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Simple Summary: Artificial neural networks, inspired by the human brain, have demonstrated
human-level performance across multiple task domains, raising the exciting possibility of them
returning insights to neuroscientists about the human brain. However, artificial neural networks
cannot be directly compared to the brain due to inherent differences in structure and computation.
Here, we review the variety of approaches that researchers have thus far taken to evaluate the
correspondence between the two, organized across multiple levels of analysis (node, layer, network,
and behavior). In surveying these approaches, we note some of the insights uncovered, their
limitations, and future directions in a domain of research that is developing quickly and with few
established standards and practices. Our aim is to provide a systemized overview and guidance
toward establishing a firmer theoretical and methodological framework in this emerging field.

Abstract: Artificial neural networks (ANNs) that are heavily inspired by the human brain now
achieve human-level performance across multiple task domains. ANNs have thus drawn attention in
neuroscience, raising the possibility of providing a framework for understanding the information
encoded in the human brain. However, the correspondence between ANNs and the brain cannot
be measured directly. They differ in outputs and substrates, neurons vastly outnumber their ANN
analogs (i.e., nodes), and the key algorithm responsible for most of modern ANN training (i.e., back-
propagation) is likely absent from the brain. Neuroscientists have thus taken a variety of approaches
to examine the similarity between the brain and ANNs at multiple levels of their information hierar-
chy. This review provides an overview of the currently available approaches and their limitations for
evaluating brain–ANN correspondence.

Keywords: hierarchical correspondence; artificial neural networks; neuroscience

1. Introduction

Understanding the information processing of the human brain is one of the biggest
challenges for neuroscientists. In recent years, the artificial neural network (ANN) has
become a powerful tool, performing at or better than human levels in several domains,
including image classification (AlexNet [1]), conversation (ChatGPT [2], LaMDA [3]), games
(Go [4], Starcraft II [5], and biological science (i.e., protein folding [6,7]). Growing interest
has thus emerged as to the degree to which the information processing of ANNs can inform
that which occurs in the brain.

Studies have shown that the processing of human perceptions is hierarchically dis-
tributed over the brain ([8–13]). In the visual domain, for instance, the V2 neuron appears
to be sensitive to naturalistic texture stimuli [14], V4 neurons increase selectivity for the
conjunction of features representing the surface shape (i.e., non-Cartesian gratings [15]),
and IT neurons show stimulus selectivity, sensitive to the specific combinations of features,
i.e., the face [16]. A similar hierarchy can be found in language processing [17–19], music
processing [20–22], and tactile processing [23–25]. Taking a broader perspective, converging
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evidence alerts us to the brain’s global hierarchical organization beyond a collection of
independent sensory hierarchies. At the cellular level, Murray et al. [11] found different
decay rates of a single-unit activity in early sensory areas and distant cortical regions.
Whereas sensory areas may need to respond more rapidly to environmental changes to
reflect faster decay rates, regions involved in more complex, integrative cognitive tasks
exhibit longer decay rates, suggesting a hierarchical ordering of a measure as intrinsic
as single-neuron spiking timescales. Neuroimaging evidence of a global, sensorimotor-
to-transmodal gradient supported this hierarchy of temporal dynamics, as well as other
converging evidence such as increasing intracortical myelination, functional connectivity,
and semantic processing along the gradient [26,27].

Given the intrinsic hierarchical architecture of ANNs, it becomes natural to wonder if
they can capture the information processing that occurs in the human brain, thus serving as
a framework for its understanding [28,29]. While both the human brain and the ANN are
“black-boxes”, the latter is easier to customize and analyze. ANNs may provide a useful
model for understanding the former, akin to how the atomic model can usefully convey
the interaction between protons and electrons. As statistician George Box once said, “All
the models are wrong, but some are useful”.

Relationships between the human brain and modern ANNs have been found since the
early stages of ANN development. Studies have revealed the similarity between cognitive
processing, such as vision and audition, and the hidden layers of ANNs [28,30–36]. The
similarity was not limited to well-known “supervised” learning, but also “unsupervised”
learning and “self-supervised” learning [37,38]. The growing number of studies in this area
offers promise toward improving our understanding of the brain, as ANNs rapidly grow
in sophistication and performance across problem domains. However, comparing ANNs
to the brain to arrive at meaningful references is not a straightforward process. ANNs are
inspired by the brain but are not replicas. Not only do they differ in substrate, but there
are also vastly fewer ANN nodes than neurons. The principal algorithm that discovers the
hierarchical circuitry of most modern ANNs is unlikely to exist in the brain [39].

Conventionally, evaluation of the similarity between the ANN and the human brain
has been based on their performance in “intelligent” tasks (e.g., object detection, object
classification, text generation, image generation, game playing, etc.). However, just this
high-level comparison is inadequate for determining whether the ANN under the hood
is undergoing comparable information processing to the brain. Neuroscientists have thus
taken a variety of indirect approaches to evaluate the correspondence between ANNs
and the brain. Here, we review the current approaches toward evaluating brain–ANN
correspondence, considering their insights, limitations, and future directions.

2. Levels of Correspondence

Brain–ANN correspondence can be examined at multiple levels of the information
hierarchy. A typical ANN consists of nodes and layers, where nodes constitute a layer,
and layers constitute a network. These levels analogously map to neuron, region, and net-
work levels of the brain.

A recent review of convolutional ANNs and human vision [40] considered two levels
at which ANNs correspond to the brain: at the lowest level of neural activity and at the
highest level of human behavior. But an examination of hierarchical correspondence would
have to consider intermediate levels of hierarchy in the brain, such as those found in the
visual system [28,31–36]. While the brain has served as inspiration for modern ANNs that
achieve human-level performance, ANNs are not yet bound to the same global structural
and functional hierarchy of the brain. We are indeed on the brink of large-scale multimodal
ANNs (e.g., processing image, audio, and text); however, their emergence is driven more by
engineering insights than natural selection or the neuroscience of brain correspondence. In
other words, with the current and future likelihoods of divergence between ANN models
and the brain, we will be better equipped to evaluate correspondence at multiple levels.
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Here, we introduce two intermediate levels toward a more comprehensive evaluation
of the brain–ANN correspondence. Our review is thus structured along four levels of
brain–ANN correspondence as follows (Figure 1a–d).

• Node level: Correspondence between one node of the ANN and the smallest unit of
the brain (a single-unit recording, an electrode, or a voxel, depending on the measuring
instruments).

• Layer level: Correspondence between an ANN hidden layer and a brain region (e.g.,
V1, V2, V4, IT).

• Network level: Correspondence between the overall information flow inside an ANN
and inside the brain (e.g., hierarchical representation, multimodal network integra-
tion).

• Behavioral level: Similarity of ANN behavior, output, or performance metrics (e.g.,
image classification and generation, conversation, folding protein, and playing games)
compared to the human counterparts.

Figure 1. Cont.
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Figure 1. Four levels of correspondence evaluation. (a) The node level evaluates the correspondence
between one node of the ANN and the smallest measured unit of the brain (e.g., a single unit recording,
an electrode, a voxel). When computing correspondence via encoding, brain units are modeled
using ANN nodes, and vice versa in decoding. (b) The layer level evaluates the correspondence
between an ANN hidden layer and a brain region. Illustrated approaches show encoding via
many nodes of a layer to a single voxel activity in a known brain region (top), decoding via many
voxels to one node (middle), and correspondence between many nodes and many voxels via RSA
(representational similarity analysis) (bottom). (c) The network level evaluates the correspondence
between the overall information flow inside an ANN and across multiple regions, cortices, or the
whole brain. Illustrated approaches sum the number of voxels in each region most associated with a
given ANN layer (top), and examine the relationship between voxels’ scores (e.g., principal gradient
score [26]) and their associated layers (bottom). (d) Behavioral level correspondence compares
the ANN output, which includes qualitative assessments such as the Turing test in conversation,
or compares the performance of behavioral metrics (e.g., classification accuracy, response time, error
pattern, playing games) against their human counterparts. Brain illustrations were generated using
the Connectome Workbench visualization software v1.4.2 [41] with Gordon’s parcellation [42].

3. Node Level

At the node level, correspondence is examined between one node of the ANN and
the activity of a neuron, or the smallest unit of neural measurement, such as an electrode
or a voxel. The idea is that if the information at one node can effectively predict the activity
of a single neuron, or vice versa, it is likely that they are associated. Modeling can be
bidirectional, where “encoding” refers to an ANN node predicting a neuron, and “decoding”
refers to a neuron predicting a node.

3.1. Encoding/Decoding

In an encoding study, Yamins et al. [30] obtained the visual response of every node
in a visual categorization ANN and used them to predict the neural recordings from
V1, V4, and IT sites in rhesus macaques, collected via implanted multielectrode arrays.
Linear regression was used for identifying the best combination of ANN unit outputs, ulti-
mately accounting for more than 54% of the variance of the image-evoked brain responses.
Bashivan et al. [32] used an ANN-driven image synthesis method to generate texture-like
patterns that pushed the predicted spiking activity of neural sites (V4) beyond the range of
naturalistic stimuli (a firing rate that was 39% higher than the maximal naturalistic firing
rate). In human subjects, Zhuang et al. [37] extended the evaluation at node level corre-
spondence along the ventral visual stream with an unsupervised learning method. Their
ANN trained with unsupervised objectives using deep contrastive embeddings beforehand
exhibited a neural predictivity comparable to its supervised counterpart.

Correspondence can also be demonstrated in the opposite direction, such as by
Horikawa et al.’s [35] decoding approach, where a single node was predicted using voxel
information from the visual cortex. Then, based on which features were predicted, the au-
thors were able to identify which object categories participants saw or imagined. The
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predicted feature values were shown positively correlated with the true values across
test images.

Studies outside the visual domain have illustrated the potential for creatively analyz-
ing ANNs at the node level. In the auditory domain, Drakopoulos [43] used ANNs to model
mechanical (inner-hair-cell transduction) and neural (auditory-nerve fiber) processing of
sound that accurately simulated single-unit auditory nerve responses. Further, Nakai and
Nishimoto [44] examined fMRI data of participants performing mathematical problems,
training ANNs on distributed representations of quantity and mathematical operations
that predicted activity in the intraparietal sulcus.

3.2. Limitations

An evident limitation here is interpretability, whether encoding or decoding. The
single neural response is noisy and the weight of the encoder is not straightforward for
interpretation [45]. Even in the ideal case where a node could perfectly model a neuron,
the model would be meaningless without understanding what the ANN is trained to
perform and in which functional brain region the neuron is situated. Once positioned in
an appropriate framework, it can model and potentially facilitate insight into otherwise
opaque information like neural activity in primates.

Another limitation of node-level evaluation is its scalability and difficulty of training.
Comparison of every node in the deep neural network with the brain neuron becomes
impractical with an increasing depth of the typical ANN. However, we note a collection
of studies of spiking neural networks (SNNs), a type of ANN that takes a set of spikes
as input and produces a set of spikes as an output that closely mimics the behavior of
biological neurons [46]. The idea is that the temporal difference between spikes and their
timing may contribute to the functionality. By turning the real-valued signals into binary
ones, SNNs reduce the costs of signal transmission and computational complexity. While
SNNs currently lag behind other ANNs in terms of performance, they highlight for us the
potential for inventive ANN approaches in this domain.

4. Layer Level

Correspondence at the layer level examines the information within a hidden ANN
layer to a brain region, such as V1 or IT cortex. Compared to the node level, the cor-
respondence of a layer to a brain region can offer a better interpretability based on the
well-established hypothesis of the brain region’s function, based on the accumulated history
of anatomical and functional studies. However, we do not know the precise hierarchical
boundaries of brain regions across the variety of information that it encodes, nor do we
know whether or how these regions align with the relatively well-defined layers of an ANN.
This has resulted in a variety of different approaches to evaluating the different possibilities
of correspondence between different ANN layers against different brain regions.

4.1. Encoding/Decoding

Encoding and decoding approaches can be extended to the responses of a whole brain
region instead of a single unit. Eikenberg [47] tested layer-level correspondence using a
linear predictive model to encode each voxel’s activity in the human visual system based
on reduced sets of layer features (e.g., subsampling ∼106 features down to ∼104 from
the first ANN layer). They found a lower-to-higher-layer hierarchical mapping across
dorsal and ventral visual stream regions-of-interest (ROIs). Two studies examined layer-
level correspondence in non-human primates, applying encoding to single-unit activity.
Cadena et al. showed the capacity for a pre-trained image classification ANN to predict
V1 responses to images in rhesus macaques [48]. They found ANN correspondence to V1
spiking activity across multiple early hidden layers, and better than prior Gabor filter bank
models, suggesting a more complex picture of nonlinear processing in early visual regions.
In a creative encoding study employing different types of ANNs, Kar et al. [49] showed
evidence suggesting that the ventral visual stream may not be just one-way hierarchical



Biology 2023, 12, 1330 6 of 14

but may rely on recurrent, feedback connections. They modeled each electrode recording
site in the V4 and IT cortex of rhesus macaques using layer nodes (linear combination of
the first 1000 principal components), which showed that shallower recurrent ANNs could
explain more variance in IT activity than “regular-deep” ANNs (8 layers), and comparably
to deeper ANNs (more than 20 layers).

The visual system’s hierarchical correspondence across layers has been mirrored in
decoding studies [33,34]. These findings were demonstrated by Horikawa and Kamitani,
decoding not just images seen but also dreamt [34] and imagined [35], where decoding
accuracy, evaluated by correlation between the category feature and decoded feature, was
greater in deeper ANN layers and corresponded to higher visual cortical regions implicated
in object recognition (lateral occipital complex, fusiform face area, and parahippocampal
place area).

The limitations of these encoding/decoding approaches are their computational cost
and the need for large amounts of training data, growing with the number of layers
constituted inside an ANN.

4.2. Representational Mapping

The above techniques largely employed mapping many-to-one techniques, such as
encoding many nodes of a layer to single-unit recordings in monkeys, then interpreting
that activity in the context of a particular brain region. However, researchers may want to
evaluate the many nodes of a layer to the many measured voxels of a region. A popular
technique for evaluating the correspondence between the human brain and ANN that
emerged from analyzing multivariate brain activity patterns [50] is representational simi-
larity analysis (RSA) [51–53]. RSA facilitates the comparison of two disparate information
sets by converting each set to a unitless space of “distances” that characterizes its geometry
(i.e., a representational dissimilarity matrix; RDM) [52] in order to test the similarity of the
two datasets’ underlying structures. This enables evaluating the correspondence of two
datasets that differ in units and dimensions, such as computational models, EEG, MEG,
fMRI, neural recording, or nodes in a layer versus voxels in a region [52], regardless of
whether the data originate from across species, modalities, models, or condition [54].

For example, Cichy et al. [55] combined temporal (magnetoencephalography; MEG)
and spatial (fMRI) information in response to images. They showed a hierarchical corre-
spondence between ANN layers and human visual processing in early V1 to farther up-
stream areas both ventral (IT) and dorsal (intraparietal sulcus regions 1 and 2), with RDMs
computed at each MEG frame yielding dynamic timecourses of ANN correspondence.
Similarly, Khaligh-Razavi et al. [51] examined supervised and unsupervised ANN models
to responses toward object images in human IT (measured via fMRI) and in monkey IT
(measured via cell recording). Comparing RDMs, they found correspondence of human
and monkey IT RDMs to those from the last, fully connected layers of supervised ANNs
but not in any layers of unsupervised ANNs.

The use of RSA is not without limitations [56]. When exposed to novel stimuli, corre-
spondence could be vanished. In RSA, scores can be a biased product of the structure of the
dataset rather than the actual data [57] and may benefit from approaches such as feature-
and voxel-reweighting [56] and voxel-wise-encoding RSA [38] to improve fit and correspon-
dence. There are also structural concerns at the study level, such as those raised by Xu and
Vaziri-Pashkam [58], who conducted an RSA-driven visual hierarchical correspondence
study using block design fMRI and functionally defined ROIs (whereas prior studies [51,55]
used a potentially noisier event-related design and anatomically defined ROIs). Using
this approach, the authors evaluated 14 different ANN architectures and confirmed that
lower layers of several ANNs could fully capture lower-level visual representations. How-
ever, none could achieve this for higher-level neural representations of real-world objects,
suggesting the current limits of ANN–brain correspondence in visual representation.
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5. Network Level

Network-level correspondence examines the overall information flow inside an ANN
to a comparable network in the brain, such as the hierarchical representations across a
single modality, or the multimodal integrative network across the whole brain. In relation
to the layer-level correspondence, a straightforward approach is to quantify the alignment
between the sequence of ANN layers and sequential processing expected in the brain. For
example, one can compute the correlation between the two and count the nodes of layer
that are most associated with each ROI in order to test if there is a shifting of distribution
from low-level to high-level cortices. Given the intrinsic feed-forward characteristics of the
ANN, a sequential alignment between the brain and the ANN would indicate a hierarchical
network-level correspondence.

5.1. Sequential Alignment Approach

Early examinations of network-level correspondence have been conducted for sensory
networks (visual network, auditory network) due to their interpretability [59]. For the
visual network, the distribution of a model-explained variance of neural activity from
Yamins et al. [30] shows a clear shift from V1 to IT as the layers changed from the first to the
top layer. A similar correspondence across layers was found for information extracted along
the visual ventral pathway [60] as well as the dorsal pathway [61]. A recent study from
Mineault et al. [62] confirmed a similar correspondence between the ANN and the visual
dorsal pathway in non-human primates. Using the ANN decoding approach, Horikawa
and Kamitani showed that dreaming recruits visual feature representations that correlated
hierarchically across the visual system [33]. For the auditory network, Kell et al. [36] found
that an ANN trained on speech and music correlated with the auditory processing hierarchy
in the brain with different layers processing different aspects of sound. In another study
using ANNs trained to classify music genres, Guclu et al. [63] showed a representational
gradient along the superior temporal gyrus, where anterior regions were associated with
shallower layers and posterior regions with deeper layers.

Evaluating large-scale networks, such as across modalities or the global brain hierarchy,
poses an additional problem. For instance, the actual hierarchical correspondence between
the human auditory system and visual ANNs remains unclear, as other studies have raised
the suggestion of parallel organization [64]. Spatial locations like brain coordinates may
provide an intuitive correspondence but not concrete evidence of the brain’s structural–
functional organization. For instance, not all of the many functional networks of the brain
may adhere to a clear posterior-to-anterior hierarchy.

5.2. Gradient-Based Approach

Brain–ANN correspondence at the network level should also account for the sequence
of chosen ROIs and the design of the ANN, such as the features that each node processes,
whether they are processed sequentially or in parallel, how multiple modalities are inte-
grated, and so on. A promising approach here is to use the principal gradient (PG) [26] as a
reference. The PG is a global axis of brain organization that accounts for the highest vari-
ability in human resting-state functional connectivity (Figure 2a). Its arrangement begins
with multiple satellites of unimodal sensory information that converge transmodally and
integrate with the default mode network (DMN). A meta-analysis using the NeuroSynth
database [65] has reinforced the relationship between cognitive function and position along
the PG (Figure 2b), with sensory perception and motion exhibiting lower positions, and
higher-order, abstract processes such as emotion and social recognition exhibiting higher
positions [26]. The implications of PG on the hierarchical organization of functionality are
further supported by clinical evidence, such as the compression of the principal motor-to-
supramodal gradient in patients with schizophrenia (96 patients with schizophrenia vs.
120 healthy controls) [66] and the decrease in PG values in a neurodegenerative condition
like Alzheimer’s disease [67].
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Figure 2. (a) Principal gradient (PG) of connectivity spans the brain, with lower scores at the start of
the PG occupying sensorimotor regions and higher scores occupying higher cognitive and associative
regions in a generally posterior-to-anterior gradient. (b) The distribution of brain functions along
the PG begins at sensorimotor functions that converge transmodally toward higher cognition and
affective processing. Figures adapted from [26].

For evaluating correspondence at the global brain level, the PG provides an indepen-
dent, quantifiable metric of its hierarchy, anywhere from sensorimotor and transmodal
to higher cognitive and affective information processing. Examining how subjective value
emerges in the brain, ANNs individually trained to output subjective value from visual
input have been shown to hierarchically correspond to the PG in the brains of those same
individuals experiencing a similar value during fMRI [68], whereas Nonaka et al. [31]
showed that most ANNs tend to have similar representations to the lower portion of the
higher visual cortex (divided by the PG), but not the middle and higher ones, suggesting
that findings of detailed correspondence in local areas could be more complex than simply
an adherence to a global hierarchy.

6. Behavioral Level

The behavioral level is arguably the most important, as it serves as the entry point for
ANN interest. It is the most important standard for commercial ANN use, but also critical
for research since researchers ignored potential insights about the brain conferred by ANNs
when they were not performing at human levels. At the same time, the behavioral level is
the least scrutable. Usefully objective standards for similarity have been difficult to come
by due to the open-ended nature of ANN domains and variance in their output.

6.1. Performance-Based Approach

Previous studies comparing ANN outputs directly to human performance showed
that a higher categorization performance might be related to more explained variance
at the high-level regions of the brain [30]. One may also consider other behaviorally
relevant measures such as reaction times [69], error patterns [70], and out-of-distribution
testing [71–73]. However, in more recent examinations, the most accurately categorizing
ANNs do not necessarily compute the highest benchmark scores, such as brain score [74]
and brain hierarchy score [31], which we will discuss in the next session.

More creative evaluations can be found in domains outside of sensory systems. For
example, in language processing, Goldstein et al. [75] evaluated the three shared behavioral
principles between the brain and ANN (called the deep language model): prediction
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before word onset, calculation of post-word-onset surprise from pre-onset predictions, and
contextual embedding of words. While their results are supported by neural evidence
derived from the recordings of electrocorticography (ECoG), employing similar principles
does not assure similar hierarchical correspondence. Using fMRI, Caucheteux and King [76]
also demonstrated a correlation between the true brain responses and ANN-predicted
responses decreasing with the language performance.

Overall, a performance-based evaluation at behavioral level is currently underdeveloped
and insufficient for providing comprehensive insight into brain–ANN correspondence.

6.2. Turing Test

In terms of a qualitative evaluation of behavior, perhaps the most considered has
historically been the Turing test [77]. Here, the test of similarity is whether a person in
conversation finds machine output indistinguishable from human output. This can extend
beyond the conversational domain, such as the embodied Turing test, which challenges
AI models to interact with the sensorimotor world at skill levels akin to their living coun-
terparts [78]. However, as Searle [79] noted, a limitation is that the Turing test is about
observation, not an actual measurement of “understanding” or “consciousness”, which
further underscores the challenge of evaluating machine behavior for brain correspondence.

Interestingly, recent advances in large language models like ChatGPT [2] and LaMDA [3]
appear to have either passed or sidestepped the Turing test. But beyond convincing con-
tents of conversation, ChatGPT may not appear human because it replies too quickly,
with too few apparent spelling or grammatical errors, or because we intuit the quality
of its incoherence over time as different from our fellow humans. Machine performance
has rapidly developed in other domains as well, including image generation (DALL-E
by OpenAI), games closed and open (AlphaGo [4], AlphaStar [5]), and biological science
(protein folding [6,7]). Once human performance within these domains were attained, ques-
tions of human similarity shifted smoothly from a basic “Turing test” to one of generality
across domains or of increasing abstraction (e.g., reasoning and logic puzzles ConceptARC
test [80]). For better or worse, these moving targets of behavioral similarity reiterate the
complexity and open-endedness of brain–ANN correspondence at this level.

7. Composite Evaluation

While brain–ANN correspondence at each level may be evaluated independently,
the ultimate goal is not to understand each level in isolation. Thus, studies have often
examined more than one level of correspondence [30,33,34,37,48,51,60,61]. Recently, re-
searchers have attempt to summarize brain–ANN correspondence in multiple levels as a
single composite score.

For example, the brain score computed by Schrimpf et al. [74] is the mean of three
scores: two at the node level (neural predictivity scores at V4 and IT) and one at the
behavioral level. However, the brain score may not adequately describe the hierarchical
correspondence between the information flow across an ANN’s layers and its analogous
network regions of the brain. In a composite evaluation that includes intermediate lev-
els, the brain hierarchy score proposed by Nonaka et al. [31] computes the degree of
hierarchical homology across ANN’s layers and brain areas. This score utilizes both the en-
coding/decoding capability (node/layer level) and the Spearman rank correlation between
the alignment of the ANN’s layer and brain areas (network level).

Composite scores can quickly convey an intuitive correspondence, especially when
computed across many ANNs. However, due to the head start of image classification
ANNs, such large-scale examinations have been limited to the correspondence of the visual
ventral stream of the brain, owing to the current preponderance of image processing ANNs.

8. Summary and Outlook

In this paper, we focused on how researchers have approached the problem of empiri-
cally evaluating the hierarchical correspondence between ANNs and the brain, which is at
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a high level separate from reviews such as those charting the history of ANN development.
Surveyed studies were organized into four levels of evaluation (node, layer, network,
and behavioral levels) in an attempt to present the available approaches systematically.
As a new field, the methodologies and analyses that researchers have taken have been
more creative and less established as standards. Thus, our aim here was that such organi-
zation could serve in part as guidelines for future studies that may be contextualized in
a firmer methodological framework. This domain of brain–ANN correspondence poses
many challenges and opportunities for innovative solutions moving forward.

Our survey found that the layer-level and network-level evaluations have largely been
confined within well-established sensory networks (i.e., vision, audition). We anticipate
that this will shift as ANNs expand in function, size, and complexity. For example, recent
ANNs have encroached into the somatosensory networks [81], as well as hippocampal and
entorhinal systems [82]. With a growing industrial interest and development of multimodal
ANNs, network-level evaluations should rise in prominence. Or, with greater interest
in ANNs that model our emotional or value systems, evaluations may include a wider
range of networks such as the default mode network and limbic network. This may in turn
highlight global hierarchies such as the PG for the architectural inspiration. Recent studies
have also extensively identified other functional connectivity gradients within the isocortex,
at the cerebellum, and at the hippocampus (for details, see [83]). As ANNs grow in variety
and complexity, researchers may come to rely on broader composite evaluations where
experimental results from many laboratories are combined into a single suite, including
all domains of information such as vision, language, and motor control. The growth of
online repositories sharing neural data, such as OpenNeuro or Neurovault, may provide
infrastructural support for such endeavors.

There is room for innovation nearer the structural foundations of ANNs as well.
For example, currently available ANNs assign the same learning behaviors to all nodes,
largely ignoring the anatomical and functional varieties of neurons, such as network
differences in the wiring between networks or the different activities between cell types.
Taking a broader structural perspective, recent studies [84] have also found that not only
brain connectivity but the brain geometry also contributes to its functionality. Thus, future
novel approaches may incorporate properties like spatial connectivity and geometry.

Conventional approaches employed correlation to evaluate hierarchical correspon-
dence, which may be susceptible to an incorrect assumption that brains and ANNs are
similar in variance and linearity. To overcome such limitations, one may consider using
canonical correlation analysis (CCA [85]) or mutual information (MI [86–89]), both of which
better explain non-linear relations. CCA finds the best correlation coefficient between two
transformed variables, whereas MI of two random variables measures the mutual depen-
dence between them (i.e., the amount of information obtained about one random variable
by observing the other). Along with entropy, MI is an important concept in information
theory [90], more closely resembling what we observe in the brain.

It should be noted that the correlation between the ANN and the brain need not be
solely feed-forward and one-on-one. A single brain region may be associated with a stack
of an ANN’s hidden layers and vice versa [48]. Sexton et al. [91] found in reassessing the
previous studies [34,92,93] that the neural interface does not show the early-to-early and
late-to-late pattern any more. The correspondence may be regulated by feedback/top-
down processing. The current state-of-the-art feed-forward architecture is not robust to
partial visibility, which could be caused by physiological delays [94]. The consideration of
top-down processing may enhance the explainability and robustness of the ANN in future
work. Another characteristic of the human brain that would be problematic in comparing
the human brain and ANN is its connectivity and functional dynamics [95], which poses
meaningful concerns such as individual flexibility in processing stimulus novelty and
relevancy, particularly in the higher cognitive areas.

Optimistically, we are reminded that the arrow of progress can point in more than
one direction. While the invention of human flight may have taken inspiration from
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the animal kingdom, the subsequent advancements in aerodynamics have cooperatively
informed our understanding of both natural and mechanical systems in unforeseeable
ways. Analogously, even as the industrial applications of ANNs appear to diverge from
neuroscience, they continue to be inspired by the systems inside the brain, such as attention,
working memory, episodic memory, and continual learning [96]. Thus, moving forward,
brain-inspired ANNs may inform our understanding of intelligence and the brain’s infor-
mation processing, which may in turn reinforce the development of novel, more efficient,
and comprehensive ANNs.

Author Contributions: Conceptualization, T.Q.P., T.M. and J.C.; investigation, T.Q.P. and T.M.;
writing—original draft preparation, T.Q.P.; writing—review and editing, T.Q.P., T.M. and J.C.; vi-
sualization, T.Q.P.; supervision, J.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the following funds: JSPS KAKENHI grant (23K17182 to T.Q.P.,
21H0516513 to T.M., 21H05017 and 21H05060 to J.C.), Core Research for Evolutionary Science and
Technology (CREST) grant (22717254 to T.M.), Japan Agency for Medical Research and Development
(AMED) grant (JP19dm0207086 to J.C.).

Institutional Review Board Statement: This study did not require institutional review board approval.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: Special thanks to Daniel H. Lee for his edits and feedback.

Conflicts of Interest: T.M. declares no conflict of interest. T.Q.P. and J.C. are employed by Araya Inc.,
Japan.

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of

the NIPS’12: 25th International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 3–6 December 2012;
Volume 1, pp. 1097–1105.

2. OpenAI. GPT-4 Technical Report. arXiv 2023, arXiv:2303.08774.
3. Thoppilan, R.; Freitas, D.D.; Hall, J.; Shazeer, N.; Kulshreshtha, A.; Cheng, H.T.; Jin, A.; Bos, T.; Baker, L.; Du, Y.; et al. LaMDA:

Language Models for Dialog Applications. arXiv 2022, arXiv:2201.08239.
4. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
[PubMed]

5. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.;
Georgiev, P.; et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354.
[CrossRef]

6. Sudha, P.; Ramyachitra, D.; Manikandan, P. Enhanced Artificial Neural Network for Protein Fold Recognition and Structural
Class Prediction. Gene Rep. 2018, 12, 261–275. [CrossRef]

7. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.;
Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef]
[PubMed]

8. Kiebel, S.J.; Daunizeau, J.; Friston, K.J. A Hierarchy of Time-Scales and the Brain. PLoS Comput. Biol. 2018, 4, e1000209. [CrossRef]
9. Hasson, U.; Chen, J.; Honey, C.J. Hierarchical process memory: Memory as an integral component of information processing.

Trends Cogn. Sci. 2015, 19, 304–313. [CrossRef] [PubMed]
10. Hasson, U.; Yang, E.; Vallines, I.; Heeger, D.J.; Rubin, N. A Hierarchy of Temporal Receptive Windows in Human Cortex.

J. Neurosci. 2008, 28, 2539–2550. [CrossRef] [PubMed]
11. Murray, J.D.; Bernacchia, A.; Freedman, D.J.; Romo, R.; Wallis, J.D.; Cai, X.; Padoa-Schioppa, C.; Pasternak, T.; Seo, H.; Lee, D.; et al.

A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 2014, 17, 1661–1663. [CrossRef] [PubMed]
12. Burt, J.B.; Demirtas, M.; Eckner, W.J.; Navejar, N.M.; Ji, J.L.; Martin, W.J.; Bernacchia, A.; Anticevic, A.; Murray, J.D. Hierarchy

of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat. Neurosci. 2018,
21, 1251–1259. [CrossRef]

http://doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://dx.doi.org/10.1038/s41586-019-1724-z
http://dx.doi.org/10.1016/j.genrep.2018.07.012
http://dx.doi.org/10.1038/s41586-021-03819-2
http://www.ncbi.nlm.nih.gov/pubmed/34265844
http://dx.doi.org/10.1371/journal.pcbi.1000209
http://dx.doi.org/10.1016/j.tics.2015.04.006
http://www.ncbi.nlm.nih.gov/pubmed/25980649
http://dx.doi.org/10.1523/JNEUROSCI.5487-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18322098
http://dx.doi.org/10.1038/nn.3862
http://www.ncbi.nlm.nih.gov/pubmed/25383900
http://dx.doi.org/10.1038/s41593-018-0195-0


Biology 2023, 12, 1330 12 of 14
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