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Simple Summary: In this study, we evaluated the differences in the alternative splicing (AS) profiles
between normal liver tissue, HepG2 malignant cells, and Huh7 malignant cells using a description
of AS profiles as arrays of genes characterized by the degree of AS (defined as the number of
detected splice variants per gene). In brief, we demonstrated that this new metric can be employed
to successfully identify biological pathways that are influenced by the alterations in AS, thereby
utilizing a mathematical algorithm previously developed for gene enrichment analysis based on gene
expression profiles. Furthermore, since long-read RNA sequencing allows one to also describe the AS
profiles as arrays of quantified single transcript isoforms, we employed Yanai’s tissue specificity index
(suggested for gene expression analysis) to select groups of genes expressing only one or two splice
variants specifically in liver tissue, HepG2 malignant cells, and Huh7 malignant cells, thus providing
additional information to that derived from the analysis of gene expression profiles alone. The most
of these splice variants were translated into protein products that can contribute to phenotypes of
normal and malignant human hepatocytes, thereby making them of interest for the further studying
of the mechanisms underlying cell malignization.

Abstract: The long-read RNA sequencing developed by Oxford Nanopore Technologies provides
a direct quantification of transcript isoforms, thereby making it possible to present alternative splicing
(AS) profiles as arrays of single splice variants with different abundances. Additionally, AS profiles
can be presented as arrays of genes characterized by the degree of alternative splicing (the DAS—the
number of detected splice variants per gene). Here, we successfully utilized the DAS to reveal
biological pathways influenced by the alterations in AS in human liver tissue and the hepatocyte-
derived malignant cell lines HepG2 and Huh7, thus employing the mathematical algorithm of gene
set enrichment analysis. Furthermore, analysis of the AS profiles as abundances of single splice
variants by using the graded tissue specificity index τ provided the selection of the groups of genes
expressing particular splice variants specifically in liver tissue, HepG2 cells, and Huh7 cells. The
majority of these splice variants were translated into proteins products and appeal to be in focus
regarding further insights into the mechanisms underlying cell malignization. The used metrics are
intrinsically suitable for transcriptome-wide AS profiling using long-read sequencing.

Keywords: transcriptome; long-read sequencing; alternative splicing; degree of alternative splicing;
splice variants abundance; human liver tissue; HepG2 and Huh7 cells; biological pathways; tissue
specificity index
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1. Introduction

Alternative splicing (AS) allows for a single gene to be transcribed into two or more
mRNA transcripts (splice variants or isoforms), thus ultimately providing a remarkable
increase in proteome diversity in higher eukaryotes. The switching via AS to different
transcript isoforms is involved in cellular differentiation, the control of cell functions, and
the cell response to environmental changes [1,2]. AS is highly regulated, and aberrant splic-
ing contributes to various diseases, including cancer. In humans, over 90% of transcripts
undergo alternative RNA processing, and about 15% of hereditary diseases and cancers are
thought to be associated with a dysregulation of AS [1,2].

The transcriptome-wide analysis of AS was greatly boosted by the advance of the
next-generation sequencing and is mostly based on the high-throughput sequencing of
short cDNA fragments (RNA-seq) [3]. Yet, when accurately quantifying gene expression,
short-read sequencing in general fails to correctly identify the isoform from which the
read originates, since the isoforms from the same gene are similar to a large extent [4,5].
To overcome this issue, two metrics have been suggested for measuring AS events at
the transcriptome-wide level—‘exon usage’ [6] and the PSI (percent spliced in) index [7].
Both metrics indicate, in fact, how frequently a given exon is included into the transcript
isoforms of a corresponding gene and can be calculated directly from the row read counts,
hence avoiding uncertainties regarding the short-read assembly to reveal a splicing pattern.
Despite the ongoing attempts to improve bioinformatics tools for RNA-seq-based assembly
to quantify splice variants (e.g., [8,9]), it still remains quantitatively challenging.

The emergence of third-generation sequencers such as those of Oxford Nanopore
Technologies (ONT) has allowed for sequencing RNA or cDNA as a single molecule, thus
providing long reads, which can span multiple exons. Long-read sequencing significantly
simplifies the detection of transcript isoforms, thus directly revealing splicing patterns [2].
This makes the normalized abundance of single (individual) transcript isoforms (rather than
the gene expression measured as an integral normalized abundance of transcript isoforms
ascribed to the gene) the more appropriate metric for the analysis of AS profiles in the case
of long-read ONT sequencing than the ‘exon usage’ or PSI index. Indeed, though the ‘exon
usage’ or PSI index continue to be used for AS profiling based on long-read sequencing
data (e.g., [10–12]), the description of AS profiles in terms of the abundance of single
isoforms has also been utilized in ONT-based transcriptome-wide studies (e.g., [13–15]).
On the other hand, as we recently suggested [16], AS profiles can be described regardless of
a particular expression of a given transcript isoform as arrays of genes, where each gene is
characterized by the number of detected splice variants ascribed to that gene (here referred
to as the ‘degree of alternative splicing’, or the DAS).

The aim of this study was to further explore the utility of such metrics as the DAS or
abundances (in transcripts per million, or TPM) of single transcript isoforms for revealing
the differences in AS profiles between various cell/tissue types (which we further refer
to as ‘phenotypes’ for convenience) using long-read sequencing datasets. We employed
bioinformatics tools that were previously developed for gene expression analysis, such
as GSEA (gene set enrichment analysis) [17] and the graded tissue specificity index τ [18].
These tools were commonly applied to identify the biological pathways that are influenced
by differential gene expression (e.g., [19,20] and references therein) or to find tissue-specific
signatures of gene expression [21–23]. Samples of human liver tissue and hepatocyte-
derived HepG2 and Huh7 cultured cells were used for this purpose, and the extracted
mRNA was subjected to long-read ONT sequencing. HepG2 and Huh7 are cell lines derived
from hepatoblastoma and hepatocellular carcinoma tumor tissues, respectively [24,25],
which are widely used as models in biotransformation studies (e.g., [26–28]) or for studying
the processes associated with the malignant transformation of hepatocytes ([29–32], to
mention a few). Among these cell lines, long-read nanopore sequencing was only applied
to AS profiling in HepG2 cells, which focused either on a particular group of genes such as
cytochrome P450 genes [33] or on nonpolyadenylated transcripts [34].
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2. Materials and Methods
2.1. Cell Lines and Liver Tissue

Samples of human liver were collected at time of autopsy from 3 male donors aged
65, 38, and 54 years (designated further as donors 1, 2, and 3, respectively) with the ap-
proval of the N.I. Pirogov Russian State Medical University Ethical Committee (protocol #3;
15 March 2018) and the informed consent from donor’s representatives. The donors were
HIV and hepatitis free, and the sections had no histological signs of liver diseases. The
postmortem resected samples were immediately placed into RNAlater RNA Stabiliza-
tion Solution (Thermo Fisher Scientific, Waltham, MA, USA) and stored at −20 ◦C until
further use.

The HepG2 and Huh7 cells were purchased from Merck (Darmstadt, Germany) and
Thermo Fisher Scientific, respectively. Cells were cultivated in a DMEM growth medium
supplemented with 10% fetal bovine serum and 100 units/mL penicillin/streptomycin (all
from Dia-M, Moscow, Russia) in a humidified atmosphere with 5% CO2 at 37 ◦C to ≈80%
confluence. Afterwards, cells were harvested, washed with phosphate buffered saline
(Dia-M, Moscow, Russia), snap frozen in liquid nitrogen, and stored in liquid nitrogen
vapor till further use.

2.2. RNA Isolation, Library Preparation, and Long-Read Sequencing

To prepare sequencing libraries, total RNA was isolated from cells or tissue samples
with an RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
manual, and it was quantified using a NanoDrop-1000 spectrophotometer (Thermo Fisher
Scientific); its quality was assessed using a Bioanalyzer 2100 System (Agilent Technologies,
Palo Alto, CA, USA). The RNA integrity numbers were 7.8 or higher for all RNA prepa-
rations. The mRNA extraction was conducted with a Dynabeads™ mRNA Purification
Kit (Thermo Fisher Scientific) following the manufacturer instructions. The mRNA was
quantified using a Qubit 4 fluorometer and a Qubit RNA HS Assay Kit (Thermo Fisher
Scientific). The mRNA preparations were either used immediately or frozen at −80 ◦C for
short-term storage.

The sequencing libraries were prepared with a Direct RNA Sequencing Kit (SQK-
RNA002, ONT, Oxford, UK) strictly following the manufacturer’s protocol. The long-read
sequencing was carried out on a MinION nanopore sequencer (ONT) in 48 h single runs
using FLO-MIN106 flow cells. The row data were processed using the guppy_basecaller
3.1.5 software (ONT) as described in [35]. During processing, the data were filtered using
the guppy_basecaller software with a quality score parameter > 7.0. The quality control of
reads was performed with the MinIONQC.R script [36]. Mapping was carried out with the
minimap2 v.2.17 software [37] using the Gencode38 genome assembly (release GRCh40).
Overall, mRNA from 11 biosamples was sequenced (5 samples of HepG2 cells, 3 samples of
Huh7 cells, and a sample of liver tissue from each of the 3 donors). The number of mapped
reads for each biosample sequenced is presented in Table S1 of Supplementary Materials
(SMs). To account for differences in sequencing depth, the sequencing outputs were
adjusted to the minimal output, which was received for the sample of liver tissue of donor 3
(Table S1) with the Picard DownsampleSam tool (https://broadinstitute.github.io/picard/,
accessed on 10 September 2023). Transcript abundance was quantified in TPM with the
Salmon 0.12/1.1.0 software [38] employing the Salmon Quant tool. The sequencing data
were deposited to the NCBI Sequence Read Archive (PRJNA765908, PRJNA893571, and
PRJNA635536).

2.3. Data Analysis

The Salmon Quant output files with the evaluated abundances of splice variants were
assembled into a common Excel table, and then the table was truncated so as to leave
only records corresponding to splice variants expressed by protein-coding genes in at
least one of the biosamples tested (presented as Table S2 in the SMs). The table contains
13 columns (columns of ENSG and ENST identifiers, as well as 11 columns with TPM values

https://broadinstitute.github.io/picard/
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of transcripts isoforms for each biosample) and a long list of rows with ENST identifiers (the
overall number of identifiers was 30556). The table was also converted into another table
(presented as Table S3), where each gene (14427 ENSG identifiers) was characterized by its
DAS value (the number of splice variants assigned to that gene) for each biosample tested.

Table S2 was used to calculate the value of τ index as follows:

τ =
∑N

i=1(1− Xi)
N − 1

, (1)

where N = 3 is the number of phenotypes tested (viz., liver tissue, HepG2 cells, and Huh7
cells), and Xi is the expression profile component normalized by the maximum component
value among the phenotypes [18]. We used splice variants abundances in TPM, which were
averaged over all biosamples of a given phenotype, as the expression profile components.
Alongside calculating τ index for splice variants, we also calculated it for gene expression.
In this case, the gene’s expression profile component was a sum of abundances of all splice
variants corresponding to the gene. The values of τ index are presented in Table S4.

The data in Table S3 were used to construct input matrixes for a pairwise comparison
of 3 phenotypes with the GSEA software v. 4.3.2, which was downloaded from https:
//www.gsea-msigdb.org/gsea/index.jsp (accessed on 10 September 2023). The pairwise
comparisons were carried out using pathway databases WikiPathways [39], Reactome [40],
KEGG [41], and BioCarta [42] in a gene set permutation mode following GSEA settings:
«The number of permutations» == 1000, «Permutation type» == gene_sets. We used datasets
«as is» in the original format as an expression (in terms of the number of splice variants
per gene) matrix. The normalized enrichment score (NES) was calculated using the GSEA
software with the FDR < 0.25. |NES| > 1.5 and p < 0.05 were set to define significantly
enriched pathways.

3. Results
3.1. Biological Pathways Influenced by Differences in Alternative Splicing in Liver Tissue and
Hepatocyte-Derived Cell Lines

Since a degree of alternative splicing can be easily extracted for each gene from the
output of long-read ONT sequencing (Tables S2 and S3), we tested our datasets for groups
of genes whose splicing might be systematically altered among liver tissue and hepatocyte-
derived cell lines. We employed GSEA, which combines information from the members
of previously defined sets of genes (viz., involved in particular biological pathways) to
increase the signal relative to the noise and to improve the statistical power [17]. Instead of
the overall abundance of transcript isoforms being expressed by a gene, which is ordinarily
utilized in GSEA to characterize gene expression, we used another metric, the number
of splice variants per gene, and coined such an analysis here as ‘Splicing-based Pathway
Enrichment Analysis’ (SPEA) to account for the nonstandard type of input data. In the
conventional GSEA, the positive value of the NES indicates that the genes in the analyzed
dataset, which are involved in the corresponding pathway, exhibit, on average, a higher
expression in phenotype 1 compared to that in phenotype 2, which was taken as its
counterpart. Otherwise, if the NES value is negative, that indicates a lower expression of
these genes on average. In the case of SPEA, the positive and negative values of the NES
would indicate that the genes are, on average, characterized by the higher or lesser degrees
of alternative splicing, respectively.

The results of the pairwise comparisons of the AS profiles described in terms of the
DAS values are presented in Figure 1. To increase the stringency of our analysis, we
included in the SPEA only the genes that demonstrated a ‘stable’ expression—transcripts
related to such genes were detected in all the biosamples tested. As is seen from Figure 1, the
patterns of the revealed biological pathways were quite different for the phenotype pairs.
Nonetheless, there is some similarity when the liver tissue is compared with the HepG2 or
Huh7 cells. In both cases, the genes involved in the complement cascade and peroxisome
proliferator activated receptor signaling pathways, as well as the number of metabolic

https://www.gsea-msigdb.org/gsea/index.jsp
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pathways, were characterized, on average, by a higher degree of alternative splicing in the
liver tissue compared to the cell lines. In contrast, the genes characterized by lower DAS
values, on average, were involved in translation and translation-related pathways, as well
as in pathways related to mRNA maturation and alternative splicing (Figure 1). However,
the genes involved in plasma lipoprotein biosynthesis were characterized by higher DAS
values in the liver tissue compared to the HepG2 cells, but not in the Huh7 cells (at least in
terms of statistically significant differences). In addition, the same pattern was revealed for
the pharmacogenes (genes involved in the ‘Phase II conjugation of compound’ and ‘Drug
metabolism cytochrome P450′ pathways).
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Compared to the liver tissue, the hepatocyte-derived malignant cells differed between
themselves to a lesser degree with regard to the biological pathways influenced by their
AS profiles. Nonetheless, the HepG2 cells showed a higher degree of alternative splicing
on average for the genes involved in cholesterol biosynthesis, DNA repair, and oncogenic-
related signal pathways, while the Huh7 cells showed a lesser degree of alternative splicing
for the genes involved in transcription-related pathways (Figure 1).

3.2. Genes with a Phenotype-Specific Splice Variant or Integral Expression

The τ index was suggested by Yanai et al. [18] as a quantitative, graded scalar measure
of the specificity of expression for a given gene across various tissues. The index ranges
from 0 to 1, and values of τ < 0.15 represent genes whose expressions are rather similar
across the tissues of interest (e.g., housekeeping genes), whereas τ > 0.85 indicates genes that
are preferentially expressed in one of these tissues. They were referred to as those with the
one-tissue-specific expression [18]. Here, we are referring to them as ‘phenotype-specific’
for the sake of convention.

Unlike the original work of Yanai et al. [18], we calculated τ index values not only
for the genes, but also for each and every splice variant detected. The distributions of
the number of spice variants and the genes according to the value of the τ index over the
range from 0 to 1 are presented in Figure 2. The substantial number of genes fell into the
category of ‘phenotype-specific’—4263 out of 14,427 (Table S4 vs. Table S2), or about 30%.
In the case of the splice variants, the proportion markedly increased—by over 50%, or
15,491 out of 30,556 (Table S4 vs. Table S2)—thus indicating that the expression of sin-
gle splice variants exhibited a much greater specificity between the phenotypes tested
compared to that of the genes. Interestingly, the portion of genes characterized by high
values of the DAS decreased in the subsets of genes with either phenotype-specific integral
expression or phenotype-specific expression of the single splice variants (Figure S1).
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of τ index.

We restricted further analysis to the genes and splice variants with the highest value
of the τ index of one, which we regarded as the most phenotype-specific. To tighten our
analysis, we also took into consideration only the genes and splice variants that were
stably expressed in a given phenotype: here, that means the genes or splice variants were
detected in all the biosamples of the given phenotype. Figure 3 presents Venn diagrams
built for these genes and splice variants for liver tissue, HepG2, and Huh7 cells. As can be
seen, the subsets of genes overlapped, with some genes exhibiting the phenotype-specific
integral expression and other genes only exhibiting the phenotype-specific expression for
particular splice variants. Since the expression of all these genes can be considered as
phenotype-specific one way or another, we combined the gene subsets for each phenotype
tested (Figure 3) and subjected the combined sets of genes (164, 237, and 379 genes for
HepG2 cells, Huh7 cells, and liver tissue, respectively) to gene ontology (GO) analysis.
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Figure 4 shows the top 10 biological pathways revealed by the GO analysis for the sets
of genes with phenotype-specific expression. Among these pathways, the pathways related
to cell malignization dominated in the pathways list for hepatocyte-derived malignant
cells (‘RHO GTPase cycle’, ‘p53 downstream pathway’, ‘regulation of MAPK cascade’, and
‘signaling by BRAF and RAF1 fusion’ for HepG2 cells and ‘transcriptional misregulation in
cancer’, ‘cell fate commitment’, and, to some extent, ‘response to UV’ for Huh7 cells). For
the liver tissue, the genes with phenotype-specific expression were found to be involved in
pathways that are characteristic of the production of plasma blood proteins and immune-
related processes (Figure 4).
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As can be seen from Figure 3, there were subsets of genes that only showed the
phenotype-specific expression for particular splice variants (90, 89, and 99 genes for liver
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tissue, HepG2 cells, and Huh7 cells, respectively). The overwhelming majority of these
genes expressed a single splice variant. Nevertheless, eight of them expressed two splice
variants (listed in Table 1), and no genes expressed three or more. For the Huh7 and HepG2
cells, only one splice variant for each of these genes was translated into a protein, while the
second splice variant gave no corresponding proteoform detected to date. In the case of the
liver tissue, both of the splice variants of the SLC17A1 gene were translated into the same
protein (solute carrier family 17 member 1), whereas the splice variants of the APOC3 gene
(encoding apolipoprotein C3), revealed as phenotype-specific, gave no protein products
(Table 1).

Table 1. The list of splice variants with phenotype-specific expression and the corresponding proteoforms.

Phenotype Transcript (Splice
Variant) Name Protein UniProt ID Current Proteoform

Status

Liver tissue SLC17A1-201 Q14916-1 canonic
Liver tissue SLC17A1-204 Q14916-1 canonic
Liver tissue ALDOB-203 P05062 canonic
Liver tissue ALDOB-207 A0A3B3IS80 predicted
Liver tissue APOC3-202 B0YIW2 predicted
Liver tissue APOC3-205 B0YIW2 predicted
Huh7 cells UROS-211 A0A087WZB7 predicted
Huh7 cells UROS-203 P10746 canonic
Huh7 cells GJC1-204 Q5H9P2 predicted
Huh7 cells GJC1-206 P36383 canonic

HepG2 cells ASPHD1-203 I3L2A5 predicted
HepG2 cells ASPHD1-201 Q5U4P2 canonic
HepG2 cells NEDD4L-205 Q96PU5 canonic
HepG2 cells NEDD4L-225 K7EKL1 predicted
HepG2 cells SLC13A3-201 Q8WWT9 canonic
HepG2 cells SLC13A3-205 C9J4A3 predicted

We further attempted to gain insights into whether the genes with strictly phenotype-
specific single splice variant expression produced any known protein products. For that,
we randomly selected 10 genes in the corresponding gene sets (for the liver tissue, HepG2
cells, and Huh7 cells) to serve as their representative samples. The lists of the selected
genes are provided in Table S5. The analysis of the proteoforms encoded by those genes
demonstrated that the proteoforms have a canonic, noncanonic, or predicted status for
correspondingly eight, one, and one genes in the liver tissue, respectively, for seven, one,
and two genes in the Huh7 cells, respectively, and for four, two, and four genes in the
HepG2 cells, respectively (Table S5). Thus, it appears that, in each phenotype tested, more
than a half of the genes with strictly phenotype-specific single splice variant expression
produced detected proteins.

4. Discussion

Alterations to AS can markedly influence cell identity (cell phenotype), and different
approaches were undertaken to gain insights into AS-related events. Considerable efforts
have been put into finding novel transcripts isoforms, which can potentially contribute
to cell phenotype (e.g., [43] and references therein). However, the cell phenotype can
also be influenced by differences in AS profiles via a variation in the composition of the
known transcript isoforms. To describe AS profiles, metrics such as ‘exone usage’ or
the PSI index are commonly employed [3,6,7,44]. Yet, they can rather be considered as
substitutes for true AS profiling, and their wide use in the short-read RNA-seq is stipulated
by ambiguities in the identification and quantification of different transcript isoforms that
are originated from the same gene. Though these metrics continue to be used in the analysis
of long-read ONT sequencing data (e.g., [10–12]), AS profiles are also described in terms of
the expression of single transcript isoforms (as opposed to the gene expression, which is
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an integral expression of all the detected transcript isoforms assigned to the gene) [13–15],
since, in this case, the standard treatment of raw sequencing data directly provides the
splice variant abundances for each and every gene. Here, we utilized both approaches—by
presenting AS profiles either as an array of all the transcript isoforms with quantified
abundances or as an array of the genes with the corresponding DAS values—and applied
them to differentiate the AS in three types of biosamples: from normal human liver tissue
and from two hepatocyte-derived malignant cell lines.

Presently, there is a variety of bioinformatics tools aimed at the analysis of gene
expression profiles [45]. Some of them, like GSEA, have been suggested to gain insights
into the biological mechanisms that can be affected by differential gene expression [17].
Since the GSEA computational algorithm is based on ranking genes according to their
quantitative characteristics (in the conventional GSEA, this is in regard to the differential
expression in terms of the relative transcript abundances), it appears reasonable to utilize
this algorithm to gain insights into the biological processes influenced by differential
splicing by simply ranking genes according to their differential degrees of alternative
splicing. Indeed, the pairwise comparisons using SPEA (as we called GSEA with the
nonstandard type of input data) between liver tissue, HepG2 cells, and Huh7 cells made it
possible to reveal the biological pathways that are apparently influenced by differential
splicing (Figure 1). The revealed biological pathways reasonably agree with the phenotypes
of the tested biosamples. Thus, the biological pathways identified for liver tissue (such
as the cascade of the complement and coagulation system, the signaling pathways of the
receptor genes activated by peroxisome proliferators PPARs, and the metabolism of amino
acids, vitamins, and fatty acids) include genes whose protein products are expressed in
liver tissue and are involved in the realization of basic liver functions [46–48]. In contrast,
the hepatocyte-derived malignant cell lines HepG2 and Huh7 were generally characterized
by a reduced expression regarding the genes involved in the complement system, PPAR
signaling, and fatty acid metabolism pathways [49]. An increase in the number of splice
variants for the genes involved in these pathways in liver tissues may well be associated
with their increased integral expression [50] rather than with an increase in the expression
of a particular splice form. Among the pathways whose genes were characterized by
an increase in the number of splice variants in the liver tissues in comparison to the Huh7
cells, processes related to drug metabolism were also identified, namely, the phase II of
biotransformation and drug metabolism by cytochromes of the P450 family (Figure 1),
that may also be associated with the reduced expression of the pharmacogenes in the cell
lines [51].

An increase in the number of splice variants in the Huh7 and HepG2 cells for path-
ways associated with apoptosis, translation, mRNA maturation, and alternative splicing
may be attributed to the cancerous origins of the analyzed cell lines [52]. Alterations in
the AS events are known to occur in tumors for genes involved into these biological pro-
cesses, thereby leading to the formation of tumor-specific splice variants and dramatically
changing, among others, their resistance to chemotherapy [53].

Alongside the DAS as a metric to describe AS profiles in terms of the number of
splice variants per gene, we also described these profiles as arrays of splice variants that
were characterized by their abundance in TPM. By employing the graded tissue specificity
index—the τ index [18]—we attempted to explore whether such a description of AS profiles
can provide additional information to that provided by the gene expression profiles with
the regard to the tested phenotypes. The τ index-based analysis of the AS profiles did reveal
subsets of genes exhibiting a strictly phenotype-specific expression of single or two splice
variants, thereby supplementing the subsets of genes with phenotype-specific integral
expression (Figure 3). Most of these splice variants (apparently not less than 60%) were
translated into proteins (Tables 1 and S5), thus apparently contributing to the phenotypes
of the tested biosamples.

Clearly, the AS profiles as arrays of splice variants differentiate HepG2 cells, Huh7
cells, and liver tissue to a larger extent that the gene expression profiles. Indeed, over 50%
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of the splice variants demonstrated phenotype-specific expression compared to about 30%
of the genes (Figure 2 and Table S4). The same held true for the sizes of subsets of strictly
phenotype-specific genes and splice variants (τ = 1): they related as 53%, 65%, and 85% for
HepG2 cells, Huh7 cells, and liver tissue, respectively (Figure 3). The phenotype-specific
expression of the splice variants reasonably agrees with the known fact that the number of
AS events in tumors and normal tissues significantly differs [54,55]. Furthermore, for the
hepatocyte-derived HepG2 and Huh7 cells, we also found a substantial number of splice
variants whose expressions strictly differentiated these cells. That may reflect different
origins for these malignant cells. Indeed, the HepG2 cell line was established from hepato-
blastoma cells, which are a result of the malignant transformation of pluripotent hepatic
stem cells and may, to some extent, retain the phenotype of blast cells [56]. With respect to
the Huh7 cell line, it was established from hepatocellular carcinoma (HCC) resulting from
the malignant transformation of differentiated hepatocytes [24,25,56]. Hepatoblastoma cells
are known to lack the expression of the proteins that are characteristic for HCC cells [57]. It
is worth noting though that, even in the case of cell lines that have originated from different
tumors of the same type such as HCC, differences in the gene expression profiles have also
been observed [49].

The GO analysis of the combined sets of genes with strictly phenotype-specific expres-
sion (either integral or of a particular splice variant or variants) revealed that these genes
are involved in different biological pathways. Thus, for HepG2, the phenotype-specifically
expressed genes are involved in processes associated with the proliferation and migration
of tumor cells, whereas for Huh7, the phenotype-specifically expressed genes are involved
in the dysregulation of gene transcription and intracellular transport (Figure 3). Increased
cell proliferation and migration are both characteristic of poorly differentiated blast cells
and cancer cells. Moreover, the altered activity of RHO GTPases can lead to cancer pro-
gression [58]. The detected specific genes and splice variants related to the RHO GTPase
signaling pathway render themselves to further investigation as potential markers for the
differential diagnosis of blastoma and carcinoma cells.

5. Conclusions

The degree of alternative splicing defined as the number of splice variants per gene
can be used in gene enrichment analysis as a quantitative characteristic of AS, thereby
allowing the mathematical algorithm developed for the analysis based on gene expression
profiles to be applied to the analysis of AS profiles revealed by long-read ONT sequencing.
Contrary to metrics such as the ‘exon usage’ or PSI index, the degree of alternative splicing
is easily derived from the mapping output in long-read sequencing, without cumbersome
calculations. This metric appears to be an intrinsically suitable metric for evaluating the
impact of alterations in AS on the biological pathways in normal and malignant cells, as
well as in malignant cells with different origins. Furthermore, the described AS profiles
in terms of the abundance of single splice variants appear to be beneficial and add to the
information that can be derived from gene expression analysis alone. Using the graded
tissue specificity index (τ index), we were able to select additional sets of genes expressing
one or two splice variants specifically in liver tissue, HepG2 cells, and Huh7 malignant cells.
The majority of these splice variants were translated into proteins products and appeal to
be the focus of further insights into mechanisms underlying cell malignization.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biology12121494/s1, Figure S1: The distributions of the number of genes
the number of splice variants; Table S1: The sequencing output (the number of mapped reads, MR)
for biosamples of human liver tissue, HepG2 cells, and Huh7 cells; Table S2: The abundance of splice
variants of protein-coding genes in TPM values for each biosample tested; Table S3: Protein-coding
genes characterized by the number of splice variants assigned to those genes (the degree of alternative
splicing) for each biosample tested; Table S4: The tau index values calculated for liver tissue, Huh7
cells, and HepG2 cells; Table S5: The list of randomly selected tissue-specific genes for liver tissue,
Huh7 cells, and HepG2 cells.
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