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Simple Summary: The Haliotis discus hannai (H. discus hannai) is one of the most economically
important species cultured in China. Currently, the problems of slow growth and small abalone
sizes have become increasingly serious, causing economic losses to farmers. The most effective way
to solve the problems of slow growth, miniaturization, and lack of large abalone is by molecular
genetic manipulation to breed high-quality abalone that have rapid growth rates. Analyzing the
genetic mechanism of abalone growth and discovering key functional genes are thus critical for
this genetic improvement program. Many studies have confirmed that myostatin is an important
regulator of muscle growth in animals. In this study, we investigated the molecular structure and
function of hdh-myostatin in H. discus hannai. The results revealed that hdh-myostatin contained
structural characteristics typical of the TGF-β superfamily and was involved in the regulation of
growth. Our findings would help to clarify the role of hdh-myostatin in the regulation of abalone
growth and provide a reference for the application of molecular markers of growth traits in mollusk
breeding.

Abstract: Myostatin, also known as GDF8, is a member of the transforming growth factor-β (TGF-β) super-
family. In vertebrates, myostatin negatively regulates the growth of skeletal muscle. In invertebrates,
it has been reported to be closely related to animal growth. However, knowledge concerning the
molecular mechanisms involved in the myostatin regulation of molluscan growth is limited. In this
study, we found that the hdh-myostatin open reading frame (ORF) comprised 1470 base pairs that
encoded 489 amino acids and contained structural characteristics typical of the TGF-β superfamily,
including a C-terminal signal peptide, a propeptide domain, and TGF-β region. Gene expression anal-
ysis revealed that hdh-myostatin mRNA was widely expressed at different levels in all of the examined
tissues of Haliotis discus hannai. Nine single nucleotide polymorphisms (SNPs) were associated with
the growth traits. RNA interference (RNAi) against hdh-myostatin mRNA significantly downregulated
hdh-myostatin at days 1, 15, and 30 post injection, and the pattern was correlated with downregulation
of the genes TGF-β receptor type-I (hdh-TβR I), activin receptor type-IIB (hdh-ActR IIB), and mothers
against decapentaplegic 3 (hdh-Smad3). After one month of the RNAi experiment, the shell lengths
and total weights increased in the abalone, Haliotis discus hannai. The results of qRT-PCR showed that
the hdh-myostatin mRNA level was higher in the slow-growing group than in the fast-growing group.
These results suggest that hdh-myostatin is involved in the regulation of growth, and that these SNPs
would be informative for further studies on selective breeding in abalone.

Keywords: myostatin; Haliotis discus hannai; molluscan growth; RNA interference; single
nucleotide polymorphism
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1. Introduction

Abalone is an important mariculture mollusk in China. The species Haliotis discus
hannai (H. discus hannai) is one of the most economically important species cultured in
China [1,2], and Fujian Province accounts for nearly 80% of total abalone production in
China [3,4]. However, with the rapid development of the abalone breeding industry, the
gap between the abalone germplasm quality and production requirements has become
increasingly prominent. On the one hand, the problems of slow growth and small abalone
size have become increasingly serious, causing economic losses to farmers. On the other
hand, the domestic large abalone market has long been monopolized by foreign wild
abalone. These problems have created a “bottleneck” restricting the healthy development
of the abalone aquaculture industry in China. At present, the most effective way to solve the
problems of slow growth, miniaturization, and lack of large abalone is through molecular
genetic manipulation to breed high-quality abalone that have rapid growth rates. Analyzing
the genetic mechanism of abalone growth and discovering key functional genes are thus
critical for this genetic improvement program.

Hybridization is an effective method for genetic improvement in aquaculture that can
introduce improved traits to the hybrids [5,6]. H. fulgens was introduced from the United
States [7], with a fast growth rate. You et al. (2015) have cultivated the Lvpan abalone
(H. discus hannai ♀× H. fulgens ♂) with fast growth and large size through interspecific
crossbreeding technology [8]. It has gradually become a new breed of abalone in Fujian
Province [8]. Although the appearance of the Lvpan abalone alleviates the demand of the
industry, the mechanism for the rapid growth of the abalone is still unclear. Lvpan abalone
may be an ideal material for studying growth traits of abalone and can be used to prove
the action mechanism of key genes related to abalone growth. It is helpful to further guide
the cultivation of new species with rapid growth.

Myostatin, also known as growth differentiation factor 8 (GDF8), belongs to the
transforming growth factor β (TGF-β) superfamily [9]. Many studies have confirmed
that myostatin has an important role in animals’ muscle growth. As a secreted glyco-
protein, it has similar amino acid structural characteristics to TGF-β superfamily mem-
bers, including an N-terminal signal peptide, a glycosylation site, a protease hydrolysis
site, and nine conserved C-terminal cysteine residues [10,11]. In mammals, the deletion
of myostatin leads to a dramatic increase in skeletal muscle mass [12]. In fish, the ab-
sence or blockage of myostatin in early developmental stages has also produced giant
phenotypes [13,14]. In addition to what has been observed in vertebrates, a significant
increase in muscle cellularity has been induced by RNA interference (RNAi) of myostatin
in Patinopecten yessoensis [14]. In mollusks, myostatin has been characterized in species such
as Argopecten irradians [15], Chlamys farreri [16], Mytilus chilensis [17], Argopecten purpura-
tus [18], Sinonovacula constricta [19], Chlamys nobilis [20], H. rufescens [21], and H. diversicolor
supertexta [10]. Myostatin has been demonstrated to function via forming dimers with two
types of membrane-bound receptors, type I receptors (including ALK4, ALK5, TβR I, and
ActR IB), and type II receptors (including ActR II, ACVR II, ActR IIB, and ACVR IIB) [11,22].
The myostatin initially binds to type II receptors, and the type II receptors subsequently
phosphorylate type I receptors, leading to downstream signaling, including the phosphory-
lation of drosophila mothers against decapentaplegic proteins (Smads) (including Smad2
and Smad3) [23]. However, studies on the function of myostatin involved in the growth of
H. discus hannai are still scarce.

In vertebrates, myostatin negatively regulates skeletal muscle growth [24]. In inver-
tebrates, it has also been reported to be closely related to animal growth [25,26]. In this
paper, we cloned the ORF sequence of hdh-myostatin in H. discus hannai and analyzed its
sequence structure. Secondly, the expression characteristics of hdh-myostatin at different
developmental time points and tissues in H. discus hannai were analyzed by qRT-PCR.
Thirdly, we examined the expression changes of these genes (hdh-myostatin, hdh-TβR I,
hdh-ActR IIB, hdh-Smad3, and MHC) by RNAi to clarify the role of hdh-myostatin in abalone
growth. Finally, we verified the relationship between myostatin and growth in Lvpan
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abalone and detected SNPs associated with abalone growth. Our research will provide
theoretical support for the cultivation of new high-quality abalone species with the ability
of rapid growth and large size and have important practical significance for promoting the
transformation and upgrading of abalone aquaculture.

2. Materials and Methods
2.1. Experimental Animals and Sample Collection

All H. discus hannai and hybrid Lvpan abalones were obtained from Fuda Abalone
Aquaculture Co., Ltd. in Jinjiang, Fujian province, China. The tissues of adductor
muscle of H. discus hannai from different developmental time points (one month (1M),
four months (4M), seven months (7M), 10 months (10M), 12 months (12M), 14 months
(14M), 16 months (16M), and 18 months (18M)) were collected, each with three replicates.
Six H. discus hannai were sacrificed, and the lymphocytes, gonad, gill, mantle, cerebral
ganglion, hepatopancreas, adductor muscle, and foot tissues were collected. Twelve of the
larger H. discus hannai (“L-DD-group”; mean total weight, 8.88 ± 0.79 g; about one year
old), 12 of the smaller H. discus hannai (“S-DD-group”; mean total weight, 2.30 ± 0.42 g;
about one year old), 12 of the larger Lvpan abalone (“L-DF-group”; mean total weight,
9.02 ± 0.74 g; about one year old), and 12 of the smaller Lvpan abalones (“S-DF-group”;
mean total weight, 2.49 ± 0.54 g; about one year old) were sacrificed for the adductor
muscles. All of the samples were collected and frozen immediately in liquid nitrogen before
being stored at −80 ◦C for subsequent experiments.

2.2. RNA Isolation and cDNA Synthesis

The total RNA isolation and the cDNA template synthesis followed the methods
previously described by Sun et al., (2020) [14].

2.3. Hdh-Myostatin ORF Confirmation and Sequence Analysis

Using the genome of H. discus hannai, hdh-myostatin-F and hdh-myostatin-R (Table 1)
were designed for the amplification of the hdh-myostatin open reading frame (ORF). The
corrected ORF sequences were uploaded to GenBank (accession number: OP856630). The
deduced amino acid sequence of the hdh-myostatin protein was obtained by Lasergene
software. The signal peptide of the hdh-myostatin protein was predicted using the SingalP
5.0 Server. The proteolytic processing site was predicted using the Prop 1.0 server. The
secondary structure of the hdh-myostatin protein was analyzed by SOPMA. The protein
domains of the hdh-myostatin protein were analyzed using CDD. We downloaded myo-
statin protein sequences of different species from the NCBI database and compared them
using the ClustalW2 program. After that, we constructed a myostatin phylogenetic tree
with the neighbor-joining algorithm using the MEGA program.

2.4. Sequence and SNP Analysis

A total of 222 H. discus hannai selected from 10 families were used for the verification
of single nucleotide polymorphisms (SNPs) [27]. The foot muscle of abalones was obtained
for DNA extraction using a DNeasy 96 Blood and Tissue Kit (Qiagen, Shanghai, China).
Five growth-related traits (shell length, shell width, total weight, and muscle weight)
were measured to represent the phenotype. The ORF sequences of hdh-myostatin from
sampled H. discus hannai were genotyped by resequencing with a filter for SNPs with a
minor allele frequency less than 10%, and the genome of H. discus hannai was utilized as a
reference. Polymorphic information content (PIC) of SNPs was evaluated using POPGENE
1.32 software according to the program instructions.

2.5. RNA Interference of Hdh-Myostatin

A 388 bp fragment of hdh-myostatin and 497 bp of the green fluorescent protein (EGFP)
gene (an exogenous control gene) were amplified using specific primers (Table 1). The
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dsRNA targeting hdh-myostatin was acquired following the methods previously described
by Sun et al., (2020) with slight modifications [14].

About 80 H. discus hannai (~4–5 g) were selected and randomly divided into two
groups (the EGFP control group and the hdh-myostatin RNAi experimental group). The
injection solution was prepared by diluting the purified dsRNA in filter-sterilized seawater.
The abalones were injected with the purified dsRNA at a dose of 100 µg per abalone once a
week for a total of five times. Finally, samples of the cerebral ganglion and adductor muscle
were collected at days 1, 15, and 30, and RNA was isolated for qRT-PCR. The growth traits
of H. discus hannai in each group were measured at the end of the experiment.

Table 1. Sequences of the primer pairs used in this study.

Primer Sequence (5′-3′)

hdh-myostatin-F AGTGTATTGGCAAGTCGTGA
hdh-myostatin-R CAACGGCAGTATAGTAGGTCAA

hdh-myostatin-dsF TAATACGACTCACTATAGGGGCCGGTCCTCATCGTTCAC
hdh-myostatin-dsR TAATACGACTCACTATAGGGTTACAAGCACCCACATTCTTCCAC

EGFP-dsF TAATACGACTCACTATAGGGGTGCCCATCCTGGTCGAGCT
EGFP-dsR TAATACGACTCACTATAGGGTGCACGCTGCCGTCCTCGAT

hdh-myostatin-qF TGAGTCGGGAGATTCTTCGC
hdh-myostatin-qR TGATGATGTCGGTTGTCGTG

hdh-TβR I-qF ACCATCACACCATGACACAG
hdh-TβR I-qR GCCACACCTCACCGTACCTC

hdh-ActR IIB-qF GCTGGTAATGAAGGGCTG
hdh-ActR IIB-qR AGTCGTGATGGGAAGTTG
hdh-Smad3-qF GTTTGCCGAGTGTCTCAGTG
hdh-Smad3-qR CCCTGGTGGTATCTTGCAGA

MHC-qF GACCCCAACGACCCTGATAT
MHC-qR TCTTCTCCCTTGGTGCTCTG
β-actin-qF GGTATCCTCACCCTCAAGT
β-actin-qR GGGTCATCTTTTCACGGTTG

18S rRNA-qF TTCCCAGTAAGCGTCAGTCATC
18S rRNA-qR CGAGGGTCTCACTAAACCATTC

2.6. Real-Time Quantitative Reverse Transcription PCR

The gene expression levels of hdh-myostatin, hdh-TβR I (TGF-β receptor type-I),
hdh-ActR IIB (activin receptor type-IIB), hdh-Smad3 (mothers against decapentaplegic 3),
and MHC (myosin heavy chain) were determined by qRT-PCR. The gene-specific primers
are listed in Table 1. Relative gene expression levels were quantified based on β-actin and
18S rRNA using the 2−∆∆CT method. The PCR amplification was performed following the
methods previously described [28].

2.7. Statistical Analysis

All data were presented as mean ± standard deviation (SD). The statistical analysis
employed one-way ANOVA with Duncan’s tests or t-tests using SPSS 19.0. The significance
level for the analysis was specified as p < 0.05.

3. Results
3.1. Characterization of Hdh-Myostatin

The full-length ORF of hdh-myostatin was obtained from the cerebral ganglion of
H. discus hannai. The ORF sequence of hdh-myostatin comprises 1470 bp, encoding 489 amino
acids. The protein sequence had an estimated molecular weight of 56.043 kDa and a theoret-
ical pl of 9.309. The functional domains for hdh-myostatin included three parts, a putative
signal peptide of 16 amino acids (MLCVYFIVVATIGISA) at the N-terminal region, a TGF-β
propeptide of 186 amino acids (168–353 aa), and a mature TGF-β peptide of 104 amino acids
(385–488 aa) at the C-terminal region. Three proteolytic processing sites, RQKR, RYRK, and
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RPRR, are marked with green frames in Figure 1. The C-terminal region of hdh-myostatin
also contained nine highly conserved cysteine residues that are shown in red (Figure 1).
The hdh-myostatin sequence was predicted to possess 25.97% α-helix, 16.56% extended
strand, 2.04% β-turns, and 55.42% random coils in the secondary structure (Figure 2). The
phylogenetic analysis of myostatin revealed the close relationship among abalones, with
the present species clustering together with Crassostrea gigas and forming an independent
branch (Figure 3). All molluscan myostatin sequences were grouped into one independent
clade. This suggests evolutionary conservation in the sequence and structure of myostatin
proteins in shellfish.
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Figure 3. Phylogenetic tree based on amino acid homology of myostatin from vertebrates and
invertebrates. A phylogenetic tree analysis was performed using the neighbor-joining algorithm
using the MEGA program. Hdh-myostatin in this study is highlighted with a pentagram.

3.2. Expression Analysis of Hdh-Myostatin

As shown in Figure 4a, qRT-PCR showed that the hdh-myostatin mRNA was widely ex-
pressed at different levels in all of the examined tissues of H. discus hannai. The
hdh-myostatin mRNA was expressed significantly higher in the gonad than in the other tis-
sues of H. discus hannai (p < 0.05). The lowest levels of hdh-myostatin mRNA were observed
in the lymphocytes, mantle, hepatopancreas, and adductor muscle. The expression level of
hdh-myostatin mRNA presented a wide distribution of expression at different stages and
lower expression levels in the later stages of development (Figure 4b). The expression level
of hdh-myostatin mRNA was higher in the S-DD-group than in the L-DD-group (Figure 4c).
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Figure 4. Expression pattern of hdh-myostatin from H. discus hannai. (a) Expression pattern of
hdh-myostatin during various tissues. (b) Expression pattern of hdh-myostatin during development.
(c) Expression pattern of hdh-myostatin in the fast-growing (L-DD-group) and slow-growing (S-DD-
group) groups. Bars with different letters indicate significant differences (p < 0.05). ** indicate
significant differences (p < 0.01).

3.3. Growth-Related SNP Loci in Hdh-Myostatin

Fifteen SNPs were detected in total. The average PIC was 0.248, indicating a low level
of polymorphism (PIC < 0.25). The result of association analysis indicated that nine SNPs
(Table 2) from the CDS region of hdh-myostatin were significantly associated with growth
traits in H. discus hannai (p < 0.05). As shown in Table 2, the growth traits for the CC and
GC genotypes were superior to those of the GG genotype at the C-6G locus; the increased
traits were shell length, shell width, total weight, and muscle weight (p < 0.05). The growth
traits for the AA and GA genotypes were superior to those of the GG genotype at the
A-117G locus (p < 0.05). The shell length of GG was longer than that of abalones with the
AG genotype at the G-288A locus (p < 0.05). The growth traits for the CC genotype were
superior to those for the AA genotype at the C-414A locus (p < 0.05). Moreover, all of the
growth traits were significantly different (shell length, total weight, and muscle weight;
p < 0.05), with only shell width not showing a significant difference for the T-437C locus.
The shell width and total weight of abalones with the genotype GG were significantly
larger than those with the genotype AG at the G-897A locus (p < 0.05).



Biology 2023, 12, 14 8 of 14

Table 2. Correlation of SNPs in hdh-myostatin with growth traits in the Haliotis discus hannai (mean± SD).

Locus Genotype Sample
Number

Shell Length
(mm)

Shell Width
(mm)

Total Weight
(g)

Muscle Weight
(g)

C-6G
CC 102 74.37 ± 9.68 a 49.85 ± 6.40 a 42.54 ± 16.13 a 17.58 ± 7.58 a

GC 83 75.52 ± 9.53 a 50.66 ± 5.90 a 43.82 ± 16.07 a 17.96 ± 7.86 a

GG 32 68.34 ± 7.84 b 47.15 ± 5.31 b 33.48 ± 10.20 b 13.59 ± 5.05 b

T-115C
TT 102 74.38 ± 9.66 a 49.93 ± 6.38 ab 42.52 ± 16.06 a 17.44 ± 7.60 a

CT 82 75.16 ± 9.69 ab 50.45 ± 6.11 a 43.56 ± 16.42 a 18.03 ± 7.97 a

CC 34 69.72 ± 8.42 c 47.78 ± 5.39 b 35.03 ± 11.39 b 14.09 ± 5.39 b

A-117G
AA 102 74.55 ± 9.65 a 50.02 ± 6.36 ab 42.89 ± 16.00 a 17.65 ± 7.60 a

GA 81 75.07 ± 9.71 a 50.41 ± 6.13 a 43.36 ± 16.42 a 17.91 ± 7.94 a

GG 34 69.72 ± 8.42 b 47.78 ± 5.39 b 35.03 ± 11.39 b 14.09 ± 5.39 b

C-282T
CC 128 74.18 ± 9.85 a 49.97 ± 6.52 a 42.55 ± 16.47 a 17.45 ± 7.69 a

TC 71 74.16 ± 9.51 a 49.88 ± 5.65 a 41.98 ± 15.28 ab 17.28 ± 7.62 a

TT 20 69.95 ± 8.00 a 47.12 ± 5.29 a 34.39 ± 11.65 b 14.10 ± 5.78 a

G-288A
GG 187 74.56 ± 9.15 a 49.92 ± 5.97 a 42.40 ± 15.41 a 17.43 ± 7.41 a

AG 29 69.49 ± 11.35 b 48.48 ± 7.29 a 37.37 ± 18.03 a 15.44 ± 8.29 a

C-414A
CC 101 74.95 ± 9.63 a 50.36 ± 6.36 a 43.53 ± 16.01 a 17.84 ± 7.56 a

AC 82 74.03 ± 9.56 ab 49.59 ± 5.93 ab 41.38 ± 15.84 ab 17.01 ± 7.72 ab

AA 35 69.67 ± 8.97 b 47.64 ± 5.79 b 35.26 ± 13.00 b 14.51 ± 6.32 b

T-437C
TT 118 74.01 ± 10.14 a 49.83 ± 6.58 a 42.25 ± 16.67 a 17.37 ± 7.78 a

CT 80 74.41 ± 9.45 a 49.90 ± 5.82 a 41.86 ± 15.01 a 17.16 ± 7.44 ab

CC 19 69.13 ± 5.67 b 47.10 ± 4.37 a 33.28 ± 9.26 b 13.47 ± 4.57 b

G-897A
GG 179 73.09 ± 9.68 a 49.28 ± 6.16 a 40.53 ± 15.75 a 16.71 ± 7.61 a

AG 37 76.87 ± 8.81 b 51.41 ± 5.88 a 46.45 ± 15.92 b 18.79 ± 7.31 a

G-1278A
GG 143 74.50 ± 9.57 a 50.09 ± 5.98 a 42.15 ± 15.16 a 17.20 ± 7.15 a

AG 69 73.52 ± 9.50 ab 49.52 ± 6.51 a 41.70 ± 16.99 a 17.43 ± 8.30 a

AA 8 65.00 ± 8.68 b 44.86 ± 5.58 b 31.15 ± 14.02 a 12.28 ± 6.34 a

Note: Mean values with different letters within a column are significantly different (p < 0.05).

3.4. Effects of Hdh-Myostatin dsRNA Injection

Compared with the EGFP control group, the expression levels of hdh-myostatin in the
cerebral ganglion decreased by 60–70% (Figure 5a) after being treated with hdh-myostatin
dsRNA at days 1, 15, and 30 (p < 0.05). After being treated with hdh-myostatin dsRNA at
day 1, the mRNA expression of hdh-TβR I in the adductor muscle significantly decreased
compared with the control group (Figure 5b) (p < 0.05), but the expression levels of hdh-ActR
IIB (Figure 5c), hdh-Smad3 (Figure 5d), and MHC (Figure 5e) were not significantly different
(p > 0.05). After being treated with hdh-myostatin dsRNA at days 15 and 30, the mRNA
expression of hdh-TβR I in adductor muscle was not significantly different (Figure 5b)
(p > 0.05), but the expression levels of hdh-ActR IIB (Figure 5c) and hdh-Smad3 (Figure 5d)
significantly decreased (p < 0.05 and p < 0.01), and the expression levels of MHC significantly
increased (Figure 5e) (p < 0.01).

After one month of the RNAi experiment, the increments of shell length and total
weight in the experimental group (treated with hdh-myostatin dsRNA) were significantly
higher than in the control group (treated with EGFP dsRNA, p < 0.05). However, the
increment of shell width in the experimental group was slightly higher than that of the
EGFP control group (p > 0.05) (Table 3).
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Figure 5. The results of qRT-PCR. (a) Relative expression level of hdh-myostatin after RNAi (RNA
interference) in the cerebral ganglion. (b) Relative expression level of hdh-TβR I after RNAi in
adductor muscle. (c) Relative expression level of hdh-ActR IIB after RNAi in adductor muscles.
(d) Relative expression level of hdh-Smad3 after RNAi in adductor muscle. (e) Relative expression
level of MHC after RNAi in adductor muscles. The expression of target genes was normalized to the
18S rRNA and β-actin gene as the internal reference. These results are shown as mean values ± SD.
Significant differences in gene expression levels are shown as ** p < 0.01 and * p < 0.05.
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Table 3. The growth of Haliotis discus hannai after hdh-myostatin RNA interference (mean ± SD).

Indicator EGFP Control Group (N = 39) hdh-Myostatin Experimental Group (N = 38)

Initial shell length (mm) 35.48 ± 1.08 a 35.19 ± 1.10 a

Initial shell width (mm) 23.45 ± 0.92 a 23.51 ± 0.78 a

Initial total weight (g) 5.76 ± 0.48 a 5.69 ± 0.51 a

Final shell length (mm) 37.32 ± 1.17 a 37.45 ± 1.48 a

Final shell width (mm) 24.83 ± 0.81 a 25.25 ± 0.92 a

Final total weight (g) 6.57 ± 0.59 a 6.69 ± 0.52 a

increment of shell length (mm) 1.87 ± 0.46 a 2.23 ± 0.66 b

increment of shell width (mm) 1.51 ± 0.39 a 1.75 ± 0.48 a

increment of total weight (g) 0.81 ± 0.31 a 1.08 ± 0.40 b

Note: Mean values with different letters within a column are significantly different (p < 0.05).

3.5. Verification in the Hybrid Lvpan Abalone

As shown in Figure 6, the expression level of Lvpan abalone df-myostatin mRNA was
higher in the S-DF-group than in the L-DF-group (p < 0.05). In addition, the expression
level of myostatin mRNA was higher in the H. discus hannai group (DD-group) than in the
Lvpan abalone group (DF-group) (p < 0.05).
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Figure 6. Expression pattern of myostatin mRNA. (a) Expression of hdh-myostatin in adductor muscle
between fast-growing (L-DF-group) and slow-growing (S-DF-group) groups. (b) Expression of
myostatin in adductor muscle between H. discus hannai (DD) and lvpan abalone (DF). ** indicate
significant differences (p < 0.01).

4. Discussion

Myostatin is one of the most important members of the TGF-β superfamily. In this
study, the CDS region of hdh-myostatin was cloned from the adductor muscle of H. dis-
cus hannai and comprised 1470 bp encoding 489 amino acids. The amino acid sequence
contained an N-terminal signal peptide and a C-terminal mature TGF-β peptide. These
results were fully consistent with the typical protein structural characteristics of the TGF-β
superfamily, as demonstrated in studies with Chlamys nobilis [20] and H. rufescens [21]. The
homology results showed that functional elements of the myostatin amino acid sequences
were highly conserved among different species, suggesting that the function of myostatin
was conserved. The result of the phylogenetic analysis showed that hdh-myostatin and
myostatin of H. rufescens were clustered, forming a separate branch, and then clustered
with myostatin of Crassostrea gigas, indicating that the relationship between the two was
relatively close, and the sequence was furthest from those of mammals such as cattle, sheep,
and pigs.
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In terms of the expression in different tissues, myostatin in mammals is primarily
expressed in skeletal muscle, with minimal or no expression in other tissues [29]. In fish,
myostatin is more widely distributed [30]. For example, it is expressed in different tissues
of zebrafish [31], with the highest expression in muscle. The myostatin of rainbow trout
is not only highly expressed in muscle but also in brain, testis, eyes, and spleen [32]. The
tissue expression of myostatin in shellfish is similar to that in fish, and it is expressed in
different tissues [19]. The myostatin is expressed in the intestine, muscle, mantle, and
cephalic ganglion of H. rufescens [21]. In this study, hdh-myostatin was widely distributed
in all tissues, but the relative expression level was the highest in the gonad, followed by
the cerebral ganglion and foot, while there was no significant difference in the expression
levels in the adductor muscle, gill, mantle, or other tissues. This was not fully consistent
with the results from other shellfish. However, hdh-myostatin expression of H. discus hannai
was similar to that of amphioxus [33], where the protein was highly expressed in other
tissues besides muscle. We suspect that the effect of hdh-myostatin regulation of growth may
involve mechanisms other than an autocrine manner, possibly through the neuroendocrine
system, similar to the mechanism whereby myostatin inhibits muscle growth by regulating
pituitary development or IGF1 in vertebrates [34,35]. These results suggest that the function
of hdh-myostatin in H. discus hannai may not be limited to muscle pattern formation but
instead may also be involved in other biological processes such as gonad development. In
terms of expression during different developmental stages, hdh-myostatin was expressed
at all stages of development in H. discus hannai, with significant differences at different
months of age, similar to the results of Wang et al., (2005) [36]. The relative expression of hdh-
myostatin was highest at one month of age, and its expression showed a trend of fluctuation
and downregulation with the increase in development, suggesting that hdh-myostatin may
regulate the muscle growth of H. discus hannai.

The SNPs related to growth traits in the myostatin gene can be used in marker-assisted
selective breeding. For example, TC genotypes of the dry body weight in the Apostichopus
japonicus myostatin gene were significantly higher than those with CC genotypes [37]. To
further study the function of hdh-myostatin in H. discus hannai, we analyzed the polymor-
phism of hdh-myostatin and the correlations with growth traits. The results showed that
there were 15 SNPs in the region of the ORF of hdh-myostatin in H. discus hannai, among
which nine SNPs were significantly correlated with growth traits. The results suggested
that hdh-myostatin is closely related to the growth traits of H. discus hannai and that it
participates in the growth regulation process. The myostatin gene has also been confirmed
to be closely related to growth in economically important shellfish such as Sinonovacula
constricta [19], Chlamys farreri [38], and H. diversicolor supertexta [10]. These SNPs can be
used as candidate molecular markers for growth-related marker-assisted selective breeding
of H. discus hannai.

The myostatin gene inhibits the growth and development of animal muscle by con-
trolling the number, size, and proliferation of muscle cells [39]. Inhibition of myostatin
expression by RNAi can increase muscle content [40], as shown in mammals, fish [41], crus-
taceans [42], and the Yesso scallop [14]. Chen et al., (2006) found that the growth traits in the
DNA-injected group were significantly greater than those of the control group by directly
injecting exogenous gene fragments into the genome of H. diversicolor supertexta [43]. In this
study, we successfully inhibited the expression of hdh-myostatin by directly injecting dsRNA
into the H. discus hannai, resulting in significant increases in shell length, growth, and total
weight gain compared with the control group, further demonstrating that hdh-myostatin
can inhibit the growth of mollusks.

In addition, it has been reported that hdh-myostatin mediates signal transmission
through type I and type II receptors. The activated hdh-myostatin first binds to the receptor
ActR IIB and then phosphorylates type I receptor TβR I (ALK4/5) to form a complex,
thereby acting to inhibit cell proliferation and differentiation [23,44]. When hdh-myostatin
expression was inhibited, the expression levels of hdh-TβR I and hdh-ActR IIB responded to
some extent. After 15 and 30 days of hdh-myostatin interference, the expression levels of
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hdh-ActR IIB were significantly lower than in the control group. The expression level of
hdh-TβR I was not significantly different from that of the control group, suggesting that
hdh-ActR IIB is the hdh-myostatin receptor of H. discus hannai and that other hdh-myostatin
type I receptors may also bind to it.

Myostatin binds with high affinity to the receptor ActR IIB, which in turn initiates
signaling through a smad2/3-dependent pathway [45,46]. When myostatin, ActR IIB, and
TβR I form a complex, phosphorylated Smad2/3 and Smad4 enter the nucleus to activate
the transcription of target genes and inhibit muscle growth [47,48]. In this study, after
15 and 30 days of hdh-myostatin interference, the expression level of hdh-Smad3 in adductor
muscle was significantly lower than in the control group, while the expression level of
MHC significantly increased, suggesting that hdh-myostatin inhibited the muscle growth of
H. discus hannai and that this effect was achieved through signal transmission by smad3.

Finally, we verified the function of myostatin in the hybrid Lvpan abalone and found
that the expression in the larger abalones in DD (H. discus hannai) and DF (Lvpan abalone)
at the same age was lower than that in smaller abalones. The myostatin expression of DF
was lower than that of DD at the same age, further indicating that myostatin played a
negative role in regulating the growth of abalone. In Fenneropenaeus merguiensis, a higher
expression level of FmMstn was also observed in smaller shrimp of the same age [42].

5. Conclusions

In this paper, we cloned and characterized the CDS sequence of hdh-myostatin from
the cerebral ganglion of H. discus hannai. The hdh-myostatin possesses the N-terminal
regions of the TGF-β propeptide and mature TGF-β peptide, and it belongs to the TGF-
β superfamily. The results of qRT-PCR indicated that hdh-myostatin mRNA was widely
expressed in different tissues of H. discus hannai. There were nine SNPs from the CDS
region of hdh-myostatin that were significantly associated with growth traits. The result of
hdh-myostatin interference demonstrated that it could affect the growth of H. discus hannai.
Our findings have provided a foundation for further exploring the functions of TGF-β
superfamily ligand members in the growth process of abalone, as well as a reference for
the application of molecular markers for growth traits in the breeding of shellfish.
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