
Citation: Nguyen, G.H.; Oh, S.;

Schneider, C.; Teoh, J.Y.; Engstrom,

M.; Santana-Gonzalez, C.; Porter, D.;

Quevedo, K. Neurofeedback and

Affect Regulation Circuitry in

Depressed and Healthy Adolescents.

Biology 2023, 12, 1399. https://

doi.org/10.3390/biology12111399

Academic Editor: Julian Keenan

Received: 9 August 2023

Revised: 24 October 2023

Accepted: 26 October 2023

Published: 3 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Article

Neurofeedback and Affect Regulation Circuitry in Depressed
and Healthy Adolescents
Giang H. Nguyen 1 , Sewon Oh 2 , Corey Schneider 1, Jia Y. Teoh 1, Maggie Engstrom 1,
Carmen Santana-Gonzalez 1, David Porter 1 and Karina Quevedo 1,*

1 Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA;
nguy2815@gmail.com (G.H.N.); schn1354@umn.edu (C.S.); teohjiayuan325@gmail.com (J.Y.T.);
engst263@umn.edu (M.E.); santa079@umn.edu (C.S.-G.); dhp@umn.edu (D.P.)

2 Department of Psychology, Institute for Mind and Brain, University of South Carolina,
Columbia, SC 29208, USA; sewon@email.sc.edu

* Correspondence: queve001@umn.edu; Tel.: +1-612-273-9761

Simple Summary: Adolescent depression represents a risk for chronic’ illness when current treat-
ments fail. Given the modest effectiveness of extant therapies, there is a keen need to develop
treatments for depression. We used neurofeedback training and positive autobiographical memory
retrieval to modulate neural networks that enable emotion regulation and autobiographical memories
(amygdala and hippocampus, anterior cingulate cortex) in youth. Our goal was to understand how
depressed and control youth engage those regions during emotion regulation and memory recall.
Our results showed engagement of the targeted areas as well as differences between diagnostic
groups. Future work ought to examine neurofeedback training’s dosage in depressed youth and
target cortico-limbic connectivity involved in positive memory recall.

Abstract: Neurodevelopmental psychopathology seeks to understand higher-order emotion regu-
lation circuitry to develop new therapies for adolescents with depression. Depressed (N = 34) and
healthy youth (N = 19) completed neurofeedback (NF) training and exhibited increased bilateral
amygdala and hippocampus activity in the region of interest (ROI) analyses by recalling positive
autobiographical memories. We tested factors supportive of the engagement of emotion regulation’s
neural areas during NF (i.e., parental support, medication, and gender effects upon anterior cingu-
late cortex (ACC) engagement). Whole-brain analyses yielded effects of NF vs. control condition
and effects of diagnosis. Youth showed higher amygdala and hippocampus (AMYHIPPO) activity
during the NF vs. control condition, particularly in the left hippocampus. ACC’s activity was also
higher during NF vs. control. Higher average ACC activity was linked to better parental support,
absent depression, female gender, and absent medication. Control youth showed higher average
AMYHIPPO and ACC activity throughout the task and a faster decline in activity vs. depressed
youths. Whole-brain level analyses showed higher activity in the frontotemporal network during the
NF vs. control conditions, suggesting targeting their connectivity in future neurofeedback trials.

Keywords: adolescence; depression; neurofeedback; emotion regulation; amygdala; hippocampus;
ACC

1. Introduction

The risk of depression increases throughout adolescence, emphasizing an unmet need
to develop effective neuroscience-informed treatments to address depression early [1] and
improve long-term outcomes [2–10]. Chronic depression that persists post-adolescence is
linked to suicide and the economic burden of illness at both individual and health system
levels [11–14]. Depression symptoms correspond with altered brain functions responsible
for higher-order tasks. Notably, depressed individuals often exhibit hypo-frontality [15,16],
decreased recall of positive memories [17,18], and emotion dysregulation [17,19]. The
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medial prefrontal cortex aids in the autobiographical recall of emotionally charged memo-
ries [20,21]. The anterior cingulate cortex (ACC) facilitates “top–down” emotion regula-
tion [22,23], especially for amygdala-borne emotions [23,24], and it is tightly connected to
hippocampus-borne memory functions [25,26]. Yet, the neural underpinnings of these emo-
tion regulation challenges, particularly their potential for non-invasive neuromodulation,
are unknown from a neurodevelopmental psychopathology standpoint.

The present work examines an emotion regulation procedure using a neurofeedback
technique targeting limbic and higher-order networks in depressed youth, considering
its potential as a future intervention with long-term effectiveness. Real-time fMRI neu-
rofeedback is a procedure where blood-oxygen-level-dependent (BOLD) brain activity
and participant visualization occur concurrently with image acquisition. Participants can
regulate their hemodynamic activity from regions of interest (ROI) “in vivo”. Therefore,
neurofeedback combines endogenous target brain stimulation and emotion regulation
strategies supported by areas such as the amygdala, hippocampus, and ACC. Research
shows that appropriate cognitive tasks can activate target brain regions [27–30]. This has
shown clinical potential in medicated [31] and un-medicated depressed patients [27,32,33].
Previous research with depressed adults found that a left amygdala-targeted 25 min neu-
rofeedback protocol reduced depression symptoms and engaged frontotemporal cortical
areas [27–29,33,34].

We sought to adapt the same neurofeedback task [33] for depressed adolescents,
considering both neural and developmental factors. We targeted the bilateral amygdala-
hippocampus (AMYHIPPO) complex while concurrently recording ACC function. The
focus on AMYHIPPO arises from observations that depressed youth display less bilateral
mid-temporal limbic activity when recognizing happy self vs. other faces [35]. This
region plays a crucial role in adolescent identity formation and affects regulation from a
neurodevelopmental psychopathology perspective. Additionally, a hallmark of depression
is a blunted experience of positive affect (also known as anhedonia), which is associated
with the inability to enhance or recall self-relevant positive experiences [36–39], potentially
due to aberrant hippocampal, amygdala, or ACC functions [40]. Furthermore, AMYHIPPO
underlies the retrieval of emotionally charged memories [26,41–44].

Beyond AMYHIPPO dysfunction in depression [45–49], it is essential to consider de-
velopmental aspects together. Youth often display increased subcortical limbic engagement
like the AMYHIPPO [50], yet regulatory midline cortical structures (MCS), including the
ACC, remain immature [51]. The ACC is important for emotion regulation and other
higher-order functions [52]. Recalling emotional autobiographical memories activates
the ACC [53] and other middle prefrontal areas [54], which are crucial for limbic-driven
emotion regulation and depression treatment response [55]. Consequently, we also mon-
itored ACC activity. The immaturity of the ACC and other MCS can result in strong
emotions unbridled by regulatory control systems [51]. Moreover, evidence suggests a
profound developmental shift from a “bottom-up” to “top-down” fronto-amygdala regula-
tory connectivity as children progress toward adolescence [23]. Thus, typical adolescent
development likely contributes to the onset and severity of depression stemming from a
combination of positive affect downregulation, diminished saliency of positive experiences,
impaired recall, and immature emotion regulation [50].

Neurofeedback research in depressed adolescents is limited. Our group has published
the largest sample size to date [52,56,57]. A pilot study [58] of 9 depressed/anxious youths
(ages 17–19) showed decreased default mode network (DMN) connectivity after a single
mindfulness-based neurofeedback session (1 h 15 min). Another study from Iran [59] with
28 depressed youths taking fluoxetine reported reduced depression after 20 neurofeedback
sessions (30 min per session), although the specific procedure remains unclear. To target
positive affect regulation via voluntary memory recall grounded in AMYHIPPO and MCS
circuits [60–62], we shortened a task used by Young et al. [29,33] to reduce participants’
burden and increase engagement. Given the symptom variations between adolescents and
adult depression manifestations (e.g., adolescents show fewer vegetative symptoms and
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less verbalization of hopelessness), consistent brain region engagement is not guaranteed
for our study [63]. Therefore, our whole-brain analysis intends to discern potential neural
markers for future interventions, investigating if regions responsive in adults similarly
engage during adolescent neurofeedback.

Our primary goal was to assess the feasibility of our modified paradigm in adolescents,
focusing on the engagement of MCS, especially the ACC, and the reciprocally connected
AMYHIPPO. We expected the recruitment of a similar frontotemporal cortical network, as
Young et al. [29,33] reported, supporting interoceptive awareness, self-processing, emotion
regulation, and memory retrieval. Given the crucial role the AMYHIPPO plays in encoding
positive memories and detecting emotional intensity [26,64,65] and its connection with
MCS like the medial prefrontal cortex and ACC [41,42,44,65–67], we anticipated that
depressed youth would show reduced engagement in these areas, reflecting deficits typical
in depression [46,68], such as impaired executive function, positive emotion regulation,
and positive self-referential memories [69,70].

Another goal was to understand the association between emotion regulation circuitry
in youth during neurofeedback, particularly ACC activity [53], and parent-reported co-
regulation measures. Established research indicates that nurturing parental relationships
and adequate co-regulation of emotions foster teenagers’ affect regulation [71,72]. Early
co-regulation experiences leave lifetime effects [71], with maladaptive emotion regulation
in children mediating the relationship between negative parental conflict resolution styles
and their internalizing and externalizing problems [73]. Therefore, we posited that parental
support for children’s emotions would correlate with adolescents’ emotion regulation
circuitry (ACC, AMYHIPPO) during neurofeedback in ROI analyses.

Our hypotheses were: (1) All youth would exhibit higher AMYHIPPO and ACC
activity during neurofeedback vs. count-backward in ROI analyses using hierarchical
linear modeling; (2) Activity in frontotemporal cortical areas would be higher during
neurofeedback vs. count-backward; (3) Higher parental emotional support would predict
higher engagement of emotion regulatory networks (e.g., ACC); (4) depressed adolescents
would differ from controls in AMYHIPPO or ACC activity during neurofeedback, possibly
by showing less activity [46,68]. Given the lack of prior NF research with adolescents, we
had no strong directional or anatomical hypothesis for differences in ROI (AMYHIPPO,
ACC) or whole-brain activity between depressed and control groups.

2. Materials and Methods

This study was conducted at the University of Minnesota (U of M) Center for Magnetic
Resonance Research with approval from the U of M Institutional Review Board. Fifty-three
right-handed neurofeedback-naive adolescents with (N = 34, Mage = 16.11) or without
(N = 19, Mage = 16.35) depression were enrolled and evaluated in both categorical (Kiddie
Schedule for Affective Disorders and Schizophrenia—Present and Lifetime Version; K-
SADS-PL) [74] and continuous (Children’s Depression Rating Scale; CDRS) [75] measures
of the presence of mood disorder and depression severity during the first intake session (S1).
Table 1 contains the demographics and clinical backgrounds of the participants. We did
not incorporate a placebo group, as preliminary studies do not necessitate it [76]. Parents’
reports on support provided to their child (when the child was experiencing sadness, anger,
and fear) were obtained via the Emotional Socialization Measure (ESM) [77]. Additional
details of inclusion and measures are in Supplementary Materials S9. During the second
session (S2), experimenters guided participants to select and write 5–6 positive memories
and identify the peak 10–15 min of the highest positive mood during each event. These
memories were revisited prior to the start of the “Happy” word neurofeedback training.
This task was presented in a counterbalanced manner [52] alongside another neurofeedback
task on self-versus other faces. Participants were encouraged to use either the same or differ-
ent memories across both tasks to achieve maximum target engagement. A comprehensive
description of these additional tasks can be found in our previous publications [52,56,57].
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Table 1. Demographics and statistics of participants.

Controls Depressed
Statistics

N = 19 N = 34

AgeS1: M (SD) 16.26 (1.19) 16.08 (1.27) F(1, 48) = 0.26
AgeS2: M (SD) 16.35 (1.23) 16.11 (1.25) F(1, 48) = 0.45
IQ: M (SD) 115.32 (9.12) 108.35 (10.84) F(1, 51) = 5.61 *
Sex χ2(1) = 0.31

Male 7 (36.84%) 10 (29.41%)
Female 12 (63.16%) 24 (70.59%)

Puberty: median (IQR) 4.75 (0.50) 5.00 (0.50) U(19, 33) = 276.5
Ethnicity χ2(4) = 7.69

White 14 (73.68%) 27 (79.41%)
African American/Black 0 2 (5.88%)

American Indian 0 2 (5.88%)
Asian 3 (15.79%) 0
Other 2 (10.53%) 3 (8.82%)

Family Structure χ2(3) = 2.80
Married 15 (78.95%) 22 (64.71%)

Living with partner 1 (5.26%) 3 (8.82%)
Separated-Divorced 3 (15.79%) 5 (14.71%)

Single 0 4 (11.76%)
Income χ2(2) = 3.90

=>35 K 0 6 (17.65%)
35–75 K 7 (36.84%) 9 (26.47%)
+>75 K 12 (63.16%) 19 (55.88%)

Medication
Antidepressants 0 26

Antipsychotics 0 2
Mood stabilizers 0 0

Anxiolytic 0 10
Depression Severity:
M (SD)/median (IQR) 19.21 (3.56)/18 (2.5) 49.85 (16.14)/48.5 (28.5) F(1, 51) = 66.06 **

Parental Support:
M (SD) 37.95 (5.02) 34.82 (7.14) F(1, 50) = 1.45

* p < 0.05, ** p < 0.01; S1: intake screening session; S2: scanning neurofeedback session; M = mean; SD = standard
deviation; the data that does not follow normality are reported as median and IQR = interquartile range. F: F
test statistics; χ2 = chi-square test statistics; U = Mann–Whitney U test (also known as Wilcoxon Rank Sum test)
statistics; Depression Severity was measured with Children’s Depression Rating Scale; Parental support was
measured with Emotion Socialization Measure; median and IQR combination is reported when the data did not
follow normality; Data on depression severity did not follow the normality only for the control group, so both
combinations of the descriptive statistics are reported.

2.1. “Happy” Word Neurofeedback Task

This task is a shorter adaptation (520 s) of a ~25 min protocol tested in adults by
Young et al. [29,33]. Our task was comprised of rest, neurofeedback (NF), and count-
backward (CB) conditions that were presented for 40 s each per block. They appeared
sequentially for four blocks (Figure 1). The task was delivered via PsychoPy2 software [78].
During the NF condition, participants saw the word “happy” and attempted to increase
AMYHIPPO activity displayed by a red bar shifting up or down depending on values
provided using MURFI software [79]. MURFI updated and displayed values at the same
time of each brain volume acquisition, and the bar was updated accordingly. A static
blue bar to the right offered a guide for desired levels of AMYHIPPO activity. To increase
AMYHIPPO activity, participants recalled happy memories discussed prior to the scanning.
Participants were notified about the 2-s delay between BOLD-measured effortful imagina-
tion and visible effects displayed by the red bar. They were also instructed to change the
positive memory if the one they were recalling was not effective. Participants were not told
how long to persist with a single memory, just to change it if it seemed not to be effective.



Biology 2023, 12, 1399 5 of 20

During the CB condition, participants were instructed to count numbers backward by three
starting from 300 with no NF.
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Figure 1. “Happy” word neurofeedback task. Participants recalled happy memories to the cue of the
word “happy” and counted backward from 300 by 3 during the control condition. The blue bar is a
guide for the changing activity displayed via the red bar.

The count-backward condition in our task served as a control condition, targeting
working memory areas [80] without invoking emotional or self-referential processes. Both
active (i.e., count-backward) and non-active (i.e., rest) conditions are used as contrasts in
ROI and whole-brain level analyses during neurofeedback protocols.

2.2. Online Analysis: Real-Time Feedback from the Brain

MURFI software [79] generated and sent estimated ROI activity values to the scanner
screen during the feedback conditions following every TR (2100 ms.) when each new
volume was acquired. The neurofeedback signal was provided from a combination of
AMYHIPPO ROI and subject-specific anatomic masks (Supplementary Figure S1 for an
example) of the bilateral AMYHIPPO generated with the WFU PickAtlas 3.0 software
tool [81]. This mask was transformed from the MNI space into the subject-specific functional
imaging space via a 4-step process using SPM12 modules [82]. This four-step process is
detailed in Supplementary Materials S1. Using this process, experimenters observed
real-time fluctuations in both AMYHIPPO and ACC activity, while participants only saw
feedback from AMYHIPPO activity. MURFI estimates and generates neural and nuisance
signals using incremental linear least squares GLM fit, which estimates the raw signal in
each voxel at each time point and scales corrected by the noise [79]. So, neurofeedback
was continuously updated with each TR. The main ROI analysis of AMYHIPPO and ACC
activities was conducted using the mean signal for each of the conditions with volume
of interest extractions for the whole time series using the subject-specific ROIs after pre-
processing and correction for movements of >2 mm, which is an acceptable standard for
pediatric clinical populations.

2.3. Off-Line Analysis: Whole Brain Analysis

Pre-processing and first-level analyses are described in Supplementary Materials S2. A
voxel-wise model with condition (NF vs. CB), diagnosis (depressed vs. controls), and IQ as
additional predictors was used to identify neurofeedback effects using a family-wise error
(FWE) corrected cluster level threshold at p < 0.01. Voxel-wise analysis of the neurofeedback
training period was performed using the first-level NF vs. CB contrast in a single-sample
t-test with FWE-corrected peak-level threshold at p < 0.01.

A full factorial general linear model (GLM) with neurofeedback tasks as within-
subjects conditions (NF, CB) was used to identify group and group by conditions effects.
Participant’s IQ was inserted as a covariate that differed between the groups (Table 1). A
combined voxel-height and cluster-extent threshold was calculated to control for Type
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1 error using Monte Carlo simulations in Analysis of Functional NeuroImages (AFNI
v.18.2.06) [83]. Using 3dClustSim with α = 0.01 and p < 0.001 for the principal GLM, only
clusters with a minimum of 152 voxels per cluster were significant. Smoothness estimates
entered in 3dClustSim (12.28 11.38 13.39) were calculated using linux program 3dFWHMx.

Additional analyses were conducted comparing NF and baseline (i.e., rest) conditions
to verify the effects of the NF condition as significantly higher than rest times and are
reported in Supplementary Materials S3 and Figure S2.

2.4. Off-Line Analysis: AMYHIPPO and ACC Activity ROIs Analyses

We anticipated both AMYHIPPO and ACC increased activity during neurofeedback.
To test our hypothesis, ROI analyses were conducted using both linear mix models in SPSS
25 and image t-tests analyses in SPM12.

Each subject’s first-level activity maps and subject-specific AMYHIPPO or ACC masks
were used to derive a mean within-subject BOLD activity value for the NF and CB condi-
tions. The value was incorporated to test variables that were associated with activity during
the “Happy” word task. Linear mixed models (LMM) were used to analyze AMYHIPPO
and ACC activity during the neurofeedback task using SPSS 25 (Supplementary Materials
S4). LMM was used to estimate individual intercepts as random effects, mean intercepts,
and slopes (e.g., linear or quadratic slope) as fixed effects and parameters for predictors of
interest (i.e., diagnosis, parental support, gender, medication presence).

The linear decrease over time (which coexisted with significant modulation for neuro-
feedback vs. count-backward) and inflection points observed in the average time series
corresponding to those activity increase and decrease (Supplementary Materials S4) were
modeled with a linear, quadratic, or cubic parameter as needed (Equations (1) and (2)).

Equation (1) (Level 1):

AMYHIPP or ACCi = β0i + βxi + δ (1)

Equation (2) (Level 2):
β0it = γ00 + δ0i
β1it = γ01 + δ1i
β2it = γ02 + δ2i
β3it = γ03 + δ3i
βxit = γ0x + δxi

(2)

where δ = error, t = time point, i = subject, linear (γ01) = 0, 1 to 8, quadratic (γ02) = 0, 1, 4 to
64, cubic (γ03) = 0, 1, 8, to 512. x = predictors of interest (e.g., Diagnostic Group, Gender,
Medication, IQ, Parental Support, etc.).

Data visualization and covariance tests suggested that an identity structure for the
random effects covariance structure was the best fit for modeling. LMM was tested using
17 initial predictors. Departing from that model, variables were removed one at a time,
starting with the least significant. The resulting nested smaller models were compared to
the prior larger ones via a χ2 goodness of fit test using the −2 log-likelihood difference.
Type 3 F tests of fixed effects are reported in Supplementary Materials S5 and Table S2.
Significant parameter estimates are reported in Table 2. All final predictors in our results
converged toward a model for AMYHIPPO or ACC activity. Only significant predictors
are displayed, which also converged toward the best goodness of fit final model tests. For
example, medication was a significant predictor of ACC activity but not of AMYHIPPO.
It was included as an AMYHIPPO predictor in the initial model but was removed due to
lack of significance. The goodness of fit tests generates the simplest model with the least
predictor’s number that significantly accounts for a dependent variable variance.

For image activation analyses, contrasts of neurofeedback versus count-backward
and neurofeedback versus baseline (i.e., rest) were created for each participant to confirm
whether AMYHIPPO activation was significant. One-sample t-tests (including diagnosis,
IQ, and gender as covariates) were conducted in SPM12 on the group level with cluster
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forming threshold of puncorr < 0.001 and a small-volume corrected threshold of pFWE < 0.05
for the AMYHIPPO ROI.

Table 2. Parameter estimates from linear mixed models predicting AMYHIPPO and ACC activity
during neurofeedback task.

Predictors of Mean AMYHIPPO Activity during the Neurofeedback Task’s Time Series

Effect Estimate γ SE γ df t p

Intercept 0.01 0.03 212.53 0.43 0.67
Group

Controls 0.16 0.05 203.96 3.50 <0.01
Depressed
Condition

Count Backwards
Neurofeedback 0.05 0.02 364 2.96 <0.01

Group by Linear Slope
Controls × Linear Slope −0.24 0.01 364 −4.02 <0.01

Depressed × Linear Slope 0.002 0.005 364 0.52 0.60

Predictors of Mean ACC Activity during the Neurofeedback Task’s Time Series

Intercept −0.526 0.21 59.25 −2.51 <0.05
Condition

Count Backwards
Neurofeedback 0.114 0.047 349.24 2.45 <0.05

Gender
Female 0.17 0.072 50.23 2.38 <0.05
Male

Medication Presence
No Medication 0.223 0.093 102.06 2.40 <0.05

Medication Present
Group by Linear Slope

Controls × Linear Slope −0.051 0.015 393.87 −3.50 <0.01
Depressed × Linear Slope −0.001 0.012 395.90 −0.07 0.94

Parental Support 0.014 0.005 49.71 2.69 <0.01

3. Results
3.1. “Happy” Word Neurofeedback Task: AMYHIPPO ROI Analysis

A significant effect of task condition on mean AMYHIPPO activity was observed,
t(364) = 2.96, p < 0.01, demonstrating a higher AMYHIPPO activity during the neurofeed-
back compared to the count-backward condition during the “Happy” word task (Table 2,
Figure 2A). Healthy adolescents (Control) exhibited higher average AMYHIPPO activity
compared to depressed youth during the entire time series, t(203.96) = 3.50, p < 0.01 (Table 2,
Figure 2B).

Controls’ AMYHIPPO activity decreased over time throughout the task, t(364) = −4.02,
p < 0.01, whereas depressed youth showed no notable change, t(364) = 0.52, p = 0.60 in
AMYHIPPO activity over time (Table 2, Figure 2B). Planned contrasts confirmed this
finding (Controls vs. Depressed slope difference) = −0.242, p < 0.001. Of note, a diagnosis
by AMYHIPPO time series slope interaction is present in addition to the main effect of
task condition (i.e., higher ROI activity for neurofeedback vs. count-backward). It does not
mean failed neurofeedback training. It means different average activity changes for the
diagnostic groups over time in addition to an NF task condition effect (i.e., higher average
activity during NF vs. CB and a decline in activity over time, as noted inFigure 2A).

The small volume corrected ROI analysis for NF vs. CB conditions in SPM12 revealed
a positive difference in the left hippocampus activity (Figure 3). ROI analysis of NF versus
rest yielded no significant results.
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3.2. “Happy” Word Neurofeedback Task: ACC ROI Analysis

Table 2 shows that, as with the AMYHIPPO target, all youth had higher ACC activity
during the neurofeedback vs. the count-backward condition, t(349.24) = 2.45, p < 0.05
(Table 2, Supplementary Figure S3). There was a main effect of gender, t(50.23) = 2.38,
p < 0.05. The average ACC activity was higher for females compared to males, t(50.23) = 2.38,
p < 0.05 (Table 2, Figure 4A), and un-medicated youth had higher overall ACC activity
compared to medicated youth, t(102.06) = 2.40, p < 0.05 (Table 2, Figure 4B).

A diagnosis by linear slope interaction showed (again similar to AMYHIPPO) a steeper
decline in ACC activity during the overall task time series for control, t(393.87) = −3.50,
p < 0.01, in contrast to depressed youth, t(395.90) = −0.07, p = 0.94 (Table 2, Figure 4C).
Planned contrasts confirmed this finding (Controls vs. Depressed slope difference) = −0.05,
p < 0.001.
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As hypothesized, higher parental support (i.e., better co-regulation of a youth’s neg-
ative emotions by the guardian’s self-report) was associated with higher average ACC
engagement during the entire task time series, t(49.71) = 2.69, p < 0.01 (Table 2, Figure 4D).
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3.3. “Happy” Word Neurofeedback Task: Whole-Brain Analysis

An effect of neurofeedback (NF) vs. count-backward (CB) conditions in GLM analyses
showed that the right superior temporal, middle, and inferior frontal gyrus, and insula, as
well as the left post-central gyrus and superior frontal gyrus, BA 6, 9 show significantly
higher average activity during NF vs. CB conditions. These are bolded in Table 3 and
depicted in Figure 5: green (7), light pink (9), and blue (12) bars, respectively.

On average, youth showed less de-activation during NF versus CB (i.e., higher relative
average activity) in the left superior, middle and inferior temporal gyrus, insula, cerebellum,
fusiform, parahippocampal, middle inferior and superior temporal gyrus, left posterior
cingulate and precuneus, occipital lobe, inferior parietal lobule, cuneus, right inferior
frontal gyrus, insula, and the ACC including the dorsal and ventral aspect of this key
regulatory structure, except for precentral gyrus (Figure 5, Table 3).

A group-by-condition interaction showed that controls had higher activity during
NF vs. CB in the right superior and middle temporal gyrus (SMTG) compared to de-
pressed youth (Figure 6, Table 3). Follow-up t-tests confirmed this direction and interaction
(Supplementary Materials S6 and Table S3).

Table 3. Whole-brain analysis results for neurofeedback versus count-backward conditions.

Cluster Size (K) Hemisphere
MNI Coordinates

F p(K)
x y z

Main Effect of Neurofeedback

Superior, Middle, and Inferior
Temporal Gyrus, Insula BA 13,
21, 38, 47

1323 Left −28 12 −18 137.12 <0.001

Left Cerebellum 602 Left −20 −74 −36 108.83 <0.001

Fusiform, Parahippocampal,
Middle, Inferior and Superior
Temporal Gyrus, BA 13, 19, 21,
22, 36, 37, 39, 40

3925 Right 38 −86 20 108.13 <0.001

Posterior Cingulate Cortex,
Precuneus, BA 23, 30, 31 546 Left −06 −50 22 104.23 <0.001

Parahippocampal and Fusiform
Gyrus, Left Cerebellum, BA 19,
36, 37

768 Left −28 −34 −18 97.14 <0.001

Superior and Inferior Temporal
Gyrus, Occipital Lobe, Inferior
Parietal Lobule, Cuneus BA 19,
22, 27, 39, 40

2126 Left −44 −80 10 96.35 <0.001

Superior Temporal, Middle and
Inferior Frontal Gyrus, Insula,
BA 47, 13, 45, 38, 46

1097 Right 36 26 00 97.66 <0.001

Right Cerebellum 477 Right 28 −74 −34 77.71 <0.001

Postcentral Gyrus, BA, 2, 40 504 Left −46 −36 44 74.45 <0.001

Medial and Superior Frontal
Gyrus, ACC, BA 9, 10, 11, 24, 32 1862 Left and Right −06 56 14 73.38 <0.001

Precentral Gyrus, BA 6, 9 234 Right 38 −04 46 68.21 <0.001

Superior Frontal Gyrus, BA, 6, 8 362 Left and Right 02 18 56 63.95 <0.001

Group by Condition Interaction

Superior and Middle Temporal
Gyrus, BA 21, 22 163 Right 54 −48 08 17.67 <0.001

BA: Brodmann’s Area; H: Hemisphere.
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Whole brain GLM analyses regarding activity during NF vs. Rest are reported in
Supplementary Materials S3 and Figure S2. Additional t-tests are unnecessary, as the rest
of the conditions are an implicit baseline for our objectives and stated hypothesis.

4. Discussion
4.1. Amygdala and Hippocampus (AMYHIPPO) and Anterior Cingulate Cortex (ACC) Activity
during Neurofeedback

Our research study used a region of interest (ROI) analysis methodology similar to pre-
vious neurofeedback studies to examine changes in neural activity during neurofeedback
training. For example, a neurofeedback study with depressed adults used ROI analysis to
examine amygdala connectivity after neurofeedback [84]. A recent neurofeedback study
on depressed patients also used ROI analysis after cognitive-reappraisal neurofeedback
training [85]. These and other studies [86–88] show the prevalence of ROI analysis method-
ology to demonstrate neural engagement specificity in areas of interest during, before, and
after neurofeedback.

Adolescents showed higher AMYHIPPO and ACC activity during neurofeedback
(NF) vs. count-backward (CB) conditions in ROI analyses, confirming target engagement
(Figure 2A) during neurofeedback. Small volume corrected ROI analysis showed higher left
hippocampus activity during the NF vs. CB conditions and no significant activity for the
right hippocampus or the amygdalae. Higher left hippocampus engagement may underpin
voluntary recall of positive autobiographical memories [89,90] during neurofeedback in
youth. Along with the ACC, the left hippocampus might be easier to train during adoles-
cent’s neurofeedback training, entailing memory recall and the “Happy” word task. Higher
AMYHIPPO activity during NF vs. CB on average for this adolescent sample (Figure 2A)
during LMM is consistent with prior adult neurofeedback studies that employed recall of
happy autobiographical memories [34,91–93] and with most neurofeedback research that
employs ROI analysis.

Controls showed higher mean AMYHIPPO and ACC activity in ROI analysis during
the neurofeedback time series, as well as a steeper decline over time compared to depressed
adolescents. Depressed individuals are less adaptive in selecting and using emotion regu-
lation strategies than healthy ones [94,95] and have known impairments in recalling and
elaborating positive memories [18,38,96]. Perhaps control youth regulated their emotions
more flexibly than depressed youth and/or are better able to engage “top-down” regulatory
structures to influence AMYHIPPO activity during neurofeedback [67]. Positive memory
recall difficulties are linked to depression [18,96]. This likely influenced less flexible cortical-
limbic ROI engagement among depressed youth during neurofeedback. Of note, there
were no group differences reported on ease of memory recall (Supplementary Materials S7).
However, differences in memory richness and elaboration [37] and ability to elicit accom-
panying positive emotions [17,39] likely remained.

A group by linear slope interaction showed that AMYHIPPO and ACC activity de-
creased over time for the control youth, but neither was associated with time for the
depressed youth (Figures 2B and 4C). Decreasing activity over time suggests a practice
and/or habituation effect, common for limbic regions [97] that underpin arousal and
saliency [98,99]. If this is the explanation, this is consistent with a more flexible engagement
of cortical-limbic networks among control vs. depressed youth during the neurofeedback
task time course [94]. Thus, decreasing overall activity over time is not to be interpreted
as “failed neurofeedback” first because this is a time-series analysis of one single session.
Targeted regions’ engagement has been reported for more than one neurofeedback training
session in past adult research [27,33] that did not examine single-session time-series engage-
ment for the target ROI [27,33]. Second, the decreasing activity over time occurred alongside
significantly higher ROI engagement for neurofeedback vs. count-backward conditions,
indicating successful differential brain modulation as intended by the procedure.

ACC activity was also higher during the neurofeedback versus count-backward con-
dition in ROI analyses (Supplementary Figure S3). However, medication absence was
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associated with higher average ACC activity during neurofeedback. Medication might be a
proxy for diagnosis, but its absence is associated with increased ACC engagement at all
other predictors’ average levels (as interpreted using LMM). While our modeling identified
ACC activity predictors over the time series, covariances between medication and diagno-
sis must be examined with larger samples to test un-medicated vs. medicated depressed
youth’s neurofeedback performance. Medication in this sample co-varied with depression.
Specifically, most depressed participants were medicated, while control youth were not
(Table 1). However, it must be noted that when diagnosis was used as an ACC activity pre-
dictor instead of medication, the association between diagnosis and ACC activity was not
significant, and the resulting model did not fit the data. Removing medication resulted in a
worse model fit to ACC time-series data during the neurofeedback task. Information regard-
ing medication types is provided in the supplements (see Supplementary Materials S8 and
Table S4). Future research should compare depressed non-medicated and medicated youth
to tease out the interaction of medication and neurofeedback upon neocortical regulatory
engagement, e.g., ACC, in clinical pediatric samples.

Females showed higher average ACC activity compared to males. Effortful conscious
cognitive regulation depends on ACC engagement, which allows for the modulation of
limbic systems [100]. Therefore, girls might have exerted more cognitive effort [101], ex-
perienced more conflict [102], monitored their experiences, or engaged in more successful
emotion regulation [103] during the neurofeedback task. Future research ought to in-
clude a larger number of depressed and control boys to test this explanation regarding
gender differences.

As predicted, parental support (i.e., better co-regulation of offspring’s negative emo-
tions) was associated with higher average ACC activity. However, parental self-reported
co-regulation was unrelated to AMYHIPPO activity. Given the positive effects of parental
support on offspring emotion regulation [71,72], higher overall ACC activity indicates better
emotion regulation during voluntary emotion regulation via neurofeedback. Thus, combining
interpersonal therapy and/or parent–child emotion co-regulation guidance with neurofeed-
back or on its own will positively influence brain function among depressed adolescents.

4.2. Whole-Brain Analysis

The right frontal gyrus and insula and left post-central and superior frontal gyri, BA 6,
9 showed significantly higher average activity during NF vs. CB conditions, consistent with
neurofeedback studies showing increased pre and postcentral gyri activity when children
attempted to voluntarily regulate brain function [104]. Positive memory recall using a
higher dosage of neurofeedback was linked to increased amygdala, hippocampus, cuneus,
insula, and ACC activity [92,93] during the “Happy” word task.

Ours and prior work suggest that during neurofeedback, children and adolescents
engage in areas that support emotion regulation and self-processing [i.e., midline cortical
structures such as the superior frontal gyrus, BA 9 [70,105,106], memory retrieval [40],
interoceptive awareness insula [107], and behavioral preparedness and/or representation
of actions postcentral gyri [108]]. Recalling positive memories might engage action rep-
resentations associated with such events. The insula and ACC are critical components
of the salience network, supporting social behavior and self-awareness [109]. Increased
right insula activation during neurofeedback warrants research on this and other tasks in
depressed youth. Specifically, increasing hippocampus to superior frontal gyrus and insula
connectivity via neurofeedback training. For this task, the insula, post-central gyrus, and su-
perior frontal cortex connectivity with the left hippocampus might be good neurofeedback
targets in adolescents.

There was less de-activation in multiple cortical areas during NF vs. CB. Multiple
explanatory models have been advanced to account for BOLD de-activation, a frequent
finding in fMRI research [110]. Further investigation with longer task durations and higher
neurofeedback dosages may be needed to elicit higher activity in adolescents. Alternatively,
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longer baseline (rest) periods may be needed to properly elicit activity contrasts during NF
and CB that differ from rest conditions as an implicit baseline.

4.3. Diagnosis and Brain Activity during Neurofeedback

Controls showed higher superior and middle temporal gyrus (SMTG) activity during
the NF vs. CB condition compared to depressed youth. To rule out whether this was due to
IQ differences between the diagnostic groups, we tested the effects of IQ. Results showed
that the effects of IQ did not overlap with areas differing between the groups in whole
brain activity during the task. The SMTG is involved in social cognition functions such as
mentalization and agency inference [41,111,112], suggesting that controls might engage
in higher mentalization while recalling positive autobiographical memories during NF
during this task compared to depressed youth.

To our knowledge, this is one of the first neurofeedback studies of depressed adoles-
cents targeting the neural basis of positive autobiographical memories. Unlike adult results,
we found no whole-brain level activation of the bilateral amygdala and hippocampus.
However, we did observe higher activity in those ROIs during NF versus CB conditions
and engagement of midline cortical structures such as the superior frontal gyrus and insula.
Our results are useful for future neurofeedback trials in youth targeting those areas with a
shorter neurofeedback paradigm.

5. Limitations and Future Studies

Unlike depressed adults’ [27,29,33] whole-brain level engagement of the left amygdala,
this adolescent sample did not show increased AMYHIPPO activity in whole-brain level
analysis during an emotion regulation neurofeedback “Happy” word task for either NF
compared to CB or baseline. One explanation is the shorter training duration (5 min)
compared to 25 min of neurofeedback training undergone by adults [33], i.e., an issue of
dosage. Alternatively, adolescents, unlike adults, might be unable to modulate these areas
voluntarily to an extent visible in whole-brain level analyses. Thus, different areas (e.g.,
dorsal ACC, superior frontal cortex, or insula) ought to be targeted to observe whole-brain
level results, especially because these limbic areas are relatively smaller and more prone
to be affected due to their deep positioning in the brain. However, a shorter duration
for a preliminary study was a developmentally sensitive adjustment to facilitate youth’s
participation while performing a mental task with low visually rewarding stimulation.
An additional source of differences from adult results may stem from the “Happy” word
task design not being rewarding enough to engage adolescents. A neurofeedback task
completed by this sample (in counterbalanced order), which used faces (self or others) to cue
NF or CB, respectively, elicited stronger results [52], hinting at the potential effects of more
stimulating designs for youth. A combination of these factors likely explains the absent
whole-brain level activity in the targeted limbic areas. From a scientific standpoint, both
dosage and the rewarding/stimulating quality of neurofeedback ought to be researched to
refine this procedure’s use in pediatric clinical samples. Finally, another critical explanation
is the known functional differences between children, adolescents, and adults during
emotion regulation [50,113]. A recent study found that higher ACC activation increases
amygdala reactivity in childhood but decreases in adolescence, along with the nature
of the information flow from the amygdala to PFC and ACC in childhood that flips for
adolescence [23]. Thus, explicit emotion regulation might be engaging higher function
neural areas (e.g., superior frontal gyrus, BA 9) to a greater extent than the targeted limbic
ones in youth, as is apparent in whole-brain analyses.

This study lacked a placebo group. Our goal was to test neurofeedback in a pediatric
sample while comparing their activation and performance to healthy adolescents in key
brain regions. Therefore, we cannot rule out the possibility that changes in amygdala
and hippocampus complex and/or frontotemporal activity are associated with the mental
activity itself (i.e., positive memory recall). A placebo group, i.e., neurofeedback provided
from an area unrelated to the task, would ascertain whether neurofeedback in adolescents
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is associated with symptom improvements. Another limitation is the absence of baseline
and transfer runs (i.e., pure mental imagery without neurofeedback). Given that this was
an adaptation of a longer neurofeedback task done for adults and that our goal was to
test feasibility, neural function during neurofeedback in adolescents, and differences in
emotion regulation between controls and depressed youth, we shortened the task to fit
our goals and tested in counterbalanced order another neurofeedback task. Therefore, we
cannot provide any definite conclusion regarding emotion regulation learning. The small
sample size is another limitation of this study and should be considered when interpreting
the results. Future studies of adolescent emotion regulation with neurofeedback would
benefit from a larger sample size and the inclusion of transfer and baseline runs as well as
a placebo group.

6. Conclusions

Neurofeedback targeting the AMYHIPPO via recall of positive autobiographical mem-
ories engaged mid-cortical areas that support emotion regulation and self-processing (i.e.,
insula, pre-motor, and superior frontal cortex). These areas enable interoception, memory
retrieval, and motor function in both depressed and healthy control adolescents. Healthy
controls might more flexibly engage cortical and limbic targeted areas during neurofeed-
back. They may be more able to modulate amygdala and hippocampus (and possibly ACC)
activity than depressed adolescents. Our results suggest that at least two longer-lasting
sessions of amygdala and hippocampus or just left hippocampus neurofeedback procedure
should be tested in the future among depressed youth.
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