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Simple Summary: Witnessing the current increase in the use of substances in society and considering
the associated pervasive relapse rate, the management of addictions remains a significant challenge.
The identification of biomarkers that are linked to specific profiles of consumption would allow
a more targeted, and therefore, more effective care. In this view, the present study evaluates and
compares the cognitive performance usually associated with substance use disorder—inhibitory
control, attentional bias, and error detection—of heroin, cocaine, and polydrug users to matched
healthy controls. Simultaneously, the addition of measurement of the modulation of brain activity
during the task (event-related potentials technique) offers a reliable representation of the neuronal
mechanisms underlying cognitive functioning. The results reveal substance-specific neural patterns
of response, notably a more deleterious impact on polydrug use, and, despite nonsignificant results,
suggest a more drastically affected cognitive functioning in cocaine users. Such evidence refines
our knowledge of the specific mode of action of each substance. Ultimately, knowing their neural
signature will lead to the implementation of more targeted interventions, thereby allowing specific
needs to be addressed.

Abstract: Recent global data indicates a worldwide increase in polydrug use associated with a shift
from recreational to productive habits of consumption. Such non-responsible abuse of substances
(alcohol, cocaine, heroin, etc.) is likely to lead to addictive disorders that are characterized by
various neuropsychopharmacological effects. A main cognitive function involved in the onset and
long-term maintenance of addiction is reactive inhibition, i.e., the ability to withhold a prepotent
motor dominant response. In the present study, 63 (poly)drug user patients who were undergoing a
detoxification program, in addition to 19 healthy controls matched for gender, age, and education,
were subjected to a “contextual Go/No-Go task” with concomitant electroencephalography. Stimuli
were superimposed on three contextual backgrounds: control (black screen), drug-unrelated (neutral
pictures), or drug-related (pictures related to drug consumption). Of these patients, 23 were cocaine
users (CU), 21 were heroin users (HU), and 19 were polydrug users (PDU). The main results showed
that (1) at the behavioral level, more commission errors occurred with the PDU patients compared to
the healthy controls; (2) at the neurophysiological level, specific alterations were found on classical
event-related potentials that index reactive inhibition. Indeed, the higher rate of errors in the PDU
group was subtended by both reduced amplitude and latency on the ∆N2 component and increased
∆P3 latency compared to controls. These data clearly suggest a more deleterious impact of polydrug
use on inhibitory functions. In addition, our results provide evidence of reduced ERN amplitude in
cocaine users, suggesting that impaired performance monitoring and error-processing may support
impaired awareness, thereby preventing these patients from changing their behaviors.
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1. Introduction

In order to cope with ubiquitous present-day social stressors (i.e., performance pres-
sure), drug habits have expanded from recreational and occasional consumption to increas-
ingly functional and productive drug use, including athletic performance enhancement,
creativity enhancement in the arts, and cognitive enhancement in academic education [1–3].
According to the 2021 World Drug Report (a United Nations publication), between 2010
and 2019 (1) the number of opioid users nearly doubled in the global population, with
a 65% rise in heroin use, which remains the main opioid in Europe; (2) among people
entering treatment for cocaine use disorders in the European Union, more than two-thirds
(79%) reported using cocaine in combination with heroin or other opioids [4]. These data
are in keeping with a cross-sectional study of urine drug test results performed on more
than a million patient samples in the United States: the use of opioids rose nearly 20-fold
among cocaine users between 2013 and 2019 [5]. Thus, in a society of pervasive pharmaco-
logical reliance, this epidemiological evidence highlights an expansive and sharp increase
in polydrug abuse. Hence, as the durability of non-responsible drug use raises the concern
of subsequent dependence conditions, broader knowledge regarding the clinical impact of
these polydrug habits becomes paramount.

Leveraging years of extensive research, the association between substance use disor-
ders and cognitive impairments is now well recognized from both neuropsychological ([6],
see [7] for a review) and neurophysiological perspectives (see [8] for a meta-analysis).
Among all the observations made and the several theoretical models proposed to under-
stand the underlying mechanisms of the development and maintenance of drug depen-
dency (see [9] for a review), a specific imbalance in cognitive functioning stands out as a
systematic pattern of a drug cycle: increased salience of substance-related cues paired with
disabled inhibition of the dominant response [10–13]. Practically, sensory cues associated
with patients’ chosen substance (i.e., visual, olfactory, or environmental cues) preferentially
divert their attention and trigger an overtrained pattern of substance use—a consumption
behavior that has become dominant over time—consequently undermining the patients’
ability to withhold their consumption in the presence of these cues. On a neurobiological
level, this theory is linked with the impaired response inhibition and salience attribution
(I-RISA) model conceptualized by Goldstein and Volkow, highlighting the implication of
the prefrontal cortex as a core structure underlying this imbalance [14,15]. The I-RISA
model has recently been greatly substantiated by both the meta-analyses of (1) Lueng et al.
in 2017, revealing a small yet significant relationship between impulsivity and cognitive
bias [16], and (2) Zilverstand et al. in 2018, who replicated the previous observations
made regarding the alteration of both the salience and executive networks in addictive
states [8,17–19]. Interestingly, the available evidence supports the central role of these
particular functions throughout various stages of the addiction cycle: a transition from
recreational drug use to dependency, craving, withdrawal, etc. [8,15], the impairment of
which reduces the efficiency of clinical treatments, and accelerates the phenomenon of
relapse [20]. It should be noted that several other cognitive dysfunctions, such as mem-
ory, metacognition, and decision-making, may play roles in treatment outcomes [7]. For
instance, a lack of insight that reflects poor functioning of the interoceptive system is likely
to lead to underestimation of the risks of abusive and hazardous consumption [21].

As stated by the consensus of the Neuroscience Interest Group within the International
Society of Addiction Medicine (ISAM-NIG), fine-tuned knowledge of the multi-level deter-
minants (neural, cognitive, and behavioral) of drug dependency needs to be addressed [20].
Interestingly, and in line with the previous statement, event-related potentials (ERPs) offer
a reliable source of information regarding cognitive-related cerebral dynamics, as they have
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the special feature of allowing for the monitoring of cognitive-processing streams with
high temporal resolution [22]. Technically, this approach allows the extraction of the truly
event-related EEG signal from the superimposed background noise. In practice, the EEG
activity is recorded concomitantly with the same experimental protocol that is repeated
several times. Afterward, the recorded brain activity synchronized with the experimental
protocol is averaged [22,23]. Based on the central limit theory, the signal that is stationary
between trials gradually emerges from the noise as more trials are added to the average,
while the randomly distributed noise decreases. The ERPs obtained are therefore a reli-
able reflection of the neural functioning of the cognitive abilities elicited by the chosen
experimental protocol. In this view, the Nogo N2/Nogo P3 complex and the error-related
negativity (ERN) component are classical ERP components that refer to inhibitory control
and metacognition capacities, respectively [23].

Thus, in the context of substance use disorder, ERPs can reveal latent cognitive distur-
bances that are still inconspicuous at the behavioral level and, in this way, allow for the
identification of various biomarkers [13,23]. Moreover, while the same behavioral pattern
can be attributed to different cognitive impairments from one patient to another [24], ERPs
have the potential to discern drug-specific modes of action and, in this way, promote more
individualized and specific care by targeting specific processes that need to be rehabili-
tated [13,20,25]. Despite that, important ERP data are still missing, and a clear imbalance
remains between the number of studies published on the various substances, notably with
studies investigating the effects of heroin being clearly under-investigated in comparison
with substances such as alcohol or cocaine [25,26]. This lack of empirical data prevents us
from disposing of an exhaustive view of the neural signature of each specific substance,
making the establishment of a differential diagnosis difficult.

In 2021, the Statistical Bulletin of the European Monitoring Center for Drugs and Drug
Addiction reported that problematic use of cocaine and opioids accounts for most hard
drug treatment requests [27]. In line with the previous statements, the main aim of the
present study was to investigate the executive functioning, e.g., inhibitory control and
selective attention, at the behavioral and the neurophysiological levels (using ERPs), of
a population abusing the most recurrent substances (cocaine and heroin) and currently
undergoing a detoxification program at the hospital. At the behavioral level, we expected
that polydrug consumption would be associated with a higher number of inhibition errors
due to the combined neurotoxic effects of cocaine and heroin [26]. At the electrophysiolog-
ical level, decreased and/or delayed main ERP correlates of reactive inhibition; in other
words, the Nogo N2, Nogo P3, and ERN, are expected to subtend this deficient behavioral
performance [17,28].

2. Materials and Methods
2.1. Participants and Ethics Statement

Inpatients aged between 20 and 60 years who were diagnosed with heroin, cocaine, or
polydrug dependence [29] and undergoing a two-week Drug Detoxification Program at
Brugmann Hospital (Brussels, Belgium) were enrolled in the study. The exclusion criteria
for participants included major medical conditions, neurological disorders, pregnancy,
current consumption of drugs other than nicotine (assessed through urine screening), and a
current DSM-V diagnosis of axis I disorders (other than drug dependence). The Brugmann
Hospital ethics committee approved our study (Comité d’Ethique Hospitalier OM026
2015/121). All of the participants provided their informed written consent in accordance
with the declaration of Helsinki.

The principal objective of the detoxification program was physical withdrawal. During
their two-week stay, each patient received personalized medication and mainly benefited
from living in a community aimed at finding a rhythm in their everyday behaviors (e.g.,
communicating, interacting with other patients, getting some rest, re-establishing a stable
sleep cycle, partaking in sporting activities, etc.). In addition, support groups and an
interview with a psychologist were offered, with the objective of creating opportunities for
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dialogue and eventually preparing them for discharge by informing them of the various
post-treatment support options.

Among the N = 86 participants recruited and enrolled in this experiment, four patients
exhibited an artefactual signal due to a poor signal-to-noise ratio, thus leaving 82 participants
with analyzable EEG data who were included in the final sample used for the statistical
analyses. The full characteristics of the group are reported in Table 1.

Table 1. Abbreviations: BDI, Beck Depression Inventory; STAI, State and Trait Anxiety Inventory;
FNE, Fear of Negative Evaluation scale; BIS, Behavioral Inhibition System; BAS, Behavioral Ap-
proach System; NU = Non-users; HU = Heroin users; CU = Cocaine users; PDU = Polydrug users;
NA = Not Applicable. Chi-square test, univariate analyses of variance with group (NU vs. HU vs.
CU vs. PDU) as between-subject factor and the results of their respective post hoc analyses. The
descriptive data are expressed as numbers, or mean ± SD. Significant results are highlighted in bold.
* p < 0.05; ** p < 0.01; *** p < 0.001.

Non-Users
Healthy
Controls

n = 19

Heroin-Users
n = 21

Cocaine-Users
n = 23

Polydrug-
Users
n = 19

Statistical
Data

Post-Hoc
Analyses

Demographical
and

clinical data

Gender (male:female) 13:6 16:5 21:2 17:2 χ2(12) = 16.342;
p = 0.176 NA

Education (number of years) 11.32 ± 2.98 9.29 ± 2.83 10.91 ± 2.98 9.47 ± 3.20 F(3,78) = 2.325;
p = 0.081 NA

Age 37.89 ± 11.49 41.14 ± 9.01 36.83 ± 6.62 39.11 ± 8.85 F(3,78 ) = 0.903;
p = 0.444 NA

Drug consumption among family
members (none:extended

family:close family)
15:3:1 13:3:5 15:1:7 9:2:8 χ2(6) = 8.374;

p = 0.212 NA

Alcohol consumption among
family members (none:extended

family:close family)
16:3:0 6:7:8 14:2:7 9:2:8 χ2(6) = 18.136;

p = 0.006 **
NU < HU =
CU = PDU

Number of past
treatment programs NA 2.00 ± 2.65 1.13 ± 2.36 1.37 ± 2.03 F(2,60) = 0.776;

p = 0.465 NA

Psychological
questionnaires

BDI-II 5.37 ± 8.31 16.29 ± 8.41 19.14 ± 12.35 20.63 ± 8.60 F(3,78) = 9.831;
p < 0.001 ***

NU < HU =
CU = PDU

STAI-state A 44.21 ± 11.21 51.52 ± 10.97 58.00 ± 9.55 52.79 ± 9.05 F(3,78) = 6.242;
p < 0.001*** NU < CU

STAI-trait B 41.84 ± 9.45 53.24 ± 10.23 56.68 ± 9.55 54.89 ± 9.56 F(3,78) = 9.303;
p < 0.001 ***

NU < HU =
CU = PDU

FNE 10.63 ± 6.08 14.90 ± 5.87 17.95 ± 6.13 14.68 ± 5.13 F(3,78) = 5.373;
p = 0.002 ** NU < CU

BIS 17.26 ± 5.22 19.57 ± 2.31 20.68 ± 3.40 20.11 ± 2.47 F(3,78) = 3.588;
p = 0.017 * NU < CU

BAS drive 8.84 ± 2.50 9.00 ± 2.49 11.41 ± 2.84 10.32 ± 2.58 F(3,78) = 4.470;
p = 0.006 ** NU < CU

BAS fun seeking 11.79 ± 1.47 11.81 ± 1.86 12.64 ± 2.17 12.47 ± 2.06 F(3,78) = 1.084;
p = 0.361 NA

BAS reward responsiveness 15.95 ± 2.55 17.38 ± 2.27 17.18 ± 2.01 17.47 ± 1.71 F(3,78) = 2.085;
p = 0.109 NA

UPPS Total 103.32 ± 13.90 103.29 ± 8.38 107.82 ± 20.97 102.16 ± 13.81 F(3,78) = 0.584;
p = 0.627 NA

Urgency 30.89 ± 8.23 30.38 ± 4.21 30.55 ± 8.66 28.79 ± 6.10 F(3,78) = 0.338;
p = 0.798 NA

Lack of premeditation 22.41 ± 6.09 21.29 ± 4.55 25.50 ± 6.06 21.32 ± 4.77 F(3,78) = 2.861;
p = 0.042 *

NU = HU =
CU = PDU

Lack of perseverance 21.74 ± 4.77 21.67 ± 3.89 21.86 ± 3.94 21.53 ± 3.47 F(3,78) = 0.025;
p = 0.995 NA

Sensation seeking 27.85 ± 9.02 30.19 ± 6.67 28.36 ± 10.57 30.53 ± 9.44 F(3,78) = 0.424;
p = 0.736 NA

Ladder NA 8.10 ± 8.95 8.45 ± 1.22 7.95 ± 1.35 F(2,60) = 0.693;
p = 0.504 NA

∆Craving(pre-post) NA −0.45 ± 2.77 0.12 ± 2.04 0.00 ± 0.82 F(2,60) = 0.456;
p = 0.636 NA
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Table 1. Cont.

Non-Users
Healthy
Controls

n = 19

Heroin-Users
n = 21

Cocaine-Users
n = 23

Polydrug-
Users
n = 19

Statistical
Data

Post-Hoc
Analyses

A.S.I

Medical status 0.74 ± 1.63 1.90 ± 1.95 1.96 ± 1.85 2.26 ± 2.18 F(3,78) = 2.376;
p = 0.076 NA

Employment and support 0.95 ± 2.07 4.10 ± 2.84 2.87 ± 2.24 4.47 ± 2.34 F(3,78) = 8.466;
p < 0.001 *** NU < HU = CU

Drug use 0.00 ± 0.00 7.48 ± 1.25 7.61 ± 1.23 7.89 ± 1.05 F(3,78) = 263.45;
p < 0.001 ***

NU < HU =
CU = PDU

Legal status 0.00 ± 0.00 2.67 ± 2.56 2.48 ± 2.69 4.00 ± 2.54 F(3,78) = 10.17;
p < 0.001 ***

NU < HU =
CU = PDU

Family/social status 0.53 ± 0.84 3.62 ± 2.76 3.52 ± 2.21 4.53 ± 2.50 F(3,78) = 11.73;
p < 0.001 ***

NU < HU =
CU = PDU

Psychiatric status 0.53 ± 1.61 3.81 ± 2.84 5.30 ± 2.36 4.53 ± 1.90 F(3,78) = 17.31;
p < 0.001 ***

NU < HU =
CU = PDU

M.I.N.I

Major depressive episode (MDE)
(none:past:current) 16:3:0 9:9:3 7:10:6 5:11:3 χ2(6) = 18.297;

p = 0.006 *
NU < HU =
CU = PDU

MDE with melancholic features
(none:current) 19:0 19:2 20:3 16:3 χ2(3) = 3.123;

p = 0.373 NA

Dysthymia (none:current) 19:0 17:4 20:3 18:1 χ2(3) = 4.831;
p = 0.185 NA

Suicidality (none:medium
risk:high risk) 18:1:0 14:5:2 16:4:2 6:8:5 χ2(6) = 18.093;

p = 0.006 *
NU < HU =
CU = PDU

Manic episode (none:current) 19:0 19:2 19:4 16:3 χ2(3) = 6.974;
p = 0.323 NA

Panic disorder (none:current) 19:0 19:2 20:3 18:1 χ2(3) = 2.881;
p = 0.410 NA

Agoraphobia (none:current) 18:1 20:1 20:3 15:4 χ2(3) = 3.540;
p = 0.316 NA

Social phobia (none:current) 18:1 18:3 20:3 17:2 χ2(3) = 0.975;
p = 0.807 NA

Post Traumatic Stress Disorder
(none: current) 19:0 20:1 19:4 16:3 χ2(3) = 4.957;

p = 0.175 NA

Alcohol abuse (none:current) 19:0 17:4 8:15 12:7 χ2(3) = 22.534;
p < 0.001 *** NU < CU

Generalized anxiety disorder
(none: current) 18:1 12:9 16:7 12:7 χ2(3) = 7.703;

p = 0.053 NA

2.2. Procedure

The patients were free to leave the study at any time without having to justify their
decision. The first several days were devoted to physical withdrawal. The patients were
tested after showing withdrawal symptoms, approximately one week after admission.

They were asked to rate their urge to consume drugs according to a craving scale
from 0 to 10, and to fill out the following questionnaires: the Liebowitz Social Anxiety
Scale [30]; the Beck Depression Inventory (BDI-II) [31]; the State-Trait Anxiety Inventory
(STAI-A and B) [32]; the Urgency Premeditation Perseverance and Sensation Seeking
Impulsive Behavior Scale (UPPS) [33], the behavioral avoidance/inhibition (BIS/BAS)
scales [34], and the Contemplation Ladder [35]. Additionally, an anamnesis and the
Addiction Severity Index (A.S.I) [36] were performed to obtain general information (e.g.,
age and level of education) and specific information regarding their consumption history
(e.g., the number of years that they had been consuming, their previous participation in
treatment programs, and hallmarks of a family history of dependency), as well as the
Mini-International Neuropsychiatric Interview (MINI) [37] short structured diagnostic
interview, in order to control for any DSM-V axis-I psychiatric comorbidities.

2.3. The Go/No-Go Cognitive Task

All the patients were presented with a contextual Go/No-Go task that was developed
in our laboratory for alcohol abusers [38]. For the present study, the cueing backgrounds
were adapted to drug consumption. They were seated at a distance of one meter from a
screen, which centrally displayed the letter M (“Go” trials; keypress with the right index
finger, as quickly and accurately as possible) or the letter W (“No-go” trial; no button click
required). The letters were superimposed on distinct pictorial backgrounds for each of the
six blocks: two drug-related contexts (DC); two neutral contexts (NC); and two without
context black screens (WC). Each block comprised 133 letters displayed in a semi-random
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order to avoid the consecutive presentation of two “No-go” letters, and divided into 93
“Go” (70%) and 40 “No-go” (30%) letters. Each block started with the presentation of a
background screen (DC, NC, or WC; 500 ms) followed by the letter M or W appearing on
this background screen for 200 ms, and then the initial background screen for 1300 ms.
Thus, the patients had up to 1500 ms to press the button before the next letter appeared.
Characteristics of the stimuli presentation are presented in Figure 1.
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Figure 1. Illustration of the contextual Go/No-go task (without context (WC), neutral context (NC),
and drug-related context (DC)).

2.4. EEG Recording

Electroencephalograms (EEG) were recorded with a linked mastoid physical reference
(M1, M2) in a 32-electrode Quick-Cap. The electrode positions included the standard
10–20 system locations and intermediate positions (Fpz, Fp1, Fp2, Fz, F3, F7, F4, F8, FC1,
FC5, FC2, FC6, Cz, C3, C4, T7, CP5, CP1, CP2, CP6, T8, P7, P3, Pz, P4, P8, POz, O1, Oz,
and O2). The EEG was amplified with battery-operated ANT® amplifiers with a gain of
30,000 and a bandpass of 0.01–100 Hz. The ground electrode (AFz) was positioned between
Fpz and Fz along the midline. The impedance of all the electrodes was maintained below
10 kΩ throughout the experiment. The EEG was recorded continuously at a sampling rate
of 1024 Hz with ANT EEProbe™ software. Once acquired, for all conditions (DC, NC, and
WC), a band-pass filter from 0.3 to 30 Hz was applied and response-locked epochs of 700 ms
(200 ms before and 500 ms after the response onset) were created. A cutoff of 30 mV was
used to define trials that were contaminated either by eye movements or muscular artifacts,
which were detected offline and discarded from further analyses in order to analyze only
the artifact-free trials.

Only trials related to correct hits for targets, correct non-hits for non-targets, and hits
for non-targets (commission errors) were included in the averages. Two parameters were
coded for each stimulus: (i) the condition (DC, NC, or WC) and (ii) the type of response
(keypress for targets, keypress for non-targets, and no keypress for non-targets). This
coding allowed us to compute different averages of ERP: (1) the N2 component, identified
as the largest negative value within the 200 to 400 ms interval after stimulus onset; (2) the
P3 component, defined as the largest positive value within the 300 to 600 ms interval after
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stimulus onset; (3) the ERN produced subsequent to a keypress on non-targets (=errors);
and (4) the correct-related negativity (CRN) produced subsequent to a correct keypress
on targets. The averages were computed for each subject individually in the classical
frontocentral cluster of electrodes (Fz, FC1, FC2, and Cz). All the analyses were carried out
on the difference waveforms, which were calculated by subtracting the averaged Go-N2,
Go-P3, and CRN waveforms from the averaged Nogo-N2, Nogo-P3, and ERN waveforms,
respectively, thus giving rise to the ∆N2, ∆P3 [39], and ∆ERNsubtract [40] waves. Grand
averages were then computed (see Figure 2A,B for illustrations).
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Figure 2. (A) Grand-averaged event-related potential waveforms obtained on Fz (as the best signal
quality illustration) for hits on Go and non-hits on No-go trials during the Go/No-go task for all
groups (non-users (NU), heroin-users (HU), cocaine-users (CU), polydrug-users (PDU)) and all
conditions (without context (WC), neutral context (NC), and drug-related context (DC)). ∆N2 and
∆P3 were obtained by subtracting No-go waves from Go waves; (B) Grand-averaged event-related
potential waveforms obtained on Cz (as the best signal quality illustration) for hits on Go and No-go
trials during the Go/No-go task for each group, all contexts combined. ∆ERNsubtract waves were
obtained by subtracting ERN waves from CRN waves.

2.5. Statistics

Statistical analyses were conducted using IBM SPSS Statistics® 27.0 software (Armonk,
NY, USA). Seven omnibus mixed analyses of variance (ANOVAs), using either Huynh–Feldt
or Greenhouse–Geiser corrections when applicable, were computed with “Group” as a four-
level between-subject factor as follows: heroin-users (HU; n = 21), cocaine-users (CU; n = 23),
polydrug-users (PDU; n = 19), and non-users as healthy controls (NU; n = 19); and “Context” as
a three-level within-subjects factor: drug-related context (DC), neutral context (NC), and without
context (WC), for the behavioral (i.e., percentage of commission errors, percentage of correct hits,
and reaction times) and electrophysiological (i.e., amplitudes and latencies of ∆N2 and ∆P3) data,
respectively. Post hoc Bonferroni-corrected t-tests and supplementary analyses—multivariate
and repeated measures ANOVAs—were used to accordingly disentangle significant main effects
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and interactions (significance level p < 0.05). Regarding the ∆ERNsubtract component, due to
an insufficient number of averaged trials in each condition, all conditions were combined
(DC, ND, and WC) and univariate omnibus ANOVAs—followed by post hoc analyses when
applicable—were computed on N = 69 participants, with “Group” as the between-subject factor.

3. Results
3.1. Behavioral Data

The results of the 3 × 4 ANOVA conducted on the percentage of commission errors
revealed a significant main effect of “Group” [F(3.78) = 4.390; p = 0.007; η2

p = 0.14]. Post hoc
analyses revealed a significantly lower percentage of commission errors in the NU group
(10.60 ± 6.78) compared to the HU group (22.92 ± 17.95; p = 0.023) and the PUD group
(24.46 ± 11.01; p = 0.010), all conditions combined. No significant results emerged from the
ANOVA conducted on the percentage of correct answers, nor on the reaction times (see
Table 2).

Table 2. Mixed analyses of variance (ANOVAs) with group (NU vs. HU vs. CU vs. PDU) as
between-subject factor and context (WC vs. NC vs. DC) as within-subject factor, in addition to
the results of their respective post hoc analyses. The descriptive data are expressed as mean ± SD.
Significant results are highlighted in bold. Abbreviations: WC = without context; NC = neutral
context; DC = drug-related context; NA = not applicable. * p < 0.05; ** p < 0.01.

Non-Users
Healthy Controls

n = 19

Heroin-Users
n = 21

Cocaine-Users
n = 23

Polydrug-Users
n = 19

Statistical Data
Group * Context Interaction

Group Effect
Context Effect

Post-Hoc
Analyses

Commission
error rates (%)

WC 10.16 ± 7.52 24.94 ± 20.28 17.95 ± 12.10 24.14 ± 12.25 F(5.6,146.6) = 0.970; p = 0.445
F(3,78) = 4.390; p = 0.007 **

F(1.9,146.6) = 2.800; p = 0.067

NA
NU = CU < HU

= PDU
NA

NC 10.99 ± 7.28 22.86 ± 17.37 19.67 ± 15.52 25.80 ± 12.34
DC 10.66 ± 6.91 20.95 ± 17.90 16.58 ± 14.25 23.42 ± 11.81

Total 10.60 ± 6.78 22.92 ± 17.95 18.07 ± 13.24 24.46 ± 11.01

Ommission error
rates (%)

WC 98.44 ± 2.60 96.34 ± 4.69 95.27 ± 10.43 96.26 ± 5.37 F(4.1,108.0) = 0.843; p = 0.505
F(3,78) = 1.864; p = 0.143

F(1.4,108.0) = 2.463; p = 0.108

NA
NA
NA

NC 99.01 ± 2.22 96.54 ± 4.12 98.20 ± 2.09 96.97 ± 4.21
DC 99.43 ± 0.73 96.03 ± 6.04 97.82 ± 2.80 97.68 ± 3.12

Total 98.96 ± 1.72 96.30 ± 4.25 97.10 ± 4.18 96.97 ± 3.83

Reaction
times (ms)

WC 370.11 ± 63.52 413.33 ± 68.55 381.50 ± 54.50 388.00 ± 70.18 F(4.6,120.2) = 0.845; p = 0.513
F(3,78) = 1.526; p = 0.214

F(1.5,120.2) = 2.607; p = 0.092

NA
NA
NA

NC 376.51 ± 91.23 400.64 ± 70.38 373.15 ± 52.76 379.24 ± 55.16
DC 355.47 ± 53.12 400.00 ± 53.27 374.39 ± 56.67 382.10 ± 56.80

Total 367.37 ± 58.51 404.66 ± 61.82 376.35 ± 53.52 383.11 ± 59.28

3.2. Electrophysiological Data on the ∆N2 Component

Firstly, the results of the 3 × 4 ANOVA conducted on the ∆N2 component’s amplitude
revealed a significant main effect of “Group” [F(3.78) = 4.341; p = 0.007; η2

p = 0.14]. Post
hoc analyses revealed a significantly larger amplitude of the ∆N2 component in the NU
group (−3.90 ± 2.35) compared to the CU group (−2.46 ± 1.56; p = 0.044), the PUD group
(−2.09 ± 0.99; p = 0.008), and marginally to the HU group (−2.47 ± 1.56; p = 0.054), all
conditions combined.

Secondly, the results of the 3 × 4 ANOVA conducted on the ∆N2 component’s latency
revealed a significant group*context interaction [F(6.156) = 3.308; p = 0.004; η2

p = 0.11]. On
the one hand, the supplementary analysis computed using a repeated measures ANOVA
revealed a significantly shorter latency in the DC condition (210.85 ± 28.97) compared
to the WC condition (248.85 ± 57.22) in the PDU group (p = 0.041). On the other hand,
the supplementary analysis computed using a multivariate ANOVA revealed significant
main effects of group: (1) in the DC condition [F(3.78) = 15.973; p < 0.001; η2

p = 0.38]; (2) in
the NC condition [F(3.78) = 10.101; p < 0.001; η2

p = 0.28]; and (3) in the WC condition
[F(3.78) = 2.750; p = 0.048; η2

p = 0.96]. In the WC condition, post hoc analyses did not
remain significant after application of the Bonferroni correction; meanwhile, they revealed
the following: (1) in the DC condition, a significantly shorter ∆N2 latency in the PDU group
(210.85 ± 28.97) compared to the HU group (285.29 ± 51.61), the CU group (305.11 ± 58.49),
and the NU group (283.40 ± 36.67) (p < 0.001); (2) in the NC condition, a significantly shorter
∆N2 latency in the PDU group (212.71 ± 46.23) compared to the HU group (291.35 ± 49.09),
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the CU group (290.76 ± 53.96), and the NU group (281.39 ± 60.68) (p < 0.001) (see Figure 3A
for an illustration).
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3.3. Electrophysiological Data on the ∆P3 Component

While the 3 × 4 ANOVA conducted on the ∆P3 component’s amplitude did not reveal
any significant results (p > 0.086), the 3 × 4 ANOVA conducted on the ∆P3 component’s
latency revealed both a significant main effect of “Context” [F(2.156) = 3.829; p = 0.024;
η2

p = 0.047] and a significant main effect of “Group” [F(3.78) = 3.477; p = 0.020; η2
p = 0.118].

Post hoc analyses indicated (1) a significantly shorter latency of the ∆P3 component in the
WC condition (429.79 ± 50.45) compared to the DC condition (446.55 ± 48.72) (p = 0.042), all
groups combined; (2) a significantly shorter latency of the ∆P3 component in the NU group
(418.67 ± 42.33) compared to the PDU group (453.67 ± 37.30) (p = 0.019), all conditions
combined (see Figure 3A for an illustration).

3.4. Electrophysiological Data on the ∆ERNsubtract Component

While the univariate ANOVA conducted on the ∆ERNsubtract’s latency did not reveal a
significant result (p > 0.179), the univariate ANOVA conducted on the ∆ERNsubtract’s ampli-
tude indicated a significant main effect of “Group” [F(3.65) = 3.822; p = 0.014; η2

p = 0.072].
Post hoc analysis indicated a significantly larger amplitude of the ∆ERNsubtract compo-
nent in the NU control group (−11.34 ± 6.54) compared to the CU group (−5.35 ± 3.12)
(p = 0.011), all conditions combined (see Figure 3B for an illustration).

4. Discussion

The aim of the present study was to highlight the cognitive deficits, i.e., inhibitory
control and error detection, usually associated with substance use disorder, by comparing
polydrug users, cocaine users, and heroin users undergoing detoxification to matched
healthy controls at both the behavioral and the neurophysiological levels. In regard to the
behavioral evidence, the results revealed impairment of the inhibitory skills in polydrug
users, as well as in heroin users, through a significantly greater number of commission
errors compared to controls. In concrete terms, the fact that polydrug and heroin users have
more difficulties in restraining themselves from pressing No-go trials suggests substantial
challenges in curbing automatic behavior, in holding back a motor action which is a self-
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regulatory capacity necessary to regain control over one’s consumption. These behavioral
observations only partially reproduced the current evidence in the literature. On the one
hand, contrary to what has been noticed in previous experimental studies, heroin users
differed significantly from controls, while cocaine users did not. We should in fact have
expected the opposite, as the meta-analysis of Smith et al. in 2014 indicates that the largest
effect sizes for behavioral inhibitory deficits are found in cocaine users, whereas their
results suggested that inhibition was probably not the core deficit in opioid users [26,41].
A potential explanation for this inconsistency could be the type of paradigm used [42].
Whereas an equiprobable Go/No-go task that requires little effort may not be challenging
enough [43], the presently used Go/No-go task, in which the ratio for Go targets to No-go
targets is 70% vs. 30%, should provide a sufficient degree of difficulty to observe significant
differences between heroin users and controls. Furthermore, as response inhibition is not a
stable trait and recovery of inhibitory control processes is a function of abstinence [42,44],
another potential explanation could relate to the duration of abstinence. This may explain
why recently detoxified heroin users currently undergoing a detoxification program differ
significantly from healthy controls, while heroin users who have been abstinent for several
months do not [45]. On the other hand, by examining the descriptive data of our sample,
our observations replicate the existing evidence that polydrug use implies a larger deficit
in inhibitory skills than use of a single drug [26]. Moreover, the following analysis of
electrophysiological data (i.e., amplitudes and latencies of both N2 and P3 components)
converge toward this same observation.

Firstly, compared to healthy controls, the results revealed a significant decrease in
the ∆N2 amplitude in polydrug users, reflecting lower recruitment of neural resources in
brain regions that underlie the detection and management of incongruence in a Go/No-go
task context (i.e., occurrence of the non-frequent stimulus). As expected, this observation
replicates those made in previous studies [28]. As anterior cingulate cortex (ACC) activity
mostly reflects the amplitude of the N2 component [46], the present results reliably mirror
the recurrently observed hypoactivation of the ACC in fMRI studies conducted on drug
abusers [17,47]. More specifically, the evidence converges towards gray matter depletion in
the ACC [48] linked to hypoactivation of both its rostroventral and caudodorsal subregions,
with an added disruption of the interconnectivity between the two [49]. Moreover, the
absence of significant differences between the different contexts (WC vs. NC vs. DC)
coincides with the previously made fMRI observations that the ACC hypoactivity is not
the result of attentional bias toward drug-related cues, but rather reflects a more general
deviant cognitive process in drug users [50].

Nevertheless, while fMRI offers information regarding the activation level of brain
regions, the ERP technique can add information regarding the timing of the onset of the
cognitive process. In this case, our results indicate a significantly earlier latency of the
∆N2 component in polydrug users compared to all other groups, and even earlier in
the drug-related context (vs. WC). Thus, despite attenuated subsequent management of
incongruence due to hypoactivation of the regions in charge, the onset of the cognitive
process of incongruence monitoring occurs earlier in a context, bringing into play visual
substance-related cues. A possible interpretation is the presence of cue reactivity in poly-
drug users, indexed by the allocation of attentional resources toward stimuli related to the
substance of interest. Interestingly, while this phenomenon is observable through an altered
latency in the present Go/No-go task context, it has previously largely manifested itself by
variation (increase) in the N2 component’s amplitude in oddball paradigms [28]. In a future
perspective, it will be relevant to compare the electrophysiological observations made
through different experimental paradigms. On a related note, it will be highly informative
to conduct experimental studies by combining EEG and fMRI techniques, to make the most
of their respective strengths—e.g., temporal and spatial resolution, respectively—in order
to obtain the greatest amount of information about the underlying neural mechanisms [17].

Secondly, while the ∆N2 component can be seen as reflecting the early stages of the
cognitive process setting up the inhibitory response [46], the subsequent P3 component
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is more a reflection of the actual motor aspect of this response, i.e., the restraint of the
automatic motor action. In the present study, our results revealed significantly delayed
latency of the ∆P3 component in polydrug users compared to control subjects. Even though
both the ∆N2 and ∆P3 components reflect distinct aspects of the inhibitory process, they
remain closely dependent on each other. In other words, an altered initial stage of the
detection and monitoring of the conflict, and response selection reflected by the ∆N2
component characteristics (e.g., amplitude and latency) may have had an impact on the
subsequent onset of the motor inhibition response reflected by the ∆P3 component [17].

Just as importantly, while the dysfunctionalities observed in the ACC and prefrontal
regions underlie abnormal N2/P3 complex characteristics and explain inhibitory control
deficits, it can also be linked to another ERP component that warrants attention: the error-
related negativity (ERN). The ERN component is a reliable neurobiological marker that
emerges after performance errors, thus reflecting the beginning of error processing as part of
the action monitoring system [17,51,52]. Replicating findings in the literature and reflecting
an impaired capacity of error processing, our results indicate a significantly reduced
amplitude of the ERN component in cocaine abusers compared to controls [53]. Chronic
use of stimulant drugs, such as cocaine, is associated with an increase in dopaminergic
activity in the ACC and, through homeostasis, is likely to lead to down-regulation of
dopaminergic receptors [54–56]. While several substances (i.e., alcohol, cocaine, opiates...)
cause lower striatal dopamine D2 receptor binding [14,57], the study of Volkow et al. (1999)
showed, in cocaine users specifically, a significant positive association between the amount
of dopamine D2 receptors in the striatum and the amount of glucose in the frontal cortex:
the fewer D2 receptors there are, the less glucose is available in the orbitofrontal cortex and
anterior cingulate gyrus [14,58], leading to hypoactivity in the frontal cortical metabolism
that underlies inhibitory control and error monitoring.

In conclusion, the evidence provided by the present study corroborates previous
findings in the literature by revealing neural damage associated with cognitive disabilities
found in substance abusers, i.e., disabled performance monitoring, poor inhibitory control,
and deficient error processing. It is thought that defining features of addiction, such as
the maintenance of drug-taking despite adverse consequences [47,56] and the relapse
phenomenon, are associated with these specific cognitive deficits [20,28]. Indeed, error
processing appears to be necessary to guide and adjust future behaviors, independently or
not of conscious perception [54]. By being hyporesponsive to signals that their behavior
is in error, patients may become overinfluenced by external stimuli associated with their
substance of interest [56]. Such overreactivity to drug-related cues elicits a large amount of
the available neural resources, thereby not leaving enough for the jeopardized inhibitory
control to fight the habitual response behavior. In the long run, this entire compromised
cognitive functioning leads to poor decision-making, stimulus-driven actions, and thus a
more elevated risk of relapse [21,49,51]. Finally, corroborating the literature, our results
suggest a more deleterious effect of poly consumption and cognitive functioning being more
significantly impacted under the cumulative effect of several substances, in comparison
to their individual incidence. Such a noxious synergistic impact stresses the importance
of pursuing research on how to improve care in the field of addiction as poly-drug use
increases significantly [4,5].

A main limitation of the present study is the absence of significant results between the
PDU, CU, and HU groups in the ANOVA post hoc analysis (Bonferroni corrected), which
may have been driven by a lack of power owing to a high degree of heterogeneity (SD) and,
potentially, a too-small sample size. Nevertheless, the visually observed differences in ERP
brainwaves remain highly informative as they reveal substance-specific patterns of response.
For instance, despite the absence of significant results, visual analysis of the ERP waves clearly
shows distinct profiles of response in the black screen context. Apart from any visual bias, a
more pronounced attenuation of the ∆P3 amplitude in polydrug and cocaine users is observed,
compared to heroin users and controls (see Figure 3A). As developed above, this difference is
likely due to the known neuropsychopharmacological impact of chronic use of stimulants,
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such as cocaine, on the dopaminergic system [14,59]. Another explanation may lie in white
matter integrity, as lower fractional anisotropy measures demonstrate axonal injury and
demyelination in prefrontal regions [60,61]. In 2004, Lyoo et al. highlighted that the severity
of deep white matter signal hyperintensities (WMH), regarded as localized demyelinated
areas caused by vascular mechanisms and associated with cognitive performance [62], was
greater in cocaine-dependent than in opiate-dependent subjects and likely due to cocaine’s
vasoconstrictive effects [63]. Thus, compared to heroin users and controls, patients abusing
cocaine (i.e., cocaine and polydrug users) exhibit an inhibitory process that is drastically
affected by the neurobiological effect of this specific substance on the interacting mesocortical
and mesolimbic networks [26,41,47]; the ∆P3 component is a neural marker of this deficit [17].
In this regard, the substance-specific patterns highlighted by ERP brainwaves support the
view that each profile may require a specific rehabilitation method (i.e., compensatory or
restorative learning approaches according to the neural damage distinctiveness), and in this
sense is likely to lead to more individualized care [23]. Recently, phenotype-matched cognitive
approaches using neuromodulation techniques and cognitive rehabilitation programs have
been considered within the framework of stratified psychiatry [7,20].
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