations of
toxic polyphenols compared to F. serratus, which L. fabalis is predominantly associated
with [41,107]. This poses the question about the mechanisms of tolerance of L. obtusata to
the toxic action of tannins.

To our best knowledge, there are no data evidencing the ability of the Granulosicoccus
or Pseudomonas bacteria (or their combination) to metabolize the phlorotannins of fucoids.
Nevertheless, the well-established competencies of these micro-organisms to metabolically
transform and degrade phenolic and polyphenolic compounds provides a basis on which
to hypothesize their involvement in detoxification and conveying the adaptation of a host
to its feeding practices. The possibility that the commensals of the Pseudomonas genus
participate in the inactivation of the food toxins in the gut of the invertebrate herbivores
was described in the example of the coffee berry borer beetle, Hypothenemus hampei [4].

The specific abundance of bacteria from genera Granulosicoccus and Pseudomonas in
the intestinal bacterial community of L. obtusata, as well as the enrichment of polyphenol
degradation metabolic pathways associated with these bacteria, may be a factor endowing
these snails with the resistance to the toxic fucoids’ metabolites, such as phlorotannins, and
allowing this species to occupy its specific niche. However, the details of the possible roles
of Granulosicoccus or Pseudomonas in the degradation of food polyphenols in the guts of the
Littorina snails are awaiting clarification in future studies.

4. Conclusions

We performed a detailed analysis of the bacteriomes associated with the cryptic
sister-species of intertidal snails. Although there were significant inter-regional and inter-
seasonal differences in the bacteriome composition, the genera dominant in abundance
remained stable and similar between the host species. This is consistent with the idea of
the Littorina-associated bacteriome conservatism stated previously.

We registered differences in the gut bacterial microbiome, body surface bacteriome
and the environmental bacteriome, which were consistent with our previous results.

We revealed significant differences between L. obtusata and L. fabalis bacteriomes
during the warmer season.

The decrease in the gut bacteriomes interspecific differences in autumn (and probably
winter), as well as differences in alpha and beta diversity rates between seasons, indi-



Biology 2023, 12, 1521 12 of 16

cates profound seasonal changes in the snails’ behavior. We expect these behavioral and
compositional shifts to be less prominent in regions with warmer climates.

The predominant enrichment of the bacteriome with certain bacterial genera—especially
for the L. obtusata gut bacteriome—is both a consequence of snail microhabitat features and
their adaptations to the environment.

The enrichment of metabolic pathways involving the biodegradation of phenolic
compounds in the genera Granulosicoccus and Pseudomonas predominantly associated with
L. obtusata may be critical in mediating the tolerance of this species to fucoid-derived toxic
substances (which L. obtusata adult snails engulf in a greater amount than their sister-
species L. fabalis). In turn, such differences in bacteriome composition may act as a factor
maintaining the differentiation of ecological niches between species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology12121521/s1, Figure S1: Comparison of the Barents
Sea bacteriomes; Figure S2: Relative abundance of the Acinetobacter sp. in all analyzed samples;
Figure S3: Comparison of the White Sea bacteriomes; Figure S4: Littorina micro-niche distribution;
Figure S5: The Random Forest analysis results; Figure S6: Relative abundance of the bacteria, pre-
dominantly abundant in L. fabalis; Figure S7: Relative abundance of the bacteria, predominantly
abundant in L. obtusata; Table S1: Details on 16S libraries. Per sample sequencing depth and result-
ing ASV number; Table S2: Shotgun. Details on shotgun samples. The amount of reads and taxa;
Table S3: Pathways. Number of genes in metabolic pathways by KEGG category in principal bacterial
genera present in gut bacteriome of L. fabalis and L. obtusata.
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