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Simple Summary: Researchers are often interested in detecting whether there are any differences in
gene expression levels between two types of cells. To do this, gene expression levels are measured,
and specific computer programs are used to detect these differences. Historically, microarrays were
used to measure gene expression, but they are now being supplanted by newer, more efficient
technologies such as RNA sequencing. BioTEA allows users to perform the differential expression
analysis of microarray-derived data easily, quickly and in a reproducible way. It combines all the steps
needed to directly start from the gene expression levels and obtain a list of genes that are differentially
expressed between the two cell types of interest. In this way, the large amount of publicly available
microarray data can still be analyzed in the modern era. Differential expression analyses can be rather
complex to run, but BioTEA makes them straightforward, so that even non-bioinformaticians can
perform them with ease. BioTEA is free and open-source.

Abstract: Tens of thousands of gene expression data sets describing a variety of model organisms in
many different pathophysiological conditions are currently stored in publicly available databases
such as the Gene Expression Omnibus (GEO) and ArrayExpress (AE). As microarray technology is
giving way to RNA-seq, it becomes strategic to develop high-level tools of analysis to preserve access
to this huge amount of information through the most sophisticated methods of data preparation and
processing developed over the years, while ensuring, at the same time, the reproducibility of the
results. To meet this need, here we present bioTEA (biological Transcript Expression Analyzer), a
novel software tool that combines ease of use with the versatility and power of an R/Bioconductor-
based differential expression analysis, starting from raw data retrieval and preparation to gene
annotation. BioTEA is an R-coded pipeline, wrapped in a Python-based command line interface and
containerized with Docker technology. The user can choose among multiple options—including
gene filtering, batch effect handling, sample pairing, statistical test type—to adapt the algorithm
flow to the structure of the particular data set. All these options are saved in a single text file, which
can be easily shared between different laboratories to deterministically reproduce the results. In
addition, a detailed log file provides accurate information about each step of the analysis. Overall,
these features make bioTEA an invaluable tool for both bioinformaticians and wet-lab biologists
interested in transcriptomics. BioTEA is free and open-source.

Keywords: transcriptomics; microarray; differential expression; reproducibility

1. Introduction

Gene expression DNA microarrays [1] were introduced in the mid-1990s and repre-
sented the first cost-effective -omics technology for transcriptome profiling [2]. Such a
technology involves the hybridization of fluorescently labeled cDNA with solid microchips
exposing a collection of thousands of known short DNA sequences attached to the chip
surface in a defined position and serving as probes. Commercial and custom-designed
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microarrays evolved through two main generations of chips: the first two-color (or two-
channel) spotted microarrays [3] and the next single-channel (or one-color) high-density
microarrays [4], mainly popularized by Affymetrix (Santa Clara, California) and capable of
a much more reliable genome-wide quantification of the expression changes across multiple
samples and different experimental conditions. The need for acquiring, processing and
analyzing the ensuing high-throughput transcriptomics data streams has been a powerful
driver for the development of innovative computational methods and statistics approaches
within the context of bioinformatics across the postgenomic era [5–9]. The birth and the
rapid growth of the Bioconductor project [10], together with the two most important public
repositories for gene expression data—namely the Gene Expression Omnibus (GEO) [11,12]
and ArrayExpress (AE) [13,14]—is probably what best embodies the deep impact of that
first technological revolution in -omics disciplines.

However, starting from the late 2000s, the nascent Next-Generation Sequencing (NGS)
technology fostered a second paradigm shift in transcriptomics, leading to the develop-
ment of the RNA-seq technique [15], the current standard for transcriptome quantification.
RNA-seq is increasingly taking hold because, by sequencing, aligning and counting cDNA
fragment "reads", it is possible to overcome many of the limitations inherent to microarrays,
among which are the necessary dependence on known genome sequences, a relatively
high background signal (leading in turn to a poor limit of detection), a narrow (2–3 or-
ders of magnitude) dynamic range due to the saturation of the fluorescent spots and
the challenging normalization procedures needed to compare expression levels among
different experiments.

As a consequence, starting from 2015, scientific publications referring to expression
microarrays have shown a downward trend, having been overtaken around the same
year by an increasing number of RNA-seq-related papers, which, to date, are still in a
phase of exponential growth [16]. These publishing trends clearly show that, because of its
higher accuracy and thanks to the constant lowering of NGS prices, RNA-seq is likely to
completely replace microarray technology and, as a result, all the related methods of data
analysis are meant to change accordingly. In particular, while many high-level algorithms
developed to analyze microarray data (i.e., starting from the normalized expression matrix
on) have already been effectively ported or adapted to RNA-seq normalized counts, most
of the low-level preprocessing, quality control and normalization techniques are specific to
microarrays, if not even platform-specific (Affymetrix, Agilent or Illumina). From such a
perspective, the risk of an imminent and general loss of the technical know-how needed to
analyze expression data from microarray experiments is real.

Nevertheless, we believe that there are a number of good reasons to keep this expertise
alive or, even better, to freeze and package our current gold standards of microarray data
analysis in order to provide present and future researchers with suitable tools to deal with
this kind of data at every occurrence:

1. Despite the transcriptomics trends, thousands of articles referring to microarray
experiments or microarray analyses are still published yearly [16], and this is likely to
continue for a while;

2. The aforementioned GEO and AE databases contain a huge amount of microarray
raw data (more than 104 studies overall) that still deserve to be explored by reanalyses
(e.g., Sabaie et al. [17]) or meta-analyses (see e.g., Leal-Calvo and Moraes [18]);

3. There is a growing concern about the reproducibility of research results in biomedical
sciences and bioinformatics [19–22];

4. Typical pipelines for microarray analysis are custom scripts made up of multiple
files and several R functions from different Bioconductor packages; dealing with this
code—and correctly running a new analysis—months or years later can be source of
frustration for many researchers, even among bioinformaticians.

To meet all these needs and make microarray data analysis more accessible to the
broad community of biologists, we developed bioTEA (biological Transcript Expression
Analyzer), a stand-alone Dockerized pipeline for the retrieval, preprocessing, differential
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expression analysis and annotation of transcriptomic data from one-color (high-density)
microarrays. Its containerized design ensures the reproducibility of results over time
and across multiple informatics platforms, providing a friendly Command Line Interface
(CLI) that frees the end user from coding, and R syntax in particular. Notably, although
specifically designed with microarray technology in mind, bioTEA can handle RNA-seq
data provided in the form of read counts, thus extending its scope of applicability and
making it a powerful and invaluable bioinformatics tool.

2. Materials and Methods

BioTEA can be used to perform all steps of a classical Differential Expression Analysis
(DEA): data retrieval (from GEO), data preprocessing, differential expression analysis by
either empirical Bayes-moderated t-test (i.e., limma R package [23]) and/or Rank Product
statistics [24,25] and result annotation with metadata. The user is presented with an
intuitive, easy-to-use CLI to perform every step of the analysis, which is installed as biotea.
A standard bioTEA analysis involves the following 5 steps:

1. With biotea retrieve, data are directly downloaded from GEO, notably with sample
metadata included that will be useful, although not required, to perform successive
analysis steps.

2. With biotea prepare, raw expression data (as returned by the microarray scanner
setup, or as downloaded according to the previous step) are read, parsed, normalized
and quality-controlled. The normalized expression matrix is saved to file, along with
Quality Control (QC) plots.

3. With biotea initialize, the differential expression analysis is initialized, optionally
by parsing metadata about the samples. This allows the user to quickly set a variety
of analysis options, such as variables of interest (e.g., treatment status), contrast of
interest (e.g., “treated” vs. “control”) and analysis batches for batch effect correc-
tion. This step generates an options file that records the various choices made. This
allows the user to inspect, edit or share them for reproducibility. Additional infor-
mation regarding the parameters that can be set for the analysis are included in the
Supplementary Methods.

4. With biotea analyze, the options file (such as from the previous step) and the ex-
pression matrix are read and DEA is performed. This generates several QC plots,
along with differential expression tables, as a final result. Conservative filtering is
also performed on the data before the analysis, to increase statistical power.

5. With biotea annotations, annotations (such as gene symbol or gene name) can be
added to expression matrix files or differential expression tables to allow further
analyses (such as Gene Ontology (GO) enrichment analysis) and considerations.

It is important to note that these steps need not be run in order, as they are independent
of each other. For example, if expression data are already available from other sources, one
may directly run biotea analyze.

Reproducibility was a key goal in the design of bioTEA. Data preparation, analysis
and annotation is performed by code hosted inside a Docker container. This allows for
the computational reproducibility of these steps, while preserving the automated nature
of the tool. Options for the core DEA steps are inputted through an options file, allowing
investigators to share the analysis quickly and easily. Indeed, given the same input files
and options file, the container assures identical analysis output, independent of operating
system version or hardware. Finally, all bioTEA commands log their output in log files,
allowing further inspection of run-time events.

2.1. The bioTEA Container

BioTEA is divided into two intimately related components: the bioTEA Docker con-
tainer and the bioTEA CLI. The bioTEA container is structured in modules that perform
different functions, all written in the R programming language. A single shared entrypoint
binds all modules together. The container performs all the core analysis steps, namely data
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preparation, DEA and annotation. The general structure of the container and its modules is
shown in Figure 1.

Python Command
line interface

biotea

retrieve
prepare analyze annotations

info

biotea-box

Docker container

run_biotea_box

entrypoint

module
dispatcher

prepaffy prepagil analysis annotate

initialize

Input
Files

Expression
Matrix

Analysis Options file

DEG
Table

Annotated
DEG Table

update

Data Flow

Figure 1. General structure of bioTEA. The python CLI is accessed with the biotea command.
Launching of the Docker container is handled by a single function, run_biotea_box. A shared
entrypoint is run upon starting the Docker container, which parses the options and runs the invoked
module. File input and output are handled through Docker mounts to predetermined locations inside
the running image. In the lower part of the figure, we provide a simplified schema of the input and
outputs used by the various modules.

Calling the container directly is complex, as several arguments are needed both to
configure the Docker daemon (e.g., input–output mounting paths) and run the modules
themselves. To make this task more accessible to the end user, the bioTEA python package
was created. This package exposes the biotea command, and handles argument parsing
and the correct invocation of the Docker daemon. It also provides additional helper
commands that are useful in the overall analysis. To promote reproducibility, no data
analysis is performed by the bioTEA python package directly.

In the following sections, we aim to explain in more detail the bioTEA container
modules, the key pipeline choices we made while writing the core analysis code and the
structure and usage of the bioTEA python package.

2.2. Microarray Data Preparation

The two preparatory modules prepaffy and prepagil can be used to handle the
preprocessing of Affymetrix and Agilent microarray raw data, respectively. As input, both
modules take a series of text files generated by the specific microarray scanning apparatus.
Then, the following steps are performed.

1. Find and load all input files. prepaffy searches the target folder for all files end-
ing with the .CEL file extension, while prepagil searches by default all .txt files.
However, as .txt is a very common file extension, prepagil search criteria can be
customized in the call, also supporting Regular Expressions.

2. Merge all inputs into a single expression data object. Both commands do this automat-
ically using oligo and limma packages for Affymetrix and Agilent data, respectively.
From this step onward, data are expressed as log2 values.

3. Generate QC plots before normalization. For each sample, a Bland–Altman plot (MA
plot) is saved, along with an overall expression boxplot.
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4. Normalize the expression data. Both data types are background-subtracted (through
the normexp algorithm) and interarray-normalized (through the quantile–quantile pro-
cedure). Additionally, for Affymetrix data, the Robust Multichip Average (RMA)
procedure as provided by the oligo package is used to collapse individual probes
into the probe set to which they belong.

5. Generate new QC plots after normalization. New MA plots and an overall expression
boxplot are saved to appreciate the effects of normalization.

6. If specified, remove control probes from the data set. In particular, negative control
probes (i.e., sequences designed to remain unhybridized) represent a sensible estimate
for the expected intensity of unexpressed genes as a result of background and nonspe-
cific hybridization signals. Such an estimate is outputted and logged when handling
Agilent data, as it can be used as a filter threshold value in the downstream analysis.
This step is carried out by bioTEA for Agilent data, and by the oligo package for
Affymetrix data.

7. Collapse the replicate probes in Agilent arrays. Data are collapsed by taking the mean
value of replicate probes found inside each sample.

8. Save the final expression matrix as the output file. The expression matrix is saved
in .csv format, ready to be analyzed by the other modules of bioTEA, or with
customized pipelines.

For more information on the input–output data structures and formats, please refer to
Appendix A.

2.3. Performing Differential Expression Analysis

The analysis module handles the core DEA, which consists in detecting those genes
showing different levels of expression across two or more experimental groups, each
made up of many biological replicate samples. To this end, samples are labeled using the
levels of an input variable named “experimental design” (e.g., “treatment1”, “treatment2”,
“control”). Special shorthand notation is available to label a large number of samples at once
(see the Supplementary Methods for more information). Differentially Expressed Genes
(DEGs) are searched between these groups of samples, as indicated by the contrasts variable
(e.g., “treatment1” vs. “control”). Any number of contrasts can be tested in a single run.
Beyond a number of parameters—including the experimental design and the contrasts of
interest—the module takes as input an expression matrix such as the one generated by the
prep- modules.

The analysis can be divided into 5 steps: optional (re-)normalization, input visualiza-
tion, filtering, statistical analysis, output visualization. First, data can be quantile–quantile
normalized (which is useful only if they were not normalized beforehand). Diagnostic plots
are saved before and after this step.

Samples are then clustered by means of a hierarchical algorithm and through Principal
Component Analysis (PCA). A dendrogram is saved along with the distribution of the
samples in the space of the first principal components. Both representations are useful to
spot possible batch effects, which may have profound influence on the final DEG lists if not
properly accounted for. In addition, a mean variance plot for each experimental condition
is included for further QC inspections.

Expression data are then filtered to remove low-expression genes and increase the
statistical power of the subsequent tests. Filtering is accomplished in a conservative way,
according to three parameters: κ being the minimum group-wise presence, θE being a
threshold value on log2 expression levels and θF being a threshold on log2 fold change
values. An entry (a single probe or probe set, or a transcript cluster, depending on the input
type) is retained only if its expression is above θE in at least κ percentage of samples of at
least one experimental group. In addition, while not removed outright, genes that result in
|log2 FC| < θF will be marked as “non-differentially expressed” in the final output, even if
they show statistical significance, because they usually have little biological importance
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and can be difficult to validate through other means (such as quantitative PCR). However,
they are still considered in the computation.

The detection of DEGs is handled by limma [23], one of the de facto standards for
this purpose, and by RankProd [24,25], a non-parametric alternative. Limma detects DEGs
by fitting linear models and performing a gene-wise moderated t-test taking advantage
of empirical Bayes methods to return more reliable p-values even in the case of small
sample sizes. Notably, since limma linear models can take into account a variety of different
variables, the user may define a “batch” variable to specify which batch the samples
originate from. Batch effect correction is handled during the statistical analysis, both in
the RankProd and limma tests. We chose not to correct the batch effect a priori, as recent
literature suggested that this may lead to data distortion and wrong conclusions [26].

After running limma and/or rankprod, bioTEA generates a series of diagnostic plots,
including MA plots and volcano plots. If both the limma and RankProd analyses are run, a
comparison of the two outputs in the form of Venn diagrams is also included.

The output of the analysis module consists in a series of .csv format files, one per
input contrast per analysis tool (either RankProd or limma or both), named “DEG tables”.
Each table contains every retained entry from the input file, along with information about
test statistics, p-values, False Discovery Rate (FDR) q-values, as well as average expression
and log2 FC. Moreover, an additional “markings” column is included, labeling each entry
as significantly upregulated (1), downregulated (−1) or non-differentially expressed (0).
An entry is labeled as differentially expressed if it features a q-value strictly less than the
critical FDR/Proportion of False Positives (PFP) value of 0.05, and if its average log2 FC is
greater than θF or less than −θF, as noted before.

If specified in the input, the DEG tables can be automatically annotated and gene
symbols are also used to enrich some output plots, such as volcano plots.

As an option, bioTEA can also analyze RNA-seq data in the form of counts, such as
those generated from the use of HTSeq [27]. The discrete count data are transformed into
continuous expression data using the voom function [28] provided by the limma package.

2.4. Annotating Results

The annotate module adds additional metadata to either expression matrices or DEG
tables. The metadata can be sourced by an internal, static annotation file generated with
39 human microarray annotation packages present on Bioconductor. This was done for
reproducibility reasons, so that the same annotations are applied while using the same
bioTEA version. However, packaging all annotations present in Bioconductor, spanning
multiple species and microarrays, would render the container too heavy memory-wise. In
any case, bioTEA may be configured to download annotation data from Bioconductor at
run time, filling this gap.

Added annotations include gene name and Human Genome Organization (HUGO)
gene symbol, as well as which package was sourced to obtain the data, and its version.

2.5. The bioTEA Command Line Interface

The bioTEA CLI is an application written in Python 3 and compatible with all UNIX-
like operating systems. It allows for easy access to the bioTEA container and for additional
features, such as the automatic retrieval of data from GEO. As it is packaged and published
on PyPA, installation is straightforward with the standard Python utility pip.

The bioTEA CLI handles the download, update and removal of the bioTEA containers
automatically or on demand of the user.

2.6. Source Code Availability and Installation

The bioTEA command line interface is available as a Python package on PyPI [29], and
its code, as well as the code used in the bioTEA container, is available on GitHub [30]. As
already noted, a pre-compiled version of the bioTEA image is available at Docker Hub [31].
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For reproducibility, bioTEA follows Semantic Versioning 2 for its versioning schema [32].
At the time of writing, the latest bioTEA CLI version is v1.0.1, and the current bioTEA
Docker image version is v1.0.1. The bioTEA versions might change as patches and bug
fixes are introduced in the future. It is important to note that the versions of the two
components might diverge; however, we strive to keep compatibility between the two
components with identical major and minor versions. The bioTEA CLI warns the user of
possible compatibility issues automatically.

To install the tool, install Python version 3.9 or later, as well as the Docker engine and
daemon. Afterwards, install bioTEA with pip install bioTEA. The pip utility handles
the download, installation and update of the tool. Afterwards, the bioTEA CLI may be
invoked with the biotea command.

3. Results

In this section, we exemplify the usage of bioTEA by analyzing a publicly available
data set. This example analysis was run with bioTEA version 1.0.1. The Docker en-
gine was pre-installed according to the official documentation (server version 20.10.14).
BioTEA was installed with the pip install biotea command inside a Python 3.10 vir-
tual environment. Please refer to the Supplementary Methods for the exact sequence of
commands used to run the analysis presented in this section.

3.1. Data Retrieval

We chose to re-analyze the data provided by Zhang et al. [33,34], regarding samples
of pancreatic cancer matched with nearby healthy tissues. Data were retrieved directly
from GEO (accession GSE28735) with biotea retrieve. This command downloads and
generates a number of files in the target directory: a metadata.csv file and two sub-
directories: a raw_data directory with the compressed samples and a unpacked_samples
folder with the uncompressed samples.

3.2. Preprocessing and Quality Control

To preprocess the data, uncompressed samples were converted to flat .CEL files with
gunzip. Then, we processed the raw samples to obtain the expression matrix with biotea
prepare affymetrix. The result is a series of QC plots, saved in a new PrepAffy Figures
folder, and an expression matrix file, saved in .csv format.

The QC plots are composed of two MA plots per sample, one before normalization
and one after normalization. In each case, the M statistic is calculated between the sample
and the median value for the same entry in all other samples. The so-generated plots are
enumerated, starting from the sample that produced the less linear Loess fit, allowing the
user to detect at a glance the samples with lower quality, especially in experiments with
very large sample sizes. Two of these plots can be seen in Figure 2. Additionally, two global
boxplots and density plots are generated, before and after data normalization, to appreciate
the effects of the normalization steps.

3.3. Differential Expression Analysis

The options file for biotea analyze was generated with biotea initialize and
then manually edited to set the appropriate parameters for the analysis. A copy of such
an edited options file is included in the Supplementary Materials. The analysis was then
launched with biotea analyze. The result is a collection of files generated in the target
output folder, which includes a series of QC plots, as well as the output DEG tables.

Samples are automatically renamed according to the levels of the main variable of
interest, which, in this example, are either “tumor” or “normal”. Importantly, the order of
the input samples matters, as the labels are applied to the samples order-wise, from left to
right in the expression matrix. For this reason, a correspondence matrix showing the new
labels along with the original sample names is saved in the output directory for manual
correctness checks.
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QC plots include a boxplot and a density plot of the input data, similar to those
produced by biotea prepare, to check that all the samples are properly interarray nor-
malized. A clustering dendrogram and a PCA plot are also included, to detect possible
batch effects (Figure 3). MA plots comparing samples of the different groups of interest are
saved. The same plots are additionally saved with DEGs—as detected by both limma and
RankProduct—overlaid, as shown in Figure 4.

A very common representation of the results of a DEA is the volcano plot. BioTEA
generates one volcano plot per tool per contrast (see Figure 5).

The large sample size of the data set (n = 45 for each condition) and its exceptional
quality allowed for high statistical power, reflected in the high number of detected DEGs.
The detected DEGs were concordant between limma and RankProduct: both detected
the same 70 downregulated genes, while RankProd detected 3 more upregulated DEGs
(271) compared to limma (268). The shared upregulated genes were identical between the
two tools.
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Figure 2. Two Bland–Altman plots showing the distributions of the genes before (top) and after
(bottom) normalization procedures. Data taken from the Zhang data set.
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Figure 3. A PCA plot of each sample in the Zhang data set. The samples are well clustered according
to their different sample status (tumor or normal) and no other effect seems to be present. Data taken
from the Zhang data set.
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Figure 4. Bland–Altman plots showing the detected DEGs as either upregulated (red) or downregu-
lated (blue), as detected by limma (top) or RankProduct (bottom) in the Zhang data set. The two plots
look identical, a sign that DEG detection was robust.



Biology 2022, 11, 1346 10 of 14

A1CF

ABAT

ABCA1

ABCA6

ABCC8
ABLIM3

ACADM
ACSL5

ACSM3

ADAM9ADHFE1
AGR2

AHNAK2
ANXA2P1

AQP9

ARL14

BAIAP2L1C6
CEL CP
ERP27

GALNT5

GDA

GJB2

IAPP

LMO3

SLC6A14
TPM4

0

5

10

15

20

−5.0 −2.5 0.0 2.5 5.0
 Log2 fold change

 −
Lo

g 1
0 

P

Limma

tumor−normal

total = 14514 variables

A1CF
ABAT

ABCA1
ABCA9

ACADL

ACP5

ACSL5

ACTA2

AGR2
AHNAK2

AMIGO2

ANKRD22

AOX1

AQP8

ASAP2

CDH3

CEACAM5

CEACAM6

CEL

CTRL
GABRP

GPAM

IAPP

PNLIPRP1

POSTN

0

25

50

75

−5.0 −2.5 0.0 2.5 5.0
 Log2 fold change

 −
Lo

g 1
0 

P

RankProd

tumor−normal

total = 14514 variables

Figure 5. Volcano plots of the DEGs detected by limma (left) and RankProduct (right) in the Zhang
data set. The different shapes of the distributions are related to how the two algorithms compute
the p-values. The horizontal dashed line is the − log10(p-value) threshold corresponding to an FDR
alpha level of 0.05. The vertical lines are the log2 fold-change thresholds, which can be changed by
the user and are by default set to 0.5.

4. Discussion

In this paper, we presented bioTEA as a new tool for the analysis of transcriptomics
data. Thanks to the virtualization technology offered by Docker, our software aims at
being an operating-system-independent and robust solution to obtain reproducible results
in differential gene expression analysis. Because of its Python wrapper, bioTEA can be
easy installed and run as a high-level command-line application, not requiring any specific
programming skill by the user. The main idea behind this project was to use containerization
to “hibernate” the most advanced and consolidated standards developed in the last several
decades for the analysis of microarray data. We believe that this will allow researchers to
preserve the practical ability of mining the huge amount of publicly available microarray
data sets, even in the realistic context of the forthcoming decline of this technology.

Notably, throughout the software development process, bioTEA has been enriched
with many capabilities and features not initially foreseen, including the possibility of analyz-
ing RNA-seq data, thus greatly extending its scope of applicability. Importantly, although
designed to be easy-to-use, bioTEA does not sacrifice analysis power and versatility, with
the current version of bioTEA providing the following notable features:

• Functional reproducibility ensured by Docker container technology;
• R/Bioconductor-independent CLI through Python wrapper;
• Automatic data set retrieval and metadata parsing (from GEO);
• Microarray raw data processing capability;
• Microarray multi-platform support (Agilent and Affymetrix);
• Support for RNA-seq data analysis through the voom package [28];
• Automatic annotation for many human arrays (no chip ID needed);
• Low-expression, conservative gene filtering;
• Easy experimental design definition by syntax parsing;
• Two-independent-class or paired design testing;
• Double approach to DEA (parametric by limma and non-parametric by RankProduct);
• Batch effect handling;
• Additional explanatory variable support;
• Detailed logging;
• High-quality graphical output;
• Detailed wiki user guide;
• Open-source and easily accessible code;
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• Modular code structure suitable for further development and maintainability.

Even if many user-friendly tools for gene expression data analysis have been proposed
over the years, to our knowledge, none of them encompass all of bioTEA’s features listed
above. For example, GEO2R [35] can only analyze GEO-available data sets, while BioTEA
can handle data from any source. Additionally, it does not perform any preliminary
filtering, it only supports a limma-based analysis and it does not support sample pairings,
batch effect handling or complex limma models. It is also not highly reproducible, as it
only uses the latest versions of R packages. BART (bioinformatics array research tool) [36]
is conceptually very similar to BioTEA, but has a few key differences. First, it is used
through a web application. This makes sharing the options used in a specific analysis
more difficult than with BioTEA. Most importantly, BART is not containerized, and uses
whatever R version is locally available. Even though BART’s authors recommend using
their remote-hosted instance of BART, it is not available at the time of writing (August 2022).
MeV (MultiExperiment Viewer) [37] is an extended tool for performing DEAs. However,
MeV’s latest standalone release was in 2013, and it uses an obsolete R version (v2.11.1).
Additionally, it is not Dockerized, does not handle batch effects and provides a graphical
interface to the analysis, which has similar pitfalls to BART. Illumina’s BaseSpace provides
a streamlined and powerful DeSeq2-based pipeline for performing DEAs starting from
RNA-seq data. However, its usage is not free, and the analysis code is closed-source.
Additionally, to the authors’ knowledge, it exclusively supports RNA-seq data.

5. Conclusions

We believe that BioTEA provides an invaluable tool to inexperienced and veteran
bioinformaticians alike. For the inexperienced, the ease of use of the tool and its extensive
documentation make data preparation and DEAs easy and reproducible. More experienced
users will undoubtedly appreciate the simple nature of the output, and the possibility to
run many analyses efficiently.

To reproduce a bioTEA analysis, it is sufficient to share the command used to prepare
the data and the analysis options file. This renders the analysis process more transparent
for the whole community. Additionally, the reproduction of the analysis can be performed
even without extensive knowledge of any programming language.

The code for bioTEA, together with a detailed installation and usage guide, is available
online and licensed under the permissive MIT license at https://github.com/CMA-Lab/
bioTEA, accessed on 6 September 2022. The BioTEA containers are available at Docker Hub
at https://hub.docker.com/u/cmalabscience (accessed on 6 September 2022) for manual
inspection; BioTEA downloads the necessary containers automatically at run time. Users
are invited to inspect BioTEA’s code, propose changes to it or open issues regarding it. The
extensive documentation in the form of function doc-strings and comments throughout
the code, as well as its modular nature, allow experienced programmers to easily read and
modify the tool to suit their own particular needs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology11091346/s1, File S1: YAML-formatted options file for the example Zhang analysis,
File S2: Supplementary Methods.
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Abbreviations

The following abbreviations are used in this manuscript:
AE Array Express
CLI Command Line Interface
DEA Differential Expression Analysis
DEG Differentially Expressed Gene
FDR False Discovery Rate
GEO Gene Expression Omnibus
GO Gene Ontology
HUGO Human Genome Organization
MA plot Bland–Altman plot
NGS Next-Generation Sequencing
PCA Principal Component Analysis
PFP Proportion of False Positives
QC Quality Control
RMA Robust Multichip Average

Appendix A. Input and Output File Formats

This section details the input and output file formats used and generated by the tool.

• Expression matrix: a matrix in .csv format, with a header row, a column with entry
IDs (arbitrarily named probe_id, but not necessarily representing actual probe IDs)
and additional columns, one per input file, with the respective expression data (with
arbitrary names). Each row in the matrix represents the expression of a single entry.

• DEG table: a matrix in .csv format, with a series of columns:

– The probe_id column contains the entry IDs of the data (probe IDs or ENSEMBL IDs);
– The LogFC column lists the log2 Fold Change value of that entry, for the contrast

of interest;
– The AveExprs column contains the arithmetic mean of the expression values of

the entry between all samples;
– The t column reports the moderated t-statistic computed by limma;
– The P.Value column holds the raw p-values computed by limma;
– The adj.P.Val column holds the p-values computed by limma and adjusted with

the Benjamini–Hochberg procedure, producing FDR values;
– The B column contains the B-statistic (i.e., the empirical Bayes log-posterior odds

of differential expression). Only computed by limma;
– The gene.index column contains gene indexes as computed by RankProduct.

Only present in the DEG table computed by RankProduct;
– The RP/Rsum.UP and RP/Rsum.DOWN contain the RankProduct statistics for each

entry. Only present in the DEG table computed by RankProduct;
– pfp.UP and pfp.DOWN are only present in the RankProduct output. The PFP of

up- and down- regulated genes, respectively;
– P.Value.UP and P.Value.DOWN are only present in the RankProduct output. The

p-values for up- and down- regulated genes, respectively;
– The markings column marks as upregulated (1), downregulated (−1) or non-DEG

(0) each entry. For limma, this is done by the decidetests function, provided
by limma, with an adjusted p-value threshold of 0.05. Additionally, genes with
a lower Fold Changes than what specified by the user are marked as non differ-
entially expressed. For RankProduct, the markings are similarly applied: genes
that show a PFP value of less than 0.05 are marked as up- or down- regulated
(looking at the pfp.UP and pfp.DOWN values, respectively), and genes that show a
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fold change lower than what specified are marked as non differentially expressed.
Therefore, this column can be used to quickly subset the output.

Annotation can be applied on any Expression Matrix or DEG table, as the only require-
ment is the presence of a probe_id column. The added metadata columns are always three:
SYMBOL (with the HUGO gene symbol), GENENAME (the long gene name) and ENSEMBL (with
the Ensemble id related to the gene). Additionally, a package_name and version column
listing the package(s) used to source the annotations and its version(s) are added.
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