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Simple Summary: This study investigates the evolutionary dynamics of macroinvertebrate functional
traits within the Irtysh River Basin under the influence of urbanization. Through comprehensive
field assessments and data analysis, we document a significant transition process toward pollution-
tolerant functional characteristics in macroinvertebrates, coinciding with the rapid pace of urban
development. Simultaneously, the community undergoes a gradual transition, marked by an increase
in pollution-tolerant taxa. Urbanization-induced environmental pollution and waste discharge
emerge as prominent catalysts, accelerating the observed changes in macroinvertebrate communities
and functional traits. Our findings underscore the critical role of anthropogenic factors in aquatic
ecosystems and highlight the imperative of strategic management strategies to mitigate these effects.
This study contributes to a deeper understanding of the intricate interplay among urbanization,
environmental change, and benthic organism responses, providing essential insights for sustainable
river management amidst urban expansion.

Abstract: Little is known about how changes in the biodiversity and functional traits of macroin-
vertebrates in rivers respond to the responses of anthropic pressures and their driving factors.
Macroinvertebrates were sampled at 17 sites in the Irtysh River Basin and classified macroinverte-
brates into 10 traits and 38 categories between May and August 2022. Then, we performed R-mode
linked to Q-mode (RLQ) analysis and calculated functional richness, evenness, divergence, and Rao’s
quadratic entropy (RaoQ) for each site and community-weighted means for each trait category. Our
results indicated that there were pronounced alterations in species variability in the urban region.
Functional divergence indicated fierce competition among species and considerable niche overlap in
the urban region. Functional evenness indicated that species abundance distribution and interspecific
functional distance were not uniform in the urban region. Functional richness indicated that the
urban region was the strongest region in terms of niche occupation, resource utilization, and buffering
capacity for environmental fluctuations. Rao’s quadratic entropy showed that the trait difference of
macroinvertebrates was the largest in all regions, which was caused by the gradient environmental
difference. Research has revealed that urbanization significantly influences the evolutionary tra-
jectory of macroinvertebrate fauna, culminating in an upsurge in pollution-tolerant species and a
convergence of functional traits. We recommend strengthening the control of urban and industrial
pollution and wise planning and management of land and water resources to mitigate the impact of
anthropogenic destruction on habitat fragmentation in the Irtysh River Basin.
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1. Introduction

Over the past 100 years, anthropic activity has significantly threatened riverine ecolog-
ical integrity worldwide [1,2]. Stream ecosystems are confronted with increasing challenges
due to the continuous expansion of anthropic activities, including the discharge of do-
mestic sewage, elevated agricultural water consumption, industrial development, and
the establishment of hydrological junctions [3–6]. Additionally, industrial, agricultural,
and municipal wastewater have produced river eutrophication and organic compound
pollution [7,8]. Therefore, the biological habitat gradually tends to a state of degrada-
tion [9]. Moreover, there has been an increase in the ecological stress index caused by the
miniaturization and homogenization of the composition of biological communities [10–12].
Understanding the factors controlling the health of stream ecosystems is essential for con-
serving aquatic biodiversity and promoting a harmonious coexistence between humans
and nature.

The Irtysh River Basin (IRB) originates from Zigertaidaban, north of Fuyun County,
and flows to Kazakhstan after leaving the southern bay of Habahe County. It is the only
cross-border river in China that flows into the Arctic Ocean. The IRB is a continental
north-temperate cold basin with unique geographical and natural conditions. It maintains
a relatively primitive aquatic ecological environment and is a suitable habitat for alpine
cold aquatic organisms. The average annual temperature is only 4 ◦C, and the extreme
temperatures in the basin can reach 40 ◦C and −51.5 ◦C. The annual sunshine hours of the
IRB are approximately 2900 h, and the value has decreased in the past thirty years [13].
The airflow from the Atlantic Ocean entering the basin is uplifted by the mountains to
form abundant precipitation. The rainfall is mainly concentrated in summer and autumn,
accounting for 56% to 60% of the annual rainfall. Abundant water resources and precip-
itation improve the development of agricultural and animal husbandry resources along
the river basin, which have grown into a primary source of local finance [14,15]. Moreover,
the abundant water resources of the IRB can be widely used for hydroelectricity. Large
water conservancy projects provide an essential electricity source for Xinjiang Province
and broader regions, supporting industrial development and urbanization [16]. However,
the construction of water conservancy facilities has reduced the flow and velocity in the
IRB. Furthermore, overgrazing has reduced riparian vegetation cover and altered land
utilization types, which has affected stream ecosystems by destabilizing the water circula-
tion due to urbanization. Moreover, some cities, such as Beitun city and Altay city, near
watercourses, which need large amounts of water resources in the context of accelerated
urbanization needs, will accelerate the rate of watercourses drying up, the degradation
of wetlands and the decline of aquatic biodiversity [17–19]. As one of the most critical
Asian streams, the negative impact of anthropic activity on the aquatic ecosystem in the
IRB remains to be comprehensively studied and evaluated.

As an important indicator used to measure the health and function of aquatic ecosys-
tems, macroinvertebrates play a crucial role in nutrient cycling, organic matter decompo-
sition, and sediment stability. The presence or absence of critical macroinvertebrates will
have a combined effect on the entire ecosystem, affecting the abundance and distribution
of other taxa [20,21]. Many researchers have reported establishing pollution tolerance
values and studying the biodiversity of macroinvertebrates to scientifically evaluate stream
system health [22,23]. They found that the extent of human interference in stream ecosys-
tems is inversely proportional to the biodiversity of macroinvertebrate communities in
freshwater ecosystems [24]. However, the index of abundance as a measure of biodiversity
considers all groups equally, so this single index cannot identify subtle differences between
hydrological units [25]. To avoid this problem, some researchers have proposed a method
of functional diversity using biological traits such as habits, feeding behavior, and body
size of macroinvertebrates to replace single indicators of biodiversity assessment [26,27].
Functional diversity refers to the value and range of species functional traits in a given com-
munity or ecosystem, and functional traits can reflect the difference in species functional
diversity in biological communities [28,29]. Nevertheless, changes in environmental factors
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caused by anthropic disturbances are the leading cause of differences in the functional
traits of macroinvertebrates. It was found that different levels of anthropic disturbance
have different effects on macroinvertebrate community composition. For example, species
of EPT taxonomic units decreased with increased anthropic activities, while pollution-
tolerant species such as Chironominae increased [30,31]. In addition, the extent and type
of macroinvertebrate communities affected by anthropic activities were related to geo-
graphic location and ecosystem characteristics, with macroinvertebrate communities in
highly urbanized regions exhibiting lower diversity and abundance [32,33]. Therefore,
we investigated macroinvertebrate community traits to further understand the complex
interactions between macroinvertebrate taxa and their environment. Ultimately, it can lead
to the designation of effective conservation strategies to mitigate the negative impacts of
anthropic activity on aquatic ecosystems.

2. Materials and Methods
2.1. Field Sampling and Data Acquisition

We studied the IRB located in Altay city, Xinjiang Uygur Autonomous Region of China.
The main stream is 4248 km long, with a total length of 633 km in China and a basin area of
5.7 × 104 km2 [19]. Considering the geographical and environmental characteristics, this
study set up seventeen sampling sites in the IRB (Figure 1). Three sampling events were
conducted at each site between May and August in 2022. On each sampling occasion, we
measured the water temperature (WT, ◦C), atmospheric pressure (AP, Pa), dissolved oxygen
(DO, mg/L), specific conductance (SPC, µs/cm), conductivity (C, µs/cm), salinity (SAL,
‰), pH, and oxidation-reduction potential (ORP, mV) in triplicate with a Multi-Parameter
water quality Sonde (YSI 556MPS). According to the “Analytical Methods for Water and
Wastewater Monitoring (4th edition)” standard, a 1 L plexiglass water collector was used to
collect water quality samples. Additionally, we collected water samples for the analysis of
total phosphorus (TP, mg/L), total nitrogen (TN, mg/L), and chlorophyll-a (Chl-a, µg/L)
determinations [34].

We collected the river substrate using a D-shaped net (0.3 m mesh width, 500 µm
mesh aperture) for 0.3 m3 at each sampling site. Samples were fixed in the field with
4% formaldehyde and sieved in the laboratory through a 60-mesh sieve. Samples were
preserved in 70% ethanol, and macroinvertebrates were identified to at least the family or
subfamily level [35].

By consulting published books and literature, we selected ten continuous biological
traits to reflect the life history, resistance to the outside world, and physiological charac-
teristics of macroinvertebrates [36–38]. These traits included trophic habit, habitat, stain
resistance value, maximum size, reproduction, respiration technique, swimming ability,
armoring, shape, and thermal preference. They were used to divide macroinvertebrates
into 38 functional groups (Table 1). We utilized the fuzzy coding system to score the affinity
of each trait unit. Each trait unit was assigned a score to describe the affinity of different
forms in different variables. The score was proportional to the affinity, ranging from zero
to three. For some families identified at a lower resolution level in taxonomy, we calculated
the affinity score by adding the genus-level affinity scores that appeared in the region
and readjusting the results from zero to three. We divided the subfamily or subfamily
relationship of the family when we could not identify the family’s information in Diptera,
Oligochaeta, and Hirudinae.
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Table 1. Binary biological trait variables and categories of macroinvertebrate communities.

Trait Category Code Abb

Trophic habit

Parasites 1 Trop1
Predator 2 Trop2

Collector-gatherer 3 Trop3
Collector-filterer 4 Trop4

Scraper 5 Trop5
Shredder 6 Trop6

Habit

Burrower 1 Habi1
Clinger 2 Habi2
Climber 3 Habi3
Sprawler 4 Habi4
Swimmer 5 Habi5

Divers 6 Habi6

Stain resistance value
Pollution-sensitive organisms < 3 1 Stai1

Semi-tolerant to pollution 3–7 2 Stai2
Pollution-tolerant organisms > 7 3 Stai3

Maximum size (mm)

5–10 mm 1 Size1
10–20 mm 2 Size2
20–40 mm 3 Size3
40–80 mm 4 Size4
>80 mm 5 Size5

Reproduction

Isolated eggs, free 1 Spaw1
Isolated eggs, cemented 2 Spaw2

Spawning 3 Spaw3
Aquatic spawning 4 Spaw4

Monogamy/Asexual reproduction 5 Spaw5
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Table 1. Cont.

Trait Category Code Abb

Respiration technique
Tegument 1 Resp1

Gill 2 Resp2
Air (spiracles, tracheae, plastrons) 3 Resp3

Swimming ability
Weak 1 Swim1
Poor 2 Swim2

strong 3 Swim3

Armoring
None 1 Arm1
Poor 2 Arm2
Good 3 Arm3

Shape Streamlined 1 Shpe1
Not streamlined 2 Shpe2

Thermal preference Stenothermy 1 Ther1
Eurytherm 2 Ther2

2.2. Data Analysis

We analyzed the data using a comprehensive approach comprising two methods to
assess the macroinvertebrate functional traits. First, we performed R-mode linked to Q-
mode (RLQ) analysis to assess the relationships between biological traits and environmental
factors [36]. Second, we used community-weighted mean (CWM) analysis to identify
the general distribution of functional biological shapes across each sampling site [37,38].
Finally, we used the functional richness (FRic), functional evenness (FEve), and functional
divergence (FDiv) indexes and Rao’s quadratic entropy (RaoQ) analysis to evaluate the
functional diversity [39,40].

2.2.1. Physico-Chemical, Biological and Trait Analysis

We used the Pearson correlation method and the Benjamini–Hochberg (BH) adjustment
to analyze the relationships between environmental factors and the family distribution
of macroinvertebrates. First, we created two correlation coefficient matrices for species
distribution and environmental factors at each point. Second, we adjusted the p value by the
BH. Correlation was considered significant when the p value was less than 0.05. We decided
to determine the association between the biological traits of macroinvertebrates by the
association analysis (r > 0.85, p < 0.05). A data matrix was constructed using 38 functional
group variables, and then we used association analysis.

2.2.2. Functional Diversity and Community-Weighted Means

We utilized functional richness, functional evenness, and functional divergence to
assess functional diversity. FEve represents the degree to which the functional traits of
a single individual are evenly distributed over the ecological space. It is proportional to
the degree of utilization of adequate resources within the ecological space. FDiv refers
to the difference in the functional trait of individuals within the biological community,
directly proportional to the degree of complementarity of the ecological niche and inversely
proportional to the degree of resource competition. The distance variation between species
was expressed by RaoQ analysis. The macroinvertebrate functional trait values were
calculated from the community-weighted average trait index with the following equation:

CWM =
n

∑
i=1

PiTraiti (1)

where Pi is the abundance of taxon i in the community, and Traiti is the trait value of
taxon i. This indicator holds that the functional trait of the most abundant species largely
determines the functional trait of the community.

To assess the relationship between functional traits and environmental factors, we
conducted RLQ analysis. For the subsequent statistical analysis of data, three data matrices



Biology 2023, 12, 1315 6 of 16

were created: a matrix of water environmental variables (the R matrix), a macroinvertebrate
taxa richness matrix (the L matrix), and a taxa functional trait matrix (the Q matrix).
Pearson correlation analysis was used to assess the association among water environmental
variables. When the Pearson associated coefficient reaches a certain threshold (r > 0.85,
p < 0.05), the environmental factors associated with the coefficient must be eliminated.
Before analysis, Hellinger’s transformation of the L matrix was required to reduce the
influence of significant species and transform the data from the Q matrix to a log(x + 1)
pattern. The R matrix was calculated by principal component analysis. The L matrix was
analyzed by correspondence analysis, and the Q matrix was ranked using Hill–Smith.
Finally, the covariates between environmental variables and species traits were maximized
by RLQ ranking.

All analyses were performed in “R” version 3.5.1 (R Development Core Team, 2018).
We used the following packages: ADE-4 for the RLQ analysis [41,42]; the PRIMER 7 package
was used for the functional diversity index and CWM analysis [43]; and the “ideal” package
was used for the indicator species analysis was implemented through the lands function.

3. Results
3.1. Environmental Factors and Family Distribution

A total of 2726 macroinvertebrate individuals belonging to 12 orders and 49 families
were collected in this study, with Ephemeroptera accounting for 36.28% of the total sample
size, followed by Diptera at 29.35%. The Ephemeroptera, Plecoptera, and Trichopetra (EPT)
taxonomic units represented most species in the basin, accounting for 57.96%. Regard-
ing taxonomic orders, Diptera was the richest, consisting of nine families, followed by
Trichoptera, with eight families. The correlation analysis of taxon abundance and environ-
mental factors (Figure 2) showed that Corduliidae of Odonata was significantly correlated
with pH at 0.05. Chloroperlidae of Plecoptera, and Limoniidae and Orthocladiinae of
Diptera were significantly positively correlated with SPC, C, and Sal at 0.05; Perlidae of
Plecoptera was significantly positively correlated with SPC and C at 0.05. Hirudidae and
Hemiclepsis of Rhynchobdellida and Ephemerellidae of Ephemeroptera were significantly
positively correlated with TP at 0.05; Libellulidae of Odonata was significantly positively
correlated with TN at 0.05. Simuliidae and Tipulidae of Diptera and Nemouridae of Ple-
coptera were significantly positively correlated with WT. Tipulidae and Cetatqogoridae
of Diptera, Baetidae of Ephemeroptera, and Rhyacophilidae of Trichoptera all had highly
significant positive correlations with AP at p values from 0.001 to 0.01. Psychomyiidae
and Brachycentridae of Trichoptera, Siphlonuridae of Ephemeroptera, and Elmidae of
Coleoptera were significantly positively correlated with Chl-a at 0.05. Heptageniidae of
Ephemeroptera was significantly negatively correlated with ORP at 0.05.

3.2. Biological Traits

The proportion of functional traits of macroinvertebrate communities in different
regions of the IRB was analyzed (Figure 3). By comparing the four areas and finding that
the trophic habit in the original ecological region was mostly scrapers, the habitat tended
to clinger; the maximum size was 20–40 mm; the spawning type was mainly spawning;
they mostly used gills as respiration, and the swimming ability was also between weak and
medium. The trophic habits of macroinvertebrates in the agricultural and pastoral regions
were mostly shredders; the habitat tended to clinger, similar to the original ecological
region; the stain-resistant taxa and armor strength accounted for the highest proportion;
and most of the reproduction types in the agricultural and pastoral regions were fixed
states of isolated eggs. Most of the macroinvertebrates in the hydropower dam region
were pastoral food collectors, which were sprawlers, swimmers, and divers in habitat
preference. The maximum size was mainly distributed in the two intervals of 10–20 mm
and greater than 40 mm. The swimming ability was the weakest, and the body type was
primarily nonstreamline. The functional traits of macroinvertebrates in the urban region
were more prominent, reflected as parasites, predators, and collector-filterers in trophic
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habits. Regarding the habitat preferences expressed as burrowers and climbers, it is worth
noting that the region had primarily sensitive groups; the maximum size was distributed
chiefly within 5–10 mm.
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ery correction; * Benjamini–Hochberg adjusted 0.01 ≤ p < 0.05; ** Benjamini–Hochberg adjusted
0.001 ≤ p < 0.01; *** Benjamini–Hochberg adjusted p < 0.001.

Figure 4 showed that parasites, collectors, and predators were positively associated
with air respiration. Shredders were positively associated with tegument respiration, and
the trophic habit gradually changed from air respiration to tegument respiration. Regarding
feeding habits, the clingers and climbers were positively associated with the predators and
shredders, and the scrapers were positively associated with the swimmers. There was a
positive association between reproduction and swimming ability, and when swimming
ability increased, reproduction tended to change from being free of isolated eggs to being
cemented by isolated spawning. Notably, aquatic spawning had a solid positive association
with all types of locomotion and attachment to substrates. Isolated eggs in the freestyle
zone were negatively associated with parasites and air respiration in the trophic habit but
were free of isolated eggs, and cemented isolated eggs were positively associated with
gill respiration. Groups with maximum sizes in the five-to-ten-millimeter range were
more suitable for narrow-temperature environments. When the maximum size was less
than twenty millimeters, swimming ability was proportional to the maximum size. In
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comparison, when the maximum size was more than twenty millimeters, swimming ability
was inversely proportional to the maximum size, and feeding habits were proportional to
the maximum size. The pollution-tolerant organisms had a solid negative association with
swimmers; pollution-sensitive organisms were positively associated with stenothermy;
and with the increase in pollution resistance, the negative association with eurytherms also
showed a state of gradual weakening.
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3.3. Functional Diversity and Community Weighted Means

For all the functional diversity indicators, the dot plot more intuitively shows the
clustering of response variables (Figure 5). The results of FDiv showed that the top three
sites with minimum sorts were FUDQ, BTDQ, and KNSH, while the sites with maximum
sorts were KLSK, KUYETSH, and QBEZ. The FEve results indicated that the four sites
with minimum sorts were BTDQ, KAYETSH, CHEC, and KKTHSK. In comparison, the
maximum sites were KLSK, KNSH, and XDG, which decreased from agricultural and
pastoral regions to hydroelectric dams and urban regions. The FRic results indicated that
the top three sites with minimum values were KLSK, CHEC, and KAYETSH. In comparison,
the maximum ranked values were at KLH, HMQ, and KKTHSKA. The value showed an
increasing trend from agricultural and pastoral regions to hydroelectric dams and urban
regions. The three sites with the maximum values were KLH, HMQ, and KKTHSKA,
increasing from agricultural and pastoral regions to hydroelectric dams and urban regions.
The three sites from RaoQ analysis rankings were BX635, FUDQ, and KLSK. The maximum
rankings were found for XDG, T185, and KKTHSK, and the values fluctuated considerably
between transition regions.
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We performed RLQ analysis sorting to explore the distribution pattern of macroinver-
tebrate functional traits in the IRB. The total slope inertia of the RLQ analysis was 1.679, and
the first two axes extracted 64.6% of the initial total inertia. They indicated that the eigen-
values have a significant representation. The positive direction of axis 1 indicated changes
in water environment variables such as TP, TN, DO, and SAL, which were primarily dis-
tributed among species of the taxonomic orders Libellulidae, Lymnaeidae, Aphelocheiridae,
and Corixidae. The positively associated functional traits included shredders, isolated
eggs and fixed state, medium stain resistance, and burrowers. Along axis I, the negative
direction of the environment changed, mainly distributing taxonomic order species such
as Polichopudidae, Simuliidae, Tanypodinae, Orthocladiinae, and Chironominae. Axis II
was predominantly characterized by Chl-a, pH, and WT as the environmental gradient
(Figure 6).
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4. Discussion

This study assessed the functional traits of macroinvertebrates in four regions of the
IRB. Our results indicated that anthropic activity accelerated the evolution of macroinverte-
brate functional traits in the urban rural and hydraulic engineering regions. In contrast,
macroinvertebrates in the original ecological region showed richer functional diversity, and
the traits in this region were less disturbed.

Physicochemical variables within the aquatic environment hold promise as potential
indicators for predicting community changes during assessments of the impacts of urban-
ization and habitat succession on macroinvertebrates [35,44]. We found that the Trichoptera
was most abundant in the original ecological region and the hydraulic engineering re-
gion. Physicochemical variables showed the characteristics of low water temperature in
original ecological region and high dissolved oxygen content in hydraulic engineering
region. Based on the above, we predicted that low water temperature and high dissolved
oxygen were the main factors that determine the density distribution of Trichopetra. This
was consistent with a large number of typical studies [45,46]. Additionally, the density
of EPT taxonomic units (Heptageniidae, Trichoptera, and Plecoptera) were reduced from
the original ecological region to the urban region. Numerous studies have unequivocally
demonstrated that urbanization processes pose significant threats to the ecological integrity
of stream ecosystems within watersheds, resulting in the reduced presence of sensitive
species, homogenization of food sources for higher trophic levels, and compromised stabil-
ity of biological communities [47–49]. Simultaneously, the incremental expansion of the
river channel in urban locales yielded diminished transparency and heightened sedimenta-
tion [50,51]. Jiang pointed out that using nitrogen fertilizers and pesticides is one of the
critical factors contributing to river water quality pollution [50]. The elevation of TP and
TN contents heightened stress resilience among macroinvertebrates, leading to the trend of
increasing the population of fouling-tolerant species from the original ecological region to
the urban region. This observation suggested an accelerated shift in the macroinvertebrate
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community owing to heightened human activities. Research has revealed that urbanization
significantly influences the evolutionary trajectory of macroinvertebrate fauna, culminating
in an upsurge in pollution-tolerant species and a convergence of functional traits [52,53].

The original ecological region exhibited distinctive functional traits among macroin-
vertebrate organisms, including scrapers, sprawlers, size of maturity at 5–10 mm, mo-
noecious/asexual reproduction, pneumatic respiration, strong swimming ability, good
armoring, streamlined shape, and eurythermal properties. Serving as a representative
indicator of the river’s macroinvertebrate community health, scraper remained related to
water quantity and water quality [54,55]. The prevalence of scraper-related functional traits
in this region implied a correlation between the functional attributes of macroinvertebrate
scrapers and the favorable environmental state, alongside the absence of pollution, in the
water in the ecological region. This result coincides with the small proportion of Diptera
and Coleoptera in this region. The sites within the original ecological region were situated
at higher elevations, predominantly upstream of the IRB. Consequently, the cooler water
temperatures prevailing in the upper river reaches, influenced by meltwater, aligned with
the region’s prevalence of cold-adapted biological traits. Based on the above findings, we
propose that there was an inevitable link between the speed of the species’ response to en-
vironmental pollution and water temperature. And when the water temperature increased,
the response speed tended to decrease. At the same time, the content of eutrophication
substances also confirm the conclusion.

In the agricultural and pastoral region, prevailing functional traits include shredders,
strong swimming ability, size of maturity at 10–20 mm, aquatic spawning, gill respiration,
good armoring, no streamlined shape, and stenothermy. The occurrence of pollution-
tolerant taxa, notably Perlodidae and Orthocladiinae, indicated a moderate level of water
pollution within the region. Furthermore, analyses of physico-chemical indicators within
the agricultural and pastoral domains revealed elevated nitrogen and phosphorus levels
attributable to the local livestock industry’s advancement. Specific locations, such as the
QBEZ, lie near human habitation zones, where the release of domestic sewage compounds
pollutes river segments [56,57]. However, the elevated abundance of avian species within
agricultural and pastoral regions may stem from the heightened nutrient concentration in
these waters, fostering algal and zooplankton proliferation and subsequently amplifying
bird populations [58–63]. Smakhtin similarly identified an augmented prevalence of avian
species within the macroinvertebrate fauna of urban rivers, typically correlated with water
pollution and anthropogenic disruptions [64]. The mechanism through which functional
traits react to environmental disturbances remains unclear and warrants further evaluation
to refine the development of precise management strategies.

The functional traits within urban environments were predominantly characterized
by shredders, sprawlers, medium stain resistance, size of maturity at 10–20 mm, aquatic
spawning, gill respiration, strong swimming ability, good armoring, streamlined shape, and
stenothermy. Multiple studies have demonstrated a close connection between numerous
swimming macroinvertebrate organisms and urban industrial pollution. Given organisms’
heightened sensitivity to alterations in the aquatic environment, swimming macroinver-
tebrates can promptly evade polluted water sources [53,65,66]. Nonetheless, the current
study challenges these conclusions, as strong swimming traits were prevalent across all
four regions. Consequently, a hypothesis emerged that the elevated proportion of strong
swimming in urban areas aligns with species adept at waterborne mobility. Moreover,
a study by Utz revealed shifts in macroinvertebrate community structure attributed to
water pollution and habitat degradation stemming from urbanization [67]. Nonetheless,
instances arise where some macroinvertebrates displaying robust swimming traits emerge
as the exclusive dominant species. This alignment coincides with the present study’s
findings, demonstrating that robust swimming ability within macroinvertebrate organisms
cannot singularly serve as an indicator for assessing water body pollution. Furthermore,
macroinvertebrate organisms with robust swimming skills can harness energy to propel
water currents through high-speed swimming, facilitating enhanced oxygen intake. This
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behavior is correlated with the diminished dissolved oxygen levels often observed in
urban areas. Presently, both domestic and international researchers frequently employ
pollution tolerance values as pivotal reference criteria for water environmental monitoring
and assessment of water pollution status [68–72]. Regarding maturity, the biomass of
pollution-tolerant moderate and high taxa within urban areas significantly surpassed that
of the remaining three regions. Concurrently, an augmentation in pollution-tolerant taxa,
exemplified by Tanyctolidae, Ophiuroidea, and additional pollution-indicator taxa, was
observed at the FUDQ and BTDQ sites within urban areas. This overall trend implied
heightened pollution levels within urban water. Urbanization has engendered a decline in
diversity and tolerance among riverine macroinvertebrate fauna, primarily attributed to
escalated nutrient concentrations and diminished substrate roughness [73].

The present study illustrated the functional traits of macroinvertebrates within the
IRB with the acceleration of urbanization. The community has progressively transitioned
into an ecological setting characterized by a prominent presence of pollution-tolerant
taxa. Environmental pollution and waste discharge from urbanization processes have
significantly influenced the acceleration of macroinvertebrate community transformation
and the shaping of functional traits.

5. Conclusions

This study used RLQ analysis to assess the effect of anthropic activity on macroinverte-
brate functional traits in the IRB. We found that the taxon composition of macroinvertebrates
differed in regions disturbed by heavy anthropic activity compared with that in undis-
turbed regions. These species typically exhibited changes in functional traits associated
with spawning and environmental adaptation. This was the first study of functional traits
and environmental factors in macroinvertebrates within the Irtysh River basin in China.
The results of our study can provide valuable information for the management and conser-
vation of the IRB, and we can enhance watershed management by monitoring and assessing
the impacts of anthropic activity on aquatic biodiversity. In addition, more effective meth-
ods for protecting and restoring damaged ecosystems can be explored. Examples include
reducing pollutant discharge and human disturbance to restore aquatic habitats. Notably,
we considered only the functional traits of macroinvertebrates without considering other
biological taxa or ecosystem-level factors. Therefore, there may be some limitations in
our study. To more deeply explore the impact of anthropic activity on ecosystems, future
research can consider using multiple biological factors and multiple environmental factors
to more fully assess ecosystem health.
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Appendix A

Table A1. Taxa-level Latin names and visualization of macroinvertebrate coding.

Number Section

SP1 Lymnaeidae
SP2 Elmidae
SP3 Ephemerellidae
SP4 Siphlonuridae
SP5 Tipulidae
SP6 Gammaridae
SP7 Orthocladiinae
SP8 Leptoceridae
SP9 Chironominae

SP10 Lumbriculidae
SP11 Leptophlebiidae
SP12 Baetidae
SP13 Haplotaxidae
SP14 Ephemeridae
SP15 Psychomyiidae
SP16 Heptageniidae
SP17 Planorbidae
SP18 Hemiclepsis
SP19 Nemouridae
SP20 Taeniopterygidae
SP21 Philopotamidae
SP22 Brachycentridae
SP23 Polycentropodidae
SP24 Psychodidae
SP25 Aphelocheiridae
SP26 Muscidae
SP27 Potamanthidae
SP28 Capniidae
SP29 Corixidae
SP30 Ameletidae
SP31 Perlidae
SP32 Dytiscidae
SP33 Chloroperlidae
SP34 Cetatqogoridae
SP35 Libellulidae
SP36 Simuliidae
SP37 Caropterygldae
SP38 Glossosomatidae
SP39 Glossiphoniidae
SP40 Erpobdellidae
SP41 Hirudidae
SP42 Perlodidae
SP43 Corduliidae
SP44 Hydropsychidae
SP45 Rhyacophilidae
SP46 Polichopudidae
SP47 Tanypodinae
SP48 Limoniidae
SP49 Arachnida
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