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Simple Summary: Mitochondria play a critical role in the energy metabolism of coral reef fish,
providing ATP to fuel cellular processes. A mitogenome study has been employed to investigate
the genetic diversity, population structure, and evolutionary relationships among coral reef fish
taxa. Species of the Holocentridae family play important ecological roles in coral reef communities.
Two subfamilies of this family, Holocentrinae and Myripristinae, exhibit similarities in morphology
and distribution, with minor differences in habitation and feeding behavior. Here, we present full
mitochondrial genome sequences of eight holocentrid species and report the results of a comparative
analysis with six previously published species. The results indicate that these mitogenome structures
are relatively conserved, except for the high variability in control regions. The whole genomes, except
for nad6, exhibited positive AT-skews and negative GC-skews. Furthermore, we compared the two
subfamilies to explore the reasons behind their varying inhabitation and behavior. Phylogenetic
analysis indicated all species formed two subfamilies, the Holocentrinae and Myripristinae, with
each subfamily comprising two genera. Positive selection analysis revealed that all protein-coding
genes (PCGs) were subjected to purifying selection. The data obtained from our study could serve as
a valuable resource for future investigations on the evolution and conservation of holocentrid fish.

Abstract: To understand the molecular mechanisms and adaptive strategies of holocentrid fish, we
sequenced the mitogenome of eight species within the family Holocentridae and compared them
with six other holocentrid species. The mitogenomes were found to be 16,507–16,639 bp in length and
to encode 37 typical mitochondrial genes, including 13 PCGs, two ribosomal RNAs, and 22 transfer
RNA genes. Structurally, the gene arrangement, base composition, codon usage, tRNA size, and
putative secondary structures were comparable between species. Of the 13 PCGs, nad6 was the
most specific gene that exhibited negative AT-skews and positive GC-skews. Most of the genes
begin with the standard codon ATG, except cox1, which begins with the codon GTG. By examining
their phylogeny, Sargocentron and Neoniphon were verified to be closely related and to belong to
the same subfamily Holocentrinae, while Myripristis and Ostichthys belong to the other subfamily
Myripristinae. The subfamilies were clearly distinguished by high-confidence-supported clades,
which provide evidence to explain the differences in morphology and feeding habits between the two
subfamilies. Selection pressure analysis indicated that all PCGs were subject to purifying selection.
Overall, our study provides valuable insight into the habiting behavior, evolution, and ecological
roles of these important marine fish.
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1. Introduction

Holocentridae, a family of ray-finned fish, is also known as a nocturnal coral reef fish
family, with the subfamily Holocentrinae typically known as squirrelfish, while Myripristi-
nae members are known as soldierfish [1–3]. The family Holocentridae is primarily dis-
tributed in the tropical parts of the Atlantic, Indian, and Pacific Oceans. Typically, they
inhabit waters up to a depth of 100 m, although some species of the Ostichthys genus
(soldierfish) from the subfamily Myripristinae have been detected much deeper [4]. Holo-
centridae fish possess large eyes and are primarily active at night, suggesting they are
nocturnal in terms of their activity patterns [5]. The colors of the majority of Holocentridae
are either red or silver [6]. Members of the Holocentrinae subfamily (squirrelfish) possess
venomous spines near the gill opening, which can inflict painful wounds [7]. Regarding
feeding habits, squirrelfish mainly feed on small fish and benthic invertebrates, while
soldierfish typically feed on zooplankton [8]. Unlike adults, the larvae of Holocentridae
are pelagic and can be found far out at sea [9]. Currently, according to the statistics of
Fishes of the Word, a total of 83 species belonging to 8 genera are recognized, with Sargo-
centron and Myripristis being the most numerous genera, which contain 33 and 28 species,
respectively [10]. Based on our investigation, only four genera of Holocentridae have
been studied at the mitochondrial genome level so far, including Sargocentron, Neoniphon,
Myripristis, and Ostichthys, with Sargocentron and Neoniphon belonging to the Holocentrinae
subfamily and Myripristis and Ostichthys falling under the Myripristinae subfamily.

The Holocentridae family contributes to the ecological diversity of coral reefs. Prior to
the disclosure of its complete mitochondrial genome structure, several studies concentrated
on the physiology, ecology, and evolutionary aspects of this fish family. In a report by
Eric et al. in 2011, Holocentrids were identified as vocal reef fishes. In their study, the
authors compared sound production mechanisms across different species and found that
all fish possess fast-contracting muscles and have relatively similar sound-producing
mechanisms [1]. Fanny et al. (2021) studied the visual systems of Holocentridae and
compared the two subfamilies, the Holocentrinae and Myripristinae, demonstrating that
squirrelfish had a slightly more developed photopic visual system than soldierfish [3].
The evolution of holocentroids has also been evaluated. Andrews et al. (2023) reported
a new holocentroid species from the fossil material of the early Paleocene and estimated
a Danian divergence between Myripristinae and Holocentrinae from the fossil analysis
via micro-computed tomography, suggesting that several holocentroid lineages crossed
the Cretaceous–Palaeogene boundary [4]. These studies give us insight into the traits
of holocentrid fish and their ability to adapt to the marine environment, as well as their
evolutionary history and important role in the ocean ecosystem. Next, a study conducted
at the mitochondrial structure level will provide proof of previous findings and reveal a
systematic relationship of holocentrid species.

Mitochondria play a crucial role within eukaryotic cells, participating in various
essential processes such as ATP generation through oxidative phosphorylation, cell dif-
ferentiation, signaling, growth, and apoptosis [11–13]. The vertebrate mitogenome is
characterized by its small size, ranging from 16 to 17 kb, and its circular double-stranded
structure. A typical mitogenome contains 13 protein-coding genes (PCGs), 22 transfer RNA
genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and two non-coding regions, namely, the
origin of L-strand replication (OL) and the control region (CR) [14,15]. Mitochondrial DNA
sequences have been extensively studied across various fields. In evolutionary biology,
they have been used to investigate the evolutionary relationships and genetic variation
between different species, while in biogeography, they have been used to uncover spatial
distributions and migration patterns [15]. Although mitochondrial function in corals is
highly conserved, it has been observed that the PCGs of some species undergo evolutionary
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selection in response to the metabolic demands imposed by extreme environments [16–19].
In a recent study by Ramos et al. (2023), selection tests were conducted on mitochon-
drial PCGs of deep-sea and shallow-water species, revealing that certain PCGs underwent
adaptive evolution during their adaptation to the deep-sea environment [16]. Another
extreme environment, the sub-zero habitat of the Antarctic, poses a significant challenge
to the survival of fish. Thus, Antarctic icefishes have developed a unique mechanism to
adapt to the inhabitants. In an earlier study conducted in 2010, O’Brien et al. observed
an increase in mitochondrial density in cardiac myocytes and oxidative skeletal muscle
fibers, accompanied by a proliferation of mitochondrial membranes. This expansion of
membranes facilitates the efficient intracellular diffusion of oxygen [20].

Although holocentrids play an irreplaceable role in coral reef ecosystems and several
studies have focused on their morphological characteristics, activity patterns, and under-
lying mechanisms, there has been limited research on their mitogenome characteristics
and evolutionary biology. In this study, we present eight mitogenomes for the first time
and report the results of a comparative analysis with six published mitogenomes. We
provide comprehensive insights into the detailed features of all mitogenomes with respect
to structure, gene arrangement, nucleotide composition, noncoding RNA, and codon usage.
Additionally, we explore the phylogenetic relationships between species and estimate the
selection pressures during their evolution. Through comparative analysis and newly gener-
ated results, we offer valuable insights into the evolutionary history of holocentrid species.
Furthermore, we make meaningful contributions towards identifying and protecting these
coral reef fish species.

2. Materials and Methods
2.1. Sampling, DNA Extraction, Library Construction, and Sequencing

In this study, we de novo sequenced eight holocentrid species, including Myripris-
tis kuntee (Shoulderbar soldierfish), Myripristis murdjan (Pinecone soldierfish), Myripris-
tis violacea (Lattice soldierfish), Neoniphon opercularis (Blackfin squirrelfish), Sargocentron
caudimaculatum (Silverspot squirrelfish), Sargocentron diadema (Crown squirrelfish), Sargo-
centron melanospilos (Blackblotch squirrelfish), and Sargocentron punctatissimum (Speckled
squirrelfish). The specimens were obtained from the Xisha Islands (15◦46′~17◦08′ N,
111◦11′~112◦54′ E), China, and deposited in the South China Sea Fisheries Research Insti-
tute, Chinese Academy of Fishery Sciences. Six published mitogenome sequences from
the other six holocentrid species were downloaded from GenBank for an integrative and
comparative analysis: Neoniphon samara (Sammara squirrelfish), NC_063501.1; Sargocentron
spiniferum (Sabre squirrelfish), KX254549.1; Sargocentron rubrum (Redcoat; squirrelfish),
NC_004395.1; Myripristis vittate (Whitetip soldierfish), NC_063496.1; Myripristis berndti
(Blotcheye soldierfish), AP002940.1; Ostichthys japonicus (Japanese soldierfish), AP004431.1.

Total genomic DNA was extracted from the specimens using the E.Z.N.A.® Tissue
DNA Kit (OMEGA, Beijing, China) in accordance with the manufacturer’s protocols. Two
distinct types of tissue were sampled: a small fragment of muscle from a specimen or a
clip of the pelvic fin taken from the right side of a specimen. After DNA extraction, 1 µg
of purified DNA was randomly fragmented into fragments with a length ranging from
300 to 500 bp and used for subsequent library construction. Complete genomic libraries
were established using the Illumina TruSeqTM Nano DNA Sample Prep Kit (Illumina, San
Diego, CA, USA) in accordance with the manufacturer’s instructions. Then, libraries were
sequenced using the Illumina NovaSeq 6000 platform to obtain 150 bp paired-end reads.
The library construction and sequencing procedures were carried out by the Biozeron
Corporation (Shanghai, China).

2.2. Sequence Assembly, Annotation, and Analyses

Prior to assembly, raw reads were filtered using Trimmomatic (v0.39) [21] to re-
move the low-quality reads (the reads showing a quality score below 20, Q < 20), the
reads with adaptors, the reads containing a percentage of uncalled bases (“N” charac-
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ters) equal to or greater than 10%, and duplicated sequences. Filtered reads were as-
sembled into contigs using MitoZ (v2.3) [22], and potential mitochondrial contigs were
extracted by aligning them against the NCBI mitogenome database. Then, GetOrganelle
(v1.7.5) (https://github.com/Kinggerm/GetOrganelle, accessed on 20 March 2022) was
used to assemble the mitogenomes [23]. After assembly, the starting position and orien-
tation of the mitochondrial sequence were obtained based on a reference genome. An-
notation of the mitogenomes to protein-coding genes (PCGs), tRNAs, and rRNAs was
performed using MITOS [24] and Mitoannotator (v3.83) [25]. Functional annotations of
PCGs were performed using sequence-similarity Blast searches with a typical cut-off E-
value of 10−5 against several publicly available protein databases: NCBI non-redundant
(Nr) protein database, Swiss-Prot, Clusters of Orthologous Groups (COGs), and Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) terms. tRNA
genes were searched using tRNAscan-SE (v2.0) [26], and their secondary structures were
drawn via RNAplot from the package ViennaRNA (v2.5.1) [27]. Base composition and
codon distributions were analyzed using MEGA 7.0 [28], and the nucleotide composi-
tion skewness was measured using the following formulas: AT-skew = (A − T)/(A + T)
and GC-skew = (G − C)/(G + C) [15]. Relative synonymous codon usage (RSCU) was
calculated using the “cusp” of EMBOSS package (v6.6.0.0) [29]. Circular genomes were
visualized using the CGView tool (http://stothard.afns.ualberta.ca/cgview_server/, ac-
cessed on 25 March 2022) online [30]. The r package “ComplexHeatmap” was used to
draw heatmaps. The conserved-sequence block domains (CSBs) of control regions were
determined by comparing them with public holocentrid species.

2.3. Phylogenetic Analyses

The phylogenetic relationships were reconstructed using the 13 PCGs of the 14 holocen-
trid fish mitogenomes; three parrotfish, namely, Scarus frenatus (OQ349185.1, Bridled par-
rotfish), Scarus niger (OQ349187.1, Dusky parrotfish), and Scarus prasiognathos (OQ349189.1,
Singapore parrotfish), were used as outgroup taxa. Multiple sequence alignment was
performed using MAFFT (v7.453) [31] with default parameters. The alignment results
were further trimmed to eliminate the ambiguous positions using Gblocks (v0.91b) [32].
Then, trimmed sequences were concatenated into a supermatrix with FASconCAT [33].
Fasta files were converted into Nexus format using Geneious (v.2022.2.2) [34]. Phyloge-
netic relationships were inferred from the concatenated dataset using maximum likelihood
(ML) and Bayesian inference (BI) methods. ML analyses were performed using IQ-TREE
(v1.6.12) [35] with the following parameters: “-m MFP -b 1000 -bnni”. By using these
parameters, the best-fit substitution models (including FreeRate heterogeneity models) and
partition schemes were inferred via the built-in ModelFinder [36]. “MFP” (ModelFinder
Plus) allows for extended model selection followed by tree inference, while “-b 1000”
ensures that 1000 bootstrap searches will be performed in order to infer the consensus
trees. BI analysis was carried out using MrBayes (v3.2.7a) [37]. Before BI analysis, the best
model was selected with jModeltest (v2.1.10) [38], and the model of JC was optimal for
analysis with nucleotide alignment. Then, BI analysis was performed using four simul-
taneous Markov Chain Monte Carlo chains for 2,000,000 generations and sampled every
1000 generations, using a burn-in of 25% generations. The average standard deviation of
split frequencies was set as less than 0.01. Phylogenetic trees generated from both ML and
BI methods were visualized in FigTree (v1.4.4) (http://tree.bio.ed.ac.uk/software/figtree/,
accessed on 10 June 2023).

2.4. Positive Selection

Positive selection refers to the evolutionary process through which genetic variants
increase in frequency within a given population until they become prevalent. This phe-
nomenon results from the advantageous traits conferred by these genetic variants, which
enhance the fitness and reproductive success of the individuals carrying them. To perform
positive selection analysis, first, a multiple-codon alignment was produced for each PCG

https://github.com/Kinggerm/GetOrganelle
http://stothard.afns.ualberta.ca/cgview_server/
http://tree.bio.ed.ac.uk/software/figtree/
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from the corresponding aligned predicted protein sequences using PAL2NAL [39]. Then,
positive selection analyses were performed using two codon-based maximum likelihood
methods, i.e., Single Likelihood Ancestor Counting (SLAC) and Fixed Effects Likelihood
(FEL), as implemented via HYPHY (v2.5.39) (MP) [40] on a Linux system. SLAC represents
a substantially enhanced and refined version of the Suzuki–Gojobori counting method and
is designed to assess the rate of nonsynonymous and synonymous substitutions in DNA
sequences, thereby shedding light on the selective pressures operating on specific genes
during the progress of evolution. FEL is also an innovative and statistically robust approach
rooted in likelihood-based methods aiming to characterize the evolutionary dynamics of
genetic sequences in the context of codon substitution models. In this study, the number of
non-synonymous substitutions per non-synonymous site (dN) and the number of synony-
mous substitutions per synonymous site (dS) were estimated using both methods. And the
dN/dS ratio (orω) was taken as a judgment of the selective pressure on each codon of the
PCGs. In detail, the ratio dN/dS > 1 suggests positive or diversifying selection, dN/dS < 1
suggests negative or purifying selection, and dN/dS = 1 indicates neutral evolution. The
significance level of the positive selection estimated from both SLAC and FEL analyses was
set as p-value < 0.05.

3. Results
3.1. General Features of Mitochondrial Genomes

The total length of the eight newly sequenced complete mitogenomes ranged from
16,507 bp in Sargocentron punctatissimum to 16,639 bp in Neoniphon opercularis (Table S1).
All mitogenomes comprised 37 genes, including 13 PCGs, two rRNAs (12S rRNA and 16S
rRNA, named rrnS and rrnL), one control region (CR), and 22 tRNAs (Table 1, Figure 1,
Table S2, Figure S1). Taking Myripristis kuntee as an example, the total length of the 13 PCGs
in the mitogenome is 11,439 bp, which accounts for 69.20% of the entire mitogenome. In
total, 12/13 of the PCGs are encoded on the Heavy (H) strand in the positive direction,
except for the gene nad6 (NADH dehydrogenase subunit 6), which is located on the Light
(L) strand in the reverse direction (Figure 1, Table 1). Fourteen of the tRNAs, namely,
trnD, trnK, trnG, trnR, trnH, trnS1, trnL1, trnT, trnF, trnV, trnL2, trnI, trnM, and trnW, are
located on the H-strand, while the other eight tRNAs (trnS2, trnE, trnP, trnQ, trnA, trnN,
trnC, and trnY) are located on the L-strand (Figure 1, Table 1). This arrangement pattern
of genes is identical among holocentrid species (Table S2) and is similar to that found in
most vertebrates [41]. The comparative analysis of 14 mitochondrial genomes with respect
to structure reveals that they are almost identical, and no rearrangements of genes have
occurred, but the control region was the most variable region among the species in both
length and nucleotide composition (Figure 2, Figure S2).

Table 1. Summary of the mitochondrial genomes of holocentrid fish. Myripristis kuntee was taken as
an example.

Gene Start End Strand Size (bp) Start Codon Stop Codon Anticodons

cox1 1 1557 + 1557 GTG AGA −
trnS2 1553 1623 − 71 − − TGA
trnD 1627 1698 + 72 − − GTC
cox2 1712 2402 + 691 ATG T −
trnK 2403 2475 + 73 − − TTT
atp8 2477 2644 + 168 ATG TAA −
atp6 2635 3318 + 684 ATG TAA −
cox3 3318 4103 + 786 ATG TAA −
trnG 4103 4173 + 71 − − TCC
nad3 4174 4524 + 351 ATG TAG −
trnR 4523 4591 + 69 − − TCG
nad4l 4592 4888 + 297 ATG TAA −
nad4 4882 6262 + 1381 ATG T −
trnH 6263 6331 + 69 − − GTG
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Table 1. Cont.

Gene Start End Strand Size (bp) Start Codon Stop Codon Anticodons

trnS1 6332 6399 + 68 − − GCT
trnL1 6401 6473 + 73 − − TAG
nad5 6474 8312 + 1839 ATG TAA −
nad6 8308 8829 − 522 ATG AGG −
trnE 8830 8898 − 69 − − TTC
cob 8905 10,045 + 1141 ATG T −

trnT 10,046 10,117 + 72 − − TGT
trnP 10,122 10,191 − 70 − − TGG
trnF 11,054 11,121 + 68 − − GAA
rrnS 11,122 12,070 + 949 − − −
trnV 12,071 12,142 + 72 − − TAC
rrnL 12,170 13,814 + 1645 − − −
trnL2 13,839 13,912 + 74 − − TAA
nad1 13,913 14,887 + 975 ATG TAA −
trnI 14,892 14,961 + 70 − − GAT
trnQ 14,961 15,031 − 71 − − TTG
trnM 15,031 15,100 + 70 − − CAT
nad2 15,101 16,147 + 1047 ATG TAA −
trnW 16,147 16,219 + 73 − − TCA
trnA 16,221 16,289 − 69 − − TGC
trnN 16,291 16,363 − 73 − − GTT
trnC 16,397 16,461 − 65 − − GCA
trnY 16,462 16,529 − 68 − − GTA
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Figure 1. Map of the mitochondrial genomes of holocentrid species. Myripristis kuntee was taken
as an example. PCGs are indicated by blue arrows, tRNA genes are indicated by brown arrows,
and rRNA genes are indicated by lavender arrows. tRNAs are denoted by single-letter amino acid
abbreviations followed by anticodons. Peaks on the black cycle indicate the GC content, while the
outward and inward directions indicate GC content above or below average level. The purple and
green cycles show the GC skew, where skew values between 0 and 1 are shown in purple and those
between −1 and 0 are shown in green. Ticks in the inner cycle indicate the sequence length.
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Figure 2. Gene arrangement and comparative genome analysis of 14 mitochondrial genomes of
holocentrid species.
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Two types of start codons and five types of stop codons were used in 14 species.
Taking M. kuntee as an example, most of the PCGs begin with the standard codon ATG,
except cox1 (cytochrome c oxidase subunit I), which begins with the codon GTG (Table 1).
Table 1 also displays the utilization of stop codons in the M. kuntee mitochondrial genome.
Overall, seven PCGs (atp8, atp6, cox3, nad4l, nad5, nad1, and nad2) end with TAA, while
nad3 terminates with TAG, nad6 terminates with AGG, cox1 terminates with AGA, and the
remaining three PCGs (cox2, nad4, and cob) end with an incomplete terminating codon T--
(Table 1).

3.2. Nucleotide Composition of Protein-Coding Genes of the Holocentrid Mitogenomes and the
Codon Usage

The nucleotide compositions were comparable among all 14 species. For the whole
mitochondrial genome, the overall A + T content ranges from 53.12% in M. murdjan to
56.85% in N. sammara, while the G + C content ranges from 43.15% in N. sammara to
46.88% in M. murdjan (Table S3). For the PCGs of the 14 mitogenomes, the average A + T
content is 53.95%, which is slightly lower than the average of the whole genome, 54.70%.
When focusing on each of the 13 PCGs, the lowest A + T content was found in nad4l
(50.63 ± 1.50%), while the highest was found in cox2 (55.33 ± 1.61%) (Table S3). Taking
M. kuntee as an example, the A + T content of its PCGs was 52.20% (Table S3). All the
holocentrid mitogenomes exhibited AT bias in the whole mitogenome, tRNAs, rRNAs, and
most of the PCGs (Figure 3, Table S3). The largest AT-skew values were observed in rRNAs,
all of which were positive, while the smallest and most negative values were found in the
PCG nad6 (Figure 3, Table S3). For most of the PCGs, the AT-skew was higher than the
GC-skew, except for nad6, which exhibited an unusual AT-skew and GC-skew (Figure 3).
The negative AT-skew and positive GC-skew observed indicated that nad6 displayed an
excess of T over A and G over C. Moreover, the average AT-skew and GC-skew values of
all 13 PCGs were negative (Figure 3, Table S3).
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The relative synonymous codon usage (RSCU) values for the PCGs are summarized
in Figure 4 and Table S4. Excluding stop codons, there are 3813 codons in the mitogenome
of M. kuntee. The codons encoding Arg, Leu, and Ser are the most frequent, while those
encoding Trp and Met are scarce (Figure 4A). The heatmap, which was generated based on
RSCU values, illustrates the resemblance of codon usage patterns among 14 mitogenomes
(Figure 4B). Among the codons coding Ala, GCC (RSCU = 1.75) is the most frequently used.
Also, it is the most frequently used codon among the 61 codons that encode amino acids.
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3.3. Transfer RNA and Ribosomal RNA

All 22 typical tRNAs of the vertebrate mitochondrial genome were found in the
mitogenomes (Figure 5A). Taking M. kuntee as an example, the tRNA size ranged from 65
to 74 bp. Most tRNAs could be folded into the canonical clover leaf secondary structure.
The secondary structure of tRNAs generally contains four domains and a short variable
loop: the amino acid acceptor (AA) stem, the dihydrouridine arm (D stem and loop, D),
the thymidine arm (T stem and loop, T), the anticodon arm (AC stem and loop, AC), and
the variable (V) loop (Figure 5A). However, as determined from the comparison of four
representative species from the genera Myripristis, Neoniphon, Sargocentron, and Ostichthys,
trnC-GCA (Cys) is supposed to lose the D loop in M. kuntee and O. japonicus (Figure 5B). The
tRNA trnS1-GCT (Ser) is characterized by a special V loop and a large ring structure in the
D loop in three of the four typical holocentrid species, but O. japonicus does not have these
two structures (Figure 5B). Moreover, all species lack a D stem in trnS1-GCT (Ser), thus
leading to failure in the formation of the typical clover leaf structure (Figure 5B). Regarding
another special tRNA, trnH-GTG (His), when focusing on the T stem, N. opercularis and S.
caudimaculatum possess a small ring due to the high GC content (Figure 5B).
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Figure 5. (A) Putative secondary structure of tRNAs in holocentrid mitogenomes. (B) Differential
secondary structure of trnC-GCA (Ala), trnS1-GCT (Ala), and trnH-GTG (Val) of four holocentrid
species. Arrows were used to highlight the different structural features of the three tRNAs.

Two ribosomal RNAs (12S rRNA and 16S rRNA, or rrnS and rrnL) are located on the
H-strand in all holocentrid mitogenomes. These two genes were separated by trnV-TAC
(Val), a feature often found in the mitochondrial genomes of vertebrates [41–43]. Taking M.
kuntee as an example, the lengths of its 12S rRNA and 16S rRNA genes were 949 bp and
1645 bp, respectively. The total A + T content of these two rRNA genes was 53.93%, higher
than their G + C content. Moreover, this mitogenome had a positive AT-skew (0.27) and a
negative GC-skew (−0.12) (Table S3). Other species showed similar results to M. kuntee.

3.4. Overlaps and Control Regions

When focusing on the 12 protein-coding genes on the heavy strand in the positive
direction, a total of three overlaps from genes were detected in the mitogenomes of holocen-
trids (Table 1, Table S2). Taking Myripristis kuntee as an example, the longest overlap was
found between atp8 and atp6, with a highly conserved 10 bp motif of “AGCTTCTTCG”,
while the second longest overlap was found between nad4l and nad4, with a 7 bp sequence,
“ATGCTAA”. Apart from that, a 5 bp overlapped sequence, “CCTAA”, was observed



Biology 2023, 12, 1273 11 of 18

between nad5 and nad6. Also on the same strand, the control region, located between trnP
and trnF, with a range from 838 bp in Sargocentron diadema to 960 bp in Neoniphon opercularis,
was the most variable region among species. Notably, this variable region accounted for
the predominant portion of length discrepancies observed within the mitogenomes of holo-
centrids. Five conserved sequence blocks (CSB), CSB-I, CSB-II, CSB-III CSB-IV, and CSB-V,
were detected (Figure 6) from the alignment of control regions. The base composition was
extremely unique to each CSB, with CSB-I being T- and A-rich, CSB-II being AT- and C-rich,
CSB-III being T- and C-rich, CSB-IV being C-rich, and CSB-V being A- and C-rich (Table 2).

Biology 2023, 12, x FOR PEER REVIEW 12 of 19 
 

 

“ATGCTAA”. Apart from that, a 5 bp overlapped sequence, “CCTAA”, was observed be-
tween nad5 and nad6. Also on the same strand, the control region, located between trnP and 
trnF, with a range from 838 bp in Sargocentron diadema to 960 bp in Neoniphon opercularis, was 
the most variable region among species. Notably, this variable region accounted for the pre-
dominant portion of length discrepancies observed within the mitogenomes of holocentrids. 
Five conserved sequence blocks (CSB), CSB-I, CSB-II, CSB-III CSB-IV, and CSB-V, were de-
tected (Figure 6) from the alignment of control regions. The base composition was extremely 
unique to each CSB, with CSB-I being T- and A-rich, CSB-II being AT- and C-rich, CSB-III 
being T- and C-rich, CSB-IV being C-rich, and CSB-V being A- and C-rich (Table 2). 

 
Figure 6. Conserved sequence blocks (CSBs) of the control region in the holocentrid mitogenomes. 
The asterisks are used to indicate the conserved sites. 

Sargocentron caudimaculatum
Sargocentron spiniferum
Sargocentron melanospilos
Sargocentron rubrum
Neoniphon sammara
Sargocentron diadema
Sargocentron punctatissimum
Neoniphon opercularis
Myripristis kuntee
Myripristis violacea
Myripristis murdjan
Myripristis berndti
Myripristis vittata
Ostichthys japonicus

Sargocentron caudimaculatum
Sargocentron spiniferum
Sargocentron melanospilos
Sargocentron rubrum
Neoniphon sammara
Sargocentron diadema
Sargocentron punctatissimum
Neoniphon opercularis
Myripristis kuntee
Myripristis violacea
Myripristis murdjan
Myripristis berndti
Myripristis vittata
Ostichthys japonicus

Sargocentron caudimaculatum
Sargocentron spiniferum
Sargocentron melanospilos
Sargocentron rubrum
Neoniphon sammara
Sargocentron diadema
Sargocentron punctatissimum
Neoniphon opercularis
Myripristis kuntee
Myripristis violacea
Myripristis murdjan
Myripristis berndti
Myripristis vittata
Ostichthys japonicus

Sargocentron caudimaculatum
Sargocentron spiniferum
Sargocentron melanospilos
Sargocentron rubrum
Neoniphon sammara
Sargocentron diadema
Sargocentron punctatissimum
Neoniphon opercularis
Myripristis kuntee
Myripristis violacea
Myripristis murdjan
Myripristis berndti
Myripristis vittata
Ostichthys japonicus

Sargocentron caudimaculatum
Sargocentron spiniferum
Sargocentron melanospilos
Sargocentron rubrum
Neoniphon sammara
Sargocentron diadema
Sargocentron punctatissimum
Neoniphon opercularis
Myripristis kuntee
Myripristis violacea
Myripristis murdjan
Myripristis berndti
Myripristis vittata
Ostichthys japonicus

CSB-I 

CSB-V  

CSB-III   

CSB-IV  

CSB-II 

Figure 6. Conserved sequence blocks (CSBs) of the control region in the holocentrid mitogenomes.
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Table 2. The base composition of the CSBs of the control region of parrotfish mitogenomes.

Base Composition (%) CSB-I CSB-II CSB-III CSB-IV CSB-V

A 27.66 25.53 18.37 12.77 36.73
T 38.30 25.53 42.86 23.40 14.29
G 14.89 17.02 16.33 10.64 12.24
C 19.15 31.91 22.45 53.19 36.73

On the light strand, the special non-coding region OL (the origin of light strand repli-
cation), with a length ranging from 28 to 37 bp among species, is known to regulate the
encoding of the nad6 gene and eight tRNAs. Structurally, OL is situated within the cluster
of five tRNA genes (WANCY), and its secondary structure exhibits a stable stem-loop con-
figuration, characterized by a tight structure with seven G-C pairs in the genera Neoniphon,
Sargocentron, and Ostichthys and eight G-C pairs in the genus Myripristis (Figure 7). The
G-C base pairs forming the stem exhibited a high level of conservation, maintaining their
stability across different instances. In contrast, the composition of bases within the loop
region displayed variability, with the presence of T being notably limited.
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software (http://rtools.cbrc.jp/centroidfold/, accessed on 1 September 2023).

3.5. Phylogenetic Analysis

To explore the evolutionary patterns of the 14 holocentrid species, phylogenetic trees
were constructed using both ML and BI methods based on 13 PCGs, and three parrotfish
from our previous study were used as outgroups [15]. The topological structures of the
phylogenetic trees obtained using the two methods were congruent, except that the BI
tree had higher support values on the clade of Neoniphon (Figure 8). Both trees delimited
two prominent clades: clade A and clade B. Clade A consists of species from the genera
Ostichthys and Myripristis, while clade B consists of the other two genera, Neoniphon and
Sargocentron. In general, different species of the same genus clustered into the same clade.
In clade B, the genera Neoniphon and Sargocentron clustered together, with BI posterior

http://rtools.cbrc.jp/centroidfold/
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probabilities (PP) equal to 1 and an ML bootstrap (BP) equal to 100, which implies a close
relationship phylogenetically. However, the fact that the Neoniphon clade has become
independent suggests it is a new population or a close relative of the genus Sargocentron.
O.japonicus in clade A clustered together with species of Myripristis, suggesting its mor-
phological similarity with that genus. Interestingly, two subfamilies of Holocentridae,
Holocentrinae and Myripristinae, were clearly distinguished with high confidence, with a
PP equal to 1 and a BP equal to 100, suggesting the independence of the squirrelfish and
the soldierfish groups and potential differences in morphology and feeding habits between
these two subfamilies.
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method and the ML method were used. The numbers beside the nodes are posterior probabilities (BI)
and bootstraps (ML), respectively.

3.6. Non-Synonymous, Synonymous Substitutions, and Positive Selection

To better understand the role of selective pressure, the dN and dS values of the PCGs
were calculated using two codon-based maximum likelihood methods, SLAC and FEL. A
total of 3381 amino acid sites was calculated using both methods (Figure 9). As determined
from the SLAC result, 378 sites are prone to undergoing positive/diversifying selection
(dN − dS > 0), but the p-values were not significant (>0.05). Of the rest 3003 sites, 1784 are
under negative/purifying selection, with dN − dS < 0 and a p-value < 0.05 (Figure 9A),
while the others have a p-value > 0.05. From the FEL analysis, 2459 sites were detected with
dN/dS < 1 (ω < 1) (Table S5). nad5 and atp8 presented the highest and lowest numbers
of amino acids under purifying selection, respectively (Figure 9B), while nad4 presented
the highest percentage of amino acids under purifying selection (Figure 9C). Collectively,
all PCGs were subject to purifying selection, with most dN − dS values lower than 0 or
dN/dS values lower than 1 (ω < 1), taking a p-value < 0.05 as a threshold.
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results from the SLAC analysis. (B) Number of amino acids under purifying selection (dN/dS < 1 or
ω < 1) determined via the FEL method. (C) % of amino acids under purifying selection determined
using the FEL method.

4. Discussion

In this study, we found that the overall codon usage among the 14 holocentrid species
is similar. But when focusing on the PCGs within each species, most of the genes begin with
the standard codon ATG, except cox1, which begins with the codon GTG. Previous research
reported that ATG was the most prevalent in the mitochondrial genome of vertebrates
and was exclusively used in the cox3 gene, while GTG was primarily utilized in the cox1
gene in over 95% of species [14]. In fish, such as the fathead minnow (Pimephales promelas)
and parrotfishes, ATG acts as the start codon for all PCGs except cox1, which uses GTG as
the start codon [15,44]. Unlike bony fish, in certain marine animals, like sea cucumbers,
the start codon GTG is frequently employed in the genes responsible for encoding NADH
dehydrogenase subunits, including genes like nad1, nad4l, and nad5 [45]. Stop codon usage
of the mitogenomes was also found to be similar among species, with more than half of
the PCGs (7/13) using TAA as a stop codon; three PCGs terminating with TAG, AGG, and
AGA, respectively; and the other PCGs ending with an incomplete terminating codon,
i.e., T. The usage of start and stop codons in this study is comparable to findings for other
fish. Satoh et al. (2016) conducted a codon usage analysis on 250 fish and discovered the
utilization of nine types of start codons and seven types of stop codons [14]. The most
frequently used start codons were ATG and GTG, whereas TAA, TAG, AGA, and AGG
were all used as complete stop codons. Additionally, three types of incomplete stop codons
(TA-, T--, and AG-) were also employed.

The RSCU analysis revealed that the codons were more prone to using A and T than
C and G. The codons encoding Arg, Leu, and Ser were highly abundant, whereas those
encoding Trp appeared infrequently (Figure 4A). These results are similar to those on the
codon usage in the Characidae family [46] but different from this usage for invertebrate
species such as Lysmata vittate [47]. Moreover, GCC-Ala (RSCU = 1.75) is the most frequently
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used codon in the mitogenome of M. kuntee. Usually, the RSCU intuitively reflects the
preference for codon usage [48]. The observed bias of A and T nucleotides in holocentrid
species likely contributed to a corresponding bias in the usage of codons. Previous studies
reported that a notable characteristic of the mitochondrial genome in other teleost species
is the A and T bias, resulting in a consequential bias in the encoded amino acids [14,15].

The comprehensive phylogenetic tree generated using the mitogenomes of holocentrid
fish indicates the evolutionary position of the two subfamilies. The subfamilies distinctly
diverged, which was supported with high confidence, providing evidence explaining the
differences in morphology and feeding habits between the two subfamilies. According to
previous studies, fish from these two subfamilies share some similarities but also demon-
strate unique characteristics in their habitats and lifestyles. During the larval stage, both
subfamilies live in the upper pelagic ocean and feed on zooplankton [49]. As they transi-
tion into juvenile life, the majority of holocentrids migrate to shallow tropical coral reef
habitats [10], where the subfamily Holocentrinae adopts a nocturnal lifestyle and feeds
on benthic crustaceans, while the subfamily Myripristinae feeds on zooplankton in the
water column [50]. Our previous study on parrotfish indicated that ecological differences
in habitats affect the formation of morphology and feeding habits and might act as the
primary driving force in species diversification [15]. And the visual system of the two
subfamilies differed after settlement, with Myripristinae showing a more pronounced
adaptation for scotopic vision than Holocentrinae [2]. Moreover, high-confidence clades
support the notion of two genera in each clade. Within Holocentrinae, a previous analysis
indicated that there was strong support for the genera Neoniphon and Sargocentron being
paraphyletic [51]. In more specific terms, the genome characteristics of the mitochondrion
indicate that the species N. opercularis and N. samara are phylogenetically closer to S. punc-
tatissimum and S. diadema than to other species within the genus Sargocentron. This could
suggest the existence of an evolutionary correlation between the two genera. However,
the cited author proposed that Neoniphon and Sargocentron probably underwent a complex
evolution but did not derive from a common ancestry as determined via Bayesian ancestral
state reconstruction methods [51].

Positive selection is an evolutionary process in which advantageous genetic variations
(mutations) increase in frequency within a population. However, under natural conditions,
the primary form of selection is purifying selection, which continually removes harmful
mutations that occur in each generation [52,53]. In this study, the purifying selection
for PCGs was prominent, thus ensuring that deleterious mutations cannot take over the
population of Holocentridae. Previous studies on other reef fish have also shown that PCGs
of the mitochondrial genome undergo purification selection [15], indicating fewer amino
acid variations during evolution. The nad5 is a core subunit of NADH dehydrogenase,
which is located on the mitochondrial membrane and is involved in the function of the
respiratory chain, while atp8 synthesizes ATP and serves as the primary energy source for
mitochondrial oxidative phosphorylation. The properties of purification exhibited by nad5
and atp8 make them potential markers for identifying holocentrids.

5. Conclusions

In this study, a mitogenome study was employed to investigate the genetic diversity,
population structure, and evolutionary relationships of the reef fish family Holocentridae.
Eight holocentrid mitogenomes were sequenced, and a comparative mitogenome analysis
with six published holocentrid fish was performed. Our characteristic analysis indicated
that a typical holocentrid mitogenome is 16,239 bp in length and encodes 37 genes. For all
the species, the mitogenome structures were relatively conserved. The whole genomes of
the mitochondria exhibited positive AT-skews and negative GC-skews. Among the 13 PCGs,
nad6 was the most specific gene that exhibited negative AT-skews and positive GC-skews.
GCC-Ala is the most frequently used codon in the mitogenome. Most of the genes, except
cox1, begin with the standard codon ATG. Our phylogenetic analysis supports the notion
that the genera Sargocentron and Neoniphon belong to the subfamily Holocentrinae, while the
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genera Myripristis and Ostichthys belong to the subfamily Myripristinae. The clades provide
evidence to explain the differences in morphology and feeding habits between different
subfamilies. The conducted positive selection analysis indicates that all the PCGs were
under purifying selection. nad5 and atp8 are potential markers for identifying holocentrids.
Our study contributes to an in-depth understanding of the biological characteristics and
evolutionary relationships of holocentrid fish and enriches the mitochondrial genome
resources of coral reef fish.
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