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Simple Summary: β-thalassemia syndromes are clinically and genetically heterogeneous blood
disorders presented by β-chain deficiency in hemoglobin production. Despite improvements in
transfusion practices and chelation treatment, many lingering challenges have encouraged re-
searchers to develop newer therapeutic strategies such as gene editing. One of the most powerful
arms of genetic manipulation is gene editing tools, which have been recently applied to improve
β-thalassemia symptoms. Nevertheless, several obstacles, such as off-target effects, protospacer-
adjacent motif requirement, efficient gene transfer and expression methods, DNA-damage toxicity,
and immunotoxicity issues still need to be addressed in order to improve the safety and efficacy
of the gene editing approaches. Hence, additional efforts are needed to address these problems,
evaluate the safety of genome editing tools at the clinical level and follow the outcomes of gene
editing tools-mediated therapeutic approaches in related patients.

Abstract: Beta (β)-thalassemia is a group of human inherited abnormalities caused by various molec-
ular defects, which involves a decrease or cessation in the balanced synthesis of the β-globin chains
in hemoglobin structure. Traditional treatment for β-thalassemia major is allogeneic bone marrow
transplantation (BMT) from a completely matched donor. The limited number of human leukocyte
antigen (HLA)-matched donors, long-term use of immunosuppressive regimen and higher risk of
immunological complications have limited the application of this therapeutic approach. Furthermore,
despite improvements in transfusion practices and chelation treatment, many lingering challenges
have encouraged researchers to develop newer therapeutic strategies such as nanomedicine and gene
editing. One of the most powerful arms of genetic manipulation is gene editing tools, including tran-
scription activator-like effector nucleases, zinc-finger nucleases, and clustered regularly interspaced
short palindromic repeat–Cas-associated nucleases. These tools have concentrated on γ- or β-globin
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addition, regulating the transcription factors involved in expression of endogenous γ-globin such as
KLF1, silencing of γ-globin inhibitors including BCL11A, SOX6, and LRF/ZBTB7A, and gene repair
strategies. In this review article, we present a systematic overview of the appliances of gene editing
tools for β-thalassemia treatment and paving the way for patients’ therapy.

Keywords: beta-thalassemia; gene therapy; ZFN; TALEN; CRISPR

1. Introduction

β-thalassemia syndromes are clinically and genetically heterogeneous blood disorders
presented byβ-chain deficiency in hemoglobin production [1]. Phenotypes ofβ-thalassemia
are highly varied, from an asymptomatic disorder to severe anemia, β-thalassemia major or
Cooley’s anemia, which causes death before the age of 10 and the only therapeutic approach
available is regular transfusion of red blood cells (RBCs) [2,3].The annual incidence rate of
symptomatic β-thalassemia is estimated to be 1 per 100,000 live births in the world. The
origins of β-thalassemia were found to be in the Mediterranean, while its major types are
mostly seen in the Middle East, Southeast Asia, India, and China. Moreover, increased
prevalence of β-thalassemia has been reported in malaria endemic countries. Notably,
human migration has contributed to the further spread and establishment of β-thalassemia
all around the world [4].

Allogeneic bone marrow transplantation (BMT) from a matched donor is the tradi-
tional treatment for β-thalassemia major. However, significant disadvantages of BMT,
including the limited HLA-matched donors, the need for a long-term immunosuppressive
regimen, the limited application of BMT in young patients, and further immunological side
effects, have limited its use [5,6] (Figure 1).
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Figure 1. Current and future therapeutic approaches for β-thalassemia major. Among the various
kinds of treatments used for treatment of β-thalassemia patients, nanomedicine and gene therapy are
the new emerging ones and have provided new hope in treatment of patients. Their application does
not require immunosuppression.
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The β-thalassemia major management procedure is a combination of lifelong RBC
transfusion and chelation therapy to restrict iron deposition, and full observance of this
treatment greatly increases the life expectancy of the patients [7]. This therapeutic approach
is too expensive in many countries; therefore, novel therapeutics should be introduced
in treatment of this disease. The majority of patients with β-thalassemia major die from
heart failure due to secondary hemochromatosis following sub-optimal iron chelation, or
hepatocarcinoma in older patients [8] (Figure 1).

Other strategies for β-thalassemia major treatment are epigenetic approaches that
intervene in the fetal gamma globin reactivation. Increased synthesis of hemoglobin F (HbF)
is accompanied by significant decrease in intensity of thalassemia major’s symptoms [9].
There are several chemical compounds inducing gamma globin reactivation including
5-azacitidine as a demethylating agent and derivatives of small-chain fatty acids, such
as arginine butyrate, which are more effective when administered with erythropoietin
(EPO) [9] (Figure 1). The conventional therapies for β-thalassemia major suffer from a
number of adverse impacts, such as neurological complications and dramatically increased
levels of platelets, thus encouraging researchers to develop new strategies for β-thalassemia
major treatment including nanomedicine and gene editing [10].

Nanomedicine as an appropriate and new treatment with high efficacy for treatment
and diagnosis of disease [10–12] can be used in the management of various disorders, partic-
ularly blood disease disorders (BDDs) [13]. It switches the conventional drugs/treatments
into nano-platforms carrying small therapeutic molecules as newer strategies in disease
treatment [14,15]. The application of nanomedicine for curing BDDs was first approved
by FDA in 2018. Considering mRNA-based approaches as the first approved techniques
for therapy to treat BBDs, and the risk of degradation and cellular uptake of unprotected
mRNA, nanomedicine is able to protect and control mRNA function for in vivo applica-
tion [16]. Direct whole blood transfusion is still the ideal treatment method for the rare
BDDs [15], although, short half-life and the possibility of bacterial infection, are referred
as the limitations of whole blood storage. Consequently, another possible application
of nanomedicines could be synthesis/designing of artificial blood components [15]. For
instance, in view of the main role of RBCs as a gas (oxygen and carbon dioxide) transporter,
RBC alternatives might be considered as a solution for urgent situations in BDDs and
particularly thalassemia treatment. Nanomedicine can imitate the major features of the
RBCs by incorporating the functional parts of the molecule into the nanoplatforms [15].
Despite the advantages of nanomedicines, the possible toxicity and complications in size
determination, as well as the generalization of the functional modules, also need to be
considered [17] (Figure 1).

Gene therapy is an effective one-time treatment method, which does not require im-
munosuppression and graft versus host disease (GVHD) prophylaxis and can be employed
for every patient. Gene therapy is mainly applied for β-thalassemia treatment to attain
stable functional globin genes or manipulation of transcription factors regulating gamma
chain-expression in the patient’s own hematopoietic stem cells (HSCs) to modify inefficient
erythropoiesis and to treat hemolytic anemia [18]. One of the most powerful arms of genetic
manipulation is gene editing tools (GETs), which have been recently applied to improve
β-thalassemia symptoms. Herein, we deliberate a systematic overview on the applications
of GETs for β-thalassemia treatment in recent years.

2. β-Thalassemia: Molecular Basics

β-globin is typically codified by a group of β-like globin genes including ε (HBE), Gγ
(HBG2), Aγ (HBG1), δ (HBD), and β (HBB). These genes are located on the chromosome
11(11p 15.15) in order to make various tetramers of Hb such as embryonic Hbs (Hb Gower-1
(ζ2ε2), Hb Gower-2 (α2ε2), and Hb Portland (ζ2β2)), fetal Hb (α2γ2), and adult Hbs (HbA,
α2β2 and HbA2, α2δ2) [7]. Hemoglobin genes are expressed at distinct growth phases
via a hemoglobin switching from embryonic to fetal and finally to adult. Moreover, the
globin gene expression including fetal genes relies on vital regulatory regions within the
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globin domain, including local promoter sequences and the control region of β-globin
locus located at the upstream β-globin containing sites that are hypersensitive to DNase
1. Indeed, some particular erythroid transcription factors including GATA-binding factor
1 (GATA-1) and -2, Kruppel Like Factor 1 (KLF1), Nuclear Factor, Erythroid 2 (NF-E2),
Erythroid 2 (NF-E4), Stem Cell Leukemia (SCL), BAF Chromatin Remodeling Complex
Subunit BCL11A (BCL11A) and different cofactors such as p300 and Friend of GATA (FOG)
bind to the regulatory regions of the globin gene [19]. Furthermore, a number of proteins,
including the DRED complex, IKAROS, and GATA-1, have been demonstrated to bind
to the -globin promoter region and suppress transcription of fetal genes. BAF Chromatin
Remodeling Complex Subunit BCL11A (BCL11A) and SRY (sex determining region Y)-box
6 (SOX6) are also involved in the fetal and embryonic globin genes being silenced. These
two proteins are most likely part of a bigger protein complex that also includes the NuRD
and GATA-1 corepressor complexes.

There are various molecular mechanisms underlying the β-globin downregulation.
Typically, mutations could arise at the early fetal stage, leading to the complete deletion of
a globin gene and causing β0-thalassemia. Based on the level of deletion in the β-chain,
various mutations produce β-globin subunits with different reduced expression levels
which are classified as β+ or β++ (“silent”) thalassemia. In fact, the reduced β-globin
chain production causes excess unassembled α-globin chains in erythrocyte precursors
to aggregate, and further drives the pathophysiology of the disorder [20]. Thus, the
severity of the disorder is typically dependent on the balance of α- and β-globin chain
production as well as the amount of the free α-chain. Moreover, structurally abnormal
β-chain variants following point mutations in the β-globin β-globin gene are extremely
unstable and cause a type of β-thalassemia (HbE [β26 Glu→Lys]), known as “thalassemic
hemoglobinopathies” [21]. Likewise, some variants of β-globin chain are not capable of
generating a stable form of hemoglobin tetramers, resulting in a defect in β-globin function.
Notably, these β alleles are rare, with a dominant inheritance pattern leading to severe
anemia. In contrast, common types of β-thalassemia are inherited as haploinsufficient
Mendelian recessives, where two copies of β-thalassemia alleles are essential for developing
the disorder [22].

Most of the β-globin downregulating-related mutations occur in the β-globin locus
alleles, which are known as cis-acting regulatory elements, while mutation in trans-acting
elements modifies the β-globin gene expression and leads to a phenotype that segregates in-
dependent of the β-globin cluster. Nearly 300 alleles of β-thalassemia have been identified
to date [23]. Although the majority of the phenotypes in α-thalassemia are related to dele-
terious mutations in the α-globin gene cluster, the majority of β-thalassemia phenotypes
appear by mutations in one or more nucleotides in the β-globin cluster or instant flanks [24].
Figure 2 illustrates the summary of molecular mechanisms underlying β-thalassemia.
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Figure 2. Molecular mechanisms underlying β-thalassemia. (a) Role of fetal globin repressors
including BCL11A, SOX6 and KLF1 in the expression of γ and β-globin gene: In the fetus, chromatin
factor Friend of Prmt1 (FOP) expression is low. Hence, fetal globin repressors including BCL11A,
SOX6 and KLF1 did not have any function, and transcription factors such as NF-E4 bind the coding
region of the gene and fetal globin (HbF) is synthesized. In adults, expression of FOP is high and
fetal globin repressors are activated, bind to the coding site of the gene and β-globin is produced in
erythroid progenitors. (b) In β-thalassemia, some mutations cause β-globin gene to downregulate,
which are known as cis and trans acting elements, leading to downregulation of β gene expression.
Mutations in GATA-1, TFIIH, and KLF1 are known as trans acting regulatory elements, while
mutations in alleles of β-globin locus are known as cis acting elements.
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3. Gene Editing Tools

Engineered bacterial nucleases and the creation of the programmable nucleases, has
made possible editing of genome sequences. These tools include zinc-finger nucleases
(ZFNs), transcription activator-like effector nucleases (TALENs) or clustered regularly
interspaced short palindromic repeat (CRISPR)–Cas-associated nucleases (Figure 3) [25].
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Figure 3. Gene editing tools. This figure reveals the mechanisms of targeted nucleases. From top to
bottom: Meganucleases or homing endonucleases are nuclease enzymes that do not have separate
DNA binding and cleavage domains, and recognize a 20–40 bp DNA sequence. Meganucleases may
be utilized in all genome types to repair damaged genes in gene therapy by interrupting their DNA
substrates as dimers.

3.1. Zinc Finger Nucleases

ZFNs are a group of engineered and chimeric nucleases which were developed by
combining a bacterial endonuclease of FokI (a double-stranded DNA nickase,) with DNA-
binding zinc finger domains to target and cut a particular 3–4 bp DNA sequence site of
genome [26,27]. The ZFNs are used to modify targeted sequence through creation of a
double stranded nick on target DNA and induction of an indel mutation for improving
the gene function. The ZFNs do not function specifically for the target sequence, and the
same genomic sequences off-targets can be affected and modified by the DNA molecule of
donor leading to undesired genome modification. However, these systems are capable of
elevating the specificity of DNA targeting and attenuating off-target effects using dimerized
FokI. [28].
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3.2. TALENs

TALENs were initially introduced in 2011 based on the application of transcription
activator-like effector (TALE) proteins found in nature (Xanthomonas species). These GETs
are artificial proteins including a nonspecific nuclease (FokI) cleavage domain connected
to a DNA-recognition TALE region. TALEN activity is associated with two DNA binding
sites flanking an undedicated 12–20 bp spacer sequence. Based on spacer length and TALE
construction, the DNA cleavage efficiency in TALENs is different.

As with ZNFs, TALENs are chimeric nucleases with a DNA binding and an effector
domain. Both the ZFN and TALEN nucleases act as dimers, so a pair of ZFN or TALEN
should be developed that is capable of targeting a genomic site [29]. Unlike ZFNs, which
are only commercially available, engineered TALENs can be easily synthesized in any
molecular biology laboratory; however, cloning of TALEN constructs can be laborious
and time-consuming. The main advantages of TALENs over ZFNs are their enhanced
specificity and predictability of binding to a particular sequence and cost effectiveness of
TALENs. Both ZFNs and TALENs constructions require in vitro verification to demonstrate
an adequate level of cleavage efficiency before they can be employed in experiments. Since
each gene editing with ZFN or TALEN requires the synthesis of a new engineered nuclease,
both techniques are relatively expensive and complicated [30].

3.3. CRISPR

CRISPR is a new GET strategy that was initially introduced with considerable ability
for targeted genome engineering [31,32]. CRISPR-associated protein (Cas) is a genetic
engineering technique for the correction of genomes of living organisms. This system
includes three components, an endonuclease (Cas9), a sequence-specific CRISPR RNA
(crRNA), and a trans-activating crRNA (tracrRNA), that links Cas9 with crRNA [33]. The
CRISPR-Cas9 system has been simplified by fusion of two RNA sequences into a single
100-nucleotide chimeric RNA called gRNA or sgRNA, which can competently lead Cas9
to recognize and cut foreign DNA strands in a special target site, and a specific array of
tandem reiterative elements which is separated with short variable 20 nucleotide sequences.
CRISPR technology has advantages over previous systems. The most important advantage
is the shorter assembly time and simplicity due to application of artificial sequences which
are much easier than protein engineering required in the ZFN and TALEN systems [34].
The major problem concerning CRISPR/Cas9 application is the off-target effects. The
specificity of CRISPR/Cas9 system in mammalian cells can be increased with adding two
“nickase” CRISPR/Cas9 complexes, which have a specific binding region. Nickase Cas9
is created by mutation in one of the two Cas9 nuclease domains and can cleave only one
of the DNA strands. The adjacent DNA site could be targeted by a pair of nCas9s to
create a double-strand break (DSB). Both of these nCas9s have been applied to improve the
Cas9-based genomic editing specificity [35].

4. HbF or Gamma Globin Induction Using Gene Editing Tools

Based on preclinical studies, HbF re-induction can improve the sickle cell disease
(SCD) and β-thalassemia severity. The initial clinical observations have revealed, in the
case of natural mutations in the HBB gene cluster or related genes, expression of γ-globin
and, subsequently, HbF would modify this deficiency [36].

Moreover, β-thalassemic infants show symptoms after attenuating HbF production.
Recently, researchers have verified the effect of high HbF synthesis on the improvement of
clinical symptoms of β-thalassemic patients [37–39]. All together, these observations lead
to further investigation of HbF inducers with emphasize on the role of naturally higher
levels of HbF in β-thalassemia patients [40,41].

The fact is that β-thalassemia and SCD patients suffer from a less severe disorder
when HbF is increased; therefore, HbF re-expression could be considered as a beneficial
therapeutic approach for these diseases. Some animal and human studies have reported
the usage of GETs for HbF elevation [42–44]. Strategies for HbF induction in adult RBCs
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deploying GETs can be summarized as inducing natural mutations regarding enhanced
HbF level, knocking out repressors of HbF and modifying intermediates of epigenetic to
control HbF synthesis [45].

4.1. Targeting the HbF Repressors

Recent advances in our knowledge of β-globin locus regulation at transcriptional level
have revealed a strict negative control of γ-globin gene expression, which is mediated by
epigenetic modification and different transcription factors [46]. Several experimental and
clinical treatments have been used to increase HbF levels by direct targeting of fetal globin
repressors including BAF Chromatin Remodeling Complex Subunit BCL11A (BCL11A),
SRY-Box Transcription Factor 6 (SOX6), HBS1L-MYB, KLF1 and Zinc Finger and BTB
Domain Containing 7A (ZBTB7A). Re-induction of HbF using GETs could possibly delete
or reduce the expression of the HbF repressors; however, various types of side effects may
occur since transcription factors often have broad spectrum functions to regulate multiple
target genes (Figure 4A(1)).
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Figure 4. Molecular mechanism of β-globin repair in beta-hemoglobinopathies patients by genome
editing tools. In adults, BCL11A, SOX6 and ZBTB7A via binding to the proximal promoter of the
γ-globin gene cause it to repress, and KLF1 activated their expression to inhibit expression of γ-globin
gene. Moreover, KLF1 as an activator, upregulates β-globin through direct binding to its promoter.
(A) HbF upregulate by: (1) targeting erythroid–specific elements in the KLF1, SOX6, BCL11A and
ZBTB7A gene, their expression is attenuated; and (2) creating a point mutation mimicking hereditary
persistence of fetal hemoglobin (HPFH) phenotype via targeting the binding sites of BCL11A and
ZBTB7A transcription factors in the γ-globin gene promoter. (B) The last mechanism is point mutation
repair of the β-globin gene in patients with sickle cell disease or β-thalassemia and return to wild-type
by homology-directed repair (HDR).

4.1.1. BCL11A

The genome wide association studies have identified BCL11A as the master repressor
of HbF production in both the mouse models and human cells [47]. Erythroid-lineage Bcl11a
knockout mouse SCD model showed pancellular HbF induction and phenotypic modi-
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fication in the mice with minimal effects on erythropoiesis [48]. Another study revealed
that microdeletions in the BCL11A locus of haploinsufficient patients led to considerable
neurocognitive phenotypes, in addition to increased HbF level to a therapeutic extent,
which modify the pathologic and hematologic deficiencies [49]. In principle, BCL11A
knockout through exerting frameshift null alleles in BCL11A coding region could be a
feasible treatment approach for these diseases. However, the role of BCL11A in B-cell
development and HSC function are identified as the major obstacles, which has limited the
application of the BCL11A knockout strategy. As BCL11A plays a critical role in lymphoid
and neural development, Bcl11a deletion causes neonatal mortality [50,51]. Moreover, dif-
ferent supportive evidence indicated a lymphopoiesis defect in Bcl11a-knockout HSCs [52].
Based on the findings of a recent study, due to role of BCL11A coding site in the lymphoid
lineage synthesis and function of hematopoietic stem cells, its genetic editing could not
be considered as an efficient treating approach [53]. Thus, recent strategies have mostly
focused on the deletion of BCL11A-binding sequences in the proximity of γ-globin gene
or using erythroid-restricted expression of genome-editing components that have been
applied for erythroid specific repression of BCL11A [54].

A recent HbF-associated GWAS demonstrated a BCL11A erythroid intronic enhancer
comprising three DNase I hypersensitive sites, named +55, +58 and +62 based on the
distance from the BCL11A transcription start site in kilobases [54,55]. The deletion of
orthologous regions in a mouse erythroid cell line led to the deletion of BCL11A at both
the RNA and protein levels, while BCL11A expression was saved in a B-cell line with the
same deletion. Deletion in all intronic positions of BCL11A enhancer, but especially in the
+58 position demonstrated a significant reduction in BCL11A expression and increase in
γ-globin levels in human erythroid cells [54,56]. In a direct comparison between application
of ZFNs to disrupt the BCL11A coding region and the erythroid-specific enhancer of
BCL11A, it was revealed that the bi-allelic disruption of GATAA motif in BCL11A erythroid
enhancer led to increasing levels of fetal globin expression. Simultaneously, targeting the
BCL11A enhancer appears to be more tolerated within the erythroid lineage since the
residual low levels of BCL11A are insufficient to repress g-globin, while promoting cellular
fitness. Therefore, directed deletion of the 12-kb erythroid enhancer of BCL11A could
function as an alternate strategy for targeting BCL11A coding sequence [57]. Aiming a
200 bp region within the human erythroid-enhancer of BCL11A (including GATAA motif)
by CRISPR/Cas9 showed increased expression of γ-globin in the K562 cell line [58]. The
investigational application of CRISPR/Cas9-based gene editing to treat a patient with
β-thalassemia and the other patient with SCD has been reported in a clinical trial. In
this study, the patient who received the autologous CD34+ cells edited by CRISPR/Cas9
targeting the BCL11A enhancer showed an increased level of HbF that was pancellularly
distributed [59]. Recently, during a clinical trial, Franguol et al. administered CTX001
(an autologous CD34+ cells edited by CRISPR/Cas9 targeting the BCL11A enhancer) to
a beta-thalassemia patient and a SCD patient and followed them up for 12 months. They
succeeded to increase HBF level considerably and continuously in both patients who
received CTX001 [60].

Ma et al. examined the effects of plasmid length and structure on electroporation
efficiency in HSPC as the primary method used to transfect these cells. As a result, they
investigated the use of a minicircle (MC-DNA) vector without a bacterial backbone to
supply the CRISPR/SaCas9 tool into HSPCs to reactivate γ globin expression as a potential
therapeutic approach for β thalassemia patients. They found that the transfection effi-
ciency of CD34+ hematopoietic stem cells depends on plasmid length and linearization.
Furthermore, the MC transgene expression without major plasmid sequences was excellent
compared to conventional plasmids in vitro and in vivo. In this research, MC DNA was
used to deliver the cassette of Staphylococcus aureus Cas9 (SaCas9) into HSPCs, and a
single-guide RNA targeting the erythroid enhancer region of BCL11A was chosen. After
electroporation with MC-DNA, an apparent efficiency of gene editing and reactivation of
γ-globin expression was obtained in unsorted HSPC-derived erythroblasts. The developed
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MC-DNA vector offered a potential strategy to deliver SaCas9 cassettes and reactivate
γ-globin expression to alleviate β thalassemia syndromes [61].

4.1.2. SOX6

The SOX6 transcription factor plays a critical role in gene switching of β-globin in
erythroid cells as well as BCL11A [62]. The first described role for SOX6 in gene regulation
of β-globin was documented by the evaluation of the SOX6-knockout mice model. The
expression of mice embryonic β-like globins (εy and βh1) was markedly increased at
the fetal liver stage of Sox6-knockout mice model, p100H [63]. The silencing effect of
BCL11A for the γ-globin gene is suggested to be through long-range cooperation with
SOX6. The BCL11A-mediated suppression of γ-globin genes is exerted through both
the local interactions with SOX6 chromatin-associated proteins and within the human
β-globin gene. Throughout hemoglobin switching, SOX6 interacts with γ-globulin proximal
promoters, thus mediates BCL11A recruitment to the γ-genes proximal regions [62]. In
adult human erythroid lineage, γ-globin gene expression, which is mediated by stem cell
factor, is also related to SOX6 downregulation. Furthermore, CRISPR/Cas9 and ZFN
technologies have recently been used to generate a mutation in the binding site of SOX6 for
γ-globin gene reactivation. These studies showed that induction of mutation in the binding
domain of SOX6 gene gives rise to γ-globin reactivation [9,64]. Altogether, SOX6 appears
to function as a potentially promising target for HbF reactivation.

4.1.3. LRF/ZBTB7A

Another transcription factor, LRF/ZBTB7A (Pokemon), has newly been documented as
a major repressor of γ-globin gene expression. LRF-knockout mice model exhibits elevated
levels of Hbb-bh1 as the embryonic globin while maintaining normal levels of Hbb-y.
This phenomenon is in contrast to the Bcl11a-null mice models, in which both embryonic
globins, Hbb-y and Hbb-bh1, are overexpressed. Zbtb7a-/-mice models are embryonic
lethal due to anemia, whereas the conditional knockout of Zbtb7a in adult mice leads to
mild macrocytic anemia following inefficient terminal erythropoiesis [48,65]. CRISPR/Cas9-
mediated knockout of LRF in an erythroid cell line resulted in significant upregulation
of γ-globin gene expression. The LRF/BCL11A double knockout model was indicated
to upregulate HbF expression up to of 90%, suggesting that the role of LRF in γ-globin
regulation is moderately independent of Bcl11a. Further analysis confirmed a slight delay
in erythroid lineage differentiation upon LRF knockdown in primary human CD34 HSPCs
differentiated down to the erythroid lineage with a subsequent γ-globin induction [66].
Although the effect of LRF knockdown on γ-globin upregulation is prominent, the LRF
role in cell fate decisions in multiple hematopoietic lineages, and specifically for terminal
erythropoiesis, can limit the LRF application as a potential therapeutic strategy [67].

4.1.4. KLF1

The KLF1 has long been appreciated, as a main factor in the switching of γ- to β-globin
and HbF reinduction processes. Thus, some investigations have targeted KLF1 as a genetic
regulator by GETs including CRISPR/Cas9 to reactivate the expression of HbF; KLF1 gene
manipulation leads to a profound effect on KLF1 promoter sequence [68]. Our previous
study was conducted to study the ability of an engineered CRISPR/Cas9 system to target
KLF1 gene to induce KLF1 disruption and eventually stop the γ to β hemoglobin switching
process in the K562 cell line.

Our results showed that the γ-globin level was significantly raised in differentiated
K562 cells treated with CRISPR/Cas9 [69]. In a parallel investigation, we effectively applied
the ZFN technology to the KLF1 gene knockout through targeted genome deletion induction.
We envisaged that targeted induced mutations in the KLF1 gene coding region, lead to
β-globin chain synthesis reduction and BCL11A gene down regulation, thus removing the
inhibitory effect of BCL11A on the expression of the γ-globin gene [64]. Furthermore, in
another comparative analysis, KLF1, BCL11A, and HBG1/2 were targeted in a parallel



Biology 2022, 11, 862 11 of 19

manner in CD34+HSPCs by CRISPR/Cas9 to induce fetal hemoglobin [70]. The results
were compared to assess the impact of each targeted gene on HbF induction and safety
measurements by molecular analyses to select the most effective candidate for clinical
investigation. The successful downregulation of KLF1 and BCL11A transcripts led to
prominent γ-globin mRNA expression, and significant HbF levels, comparable to Hereditary
Persistence of Fetal Hemoglobin (HPFH) mutations. Although the elevated level of HbF
(up to 25%) after KLF1 gene disruption was associated with no off-targets (verified by
GUIDE-seq), the negative effect of KLF1 knockdown was detected in further analysis,
which could be a major safety concern in the clinical application of this strategy. When
compared to non-edited reference cells, RNA-seq analysis indicated that targeting the KLF1
gene with CRISPR/Cas9 dysregulated many genes with various biological activities [70].
Recent investigations have documented the reduced KLF1 expression, the influence of the
profile expression of genes complicated in cancer (FLI-1) and some biological processes,
including microcytosis (AQP1) and cell–cell interaction (CD44 and ITGA2B) [71,72].

4.2. Reproducing HPFH Mutations Recapitulates A Mutation Associated with A Benign
Genetic Condition

Hereditary persistence of fetal hemoglobin (HPFH) is a benign condition in which
some mutations naturally occur in the fetal globin promoter sequence, leading to HbF
reactivation in adulthood [73]. These natural mutations consist of small deletions and/or
single point mutations in the proximal promoter of fetal γ-globin gene [74].

A recent therapeutic strategy for β-thalassemia is to mimic HPFH mutations to re-
activate HbF (Figure 4A(2)). One of the HPFH mutations is British HPFH, in which a
point mutation of the −198 T > C in the fetal globin gene promoter has occurred. As
HbF expression level elevates up to 20% in these thalassemic patients, the symptoms of
β-hemoglobinopathies are considerably improved. In an in vitro and in vivo combinational
study by Wienert and his colleagues, CRISPR/Cas9 technology was applied to exert a simi-
lar mutation to ameliorate the β-hemoglobinopathies symptoms by increasing HbF level.
Subsequent to introduction of the −198 T > C mutation into the fetal globin promoter of
the clonal WT HUDEP-2 cells, the mRNA expression percent of γ-globin [γ/γ + β] elevated
from ∼0.5–1% to 4–6%. Moreover, the number of HbF-immunostained cells improved in
the −198 T > C mutated cells. Hence, deployment of CRISPR/Cas9-mediated homology-
directed repair system to induce the −198 T > C mutation in clonal cells, leads to the
creation of a new binding site for KLF1 as the major erythroid gene activator, which further
enhances the HbF level [75].

Another type of HPFH naturally occurs through −175 T > C single point mutation,
which leads to significant increase in fetal γ-globin to erythroid cell lines ratio. The elevated
fetal globin level in these individuals is related to de novo recruitment of the activator TAL1
to promote chromatin looping of distal enhancers to the modified γ-globin promoter. In this
study, the −175 T > C substitution into the Aγ- and Gγ-globins genes promoters of murine
erythroid and human erythroid K562 cells was induced using TALEN-based homologous
recombination strategy. In both the cell lines, TAL1 could bind to the promoters and activate
γ-globin in the mutated erythroid cells [76]. Generally, the results ascertained that the
percentage of the HbF was significantly increased between 16 and 41% of total hemoglobin.
In a recent study on β-thalassemic Egyptians, mutation in the β-globin first intron (IVS-1-110
[G > A]), which is the most prevalent mutation in this country [77], was directly corrected
using CRISPR/Cas9-edited non-homologous end joining (NHEJ) technology [78]. The
researchers succeeded in knocking out the mutation in peripheral blood CD34+ hematopoi-
etic stem cells of the β-thalassemic patients, and the edited cells were then differentiated to
erythroid lineage in culture media in the presence of erythropoietin [78].

One of the other point mutations which is responsible for HbF re-induction and im-
provement of β-thalassemic patients sign and symptoms, is related to the direct HbF gene
repressors, BCL11A and ZBTB7A. In wild-type species, BCL11A as well as ZBTB7A directly
join with the γ-globin gene promoter at the positions –115 and –200 bp, respectively, and
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repress the fetal globin gene expression. Martyn and his colleagues employed CRISPR/Cas9
technology to exert the homozygous HPFH-associated mutations of−117 G > A,−114 C > A,
∆ 13 bp, and–195 C > G in γ-globin gene promoter of erythroid cells where BCL11A and
ZBTB7A can bind to the gene, to prevent the repressors binding and elevate γ-globin gene ex-
pression; results showed increased γ-globin mRNA and HbF levels in –117 G > A,−114 C > A,
∆ 13 bp, and −195 C > G mutated populations [79].

5. Gene Repair Strategies

Gene repair, as a precise approach that potentially corrects the mutations in the native
β-globin locus, is a novel non-pharmacological therapeutic method for theβ-hemoglobinopathies
treatment (Figure 4B). Over 200 various point mutations are known to causeβ-thalassemia [80],
while in contrast, a single point mutation of Glu > Val in the coding site (position 7) of
the β-globin is responsible for SCD. Effective specific modifications exert on endogenous
genomic loci by GETs, as recently reported for the human globin locus [81].

The binding of a ZFN or TALEN pairs to contiguous sequences flanking a target region
causes dimerization of the FokI domain and ultimately a targeted DNA DSB, whereas
CRISPR/Cas9 develops DSBs at a particular sequence [82]. The subsequent DSB is corrected
using error-prone NHEJ or high-fidelity homology-directed repair (HDR) in the presence
of a homologous DNA donor template [83].

To modify pathogenic mutations, an exogenous donor fragment is applied as a pat-
tern. The major obstacle for developing an ideal HDR-based gene repair procedure is
selection of the optimum exogenous template. The eligible donor fragment is transferred to
HSPCs via various means including transfection as single-stranded oligodeoxynucleotide
(ssODN), transduction using a viral vector-like integrase-defective lentiviruses (IDLVs)
or recombinant adeno-associated viral vectors serotype 6 (rAAV6). The rAAV6 has long
been considered as the most effective system for HDR-mediated gene repair transferring to
HSPCs [84,85]. Despite rAAV6 efficiency in vitro, recent comparative studies revealed HSC
engraftment decrease in animal models of immunodeficiency using rAAV6 compared to
ssODNs [86,87].

HDR-based gene repair strategy could be efficiently applied in SCD as a monogenic
and prevalent model. In the last decade, various strategies including ZFNs, TALENs, and
CRISPR/Cas9 have been applied to induce HDR-mediated gene repair in order to correct
the pathogenic variant in pluripotent stem cells (iPSCs) [88,89] and SCD patient-derived
HSPCs (Figure 4) [90,91]. On the other hand, in vitro studies revealed that the correction
efficiency was 7% to 50% (based on various editing technology and/or donor delivery
systems), which is appropriate for HbA production up to 50% and improving the SCD
phenotype [92]. However, transplantation of edited SCD cells presented a reduced gene
repair frequency up to 10% when applied in vivo [93]. The incomplete HDR-mediated
gene repair and the minority of HSCs in HSPC population are the main known reasons for
insufficiency of HDR gene repair system in vivo. This led to generating an appropriate level
of NHEJ-mediated INDELs in the HBB gene, which causes the S-globin gene to inactivate
and leads to an appearance of undesired β-thalassemic phenotype [94].

HDR-mediated gene repair approaches have also been utilized to correct some muta-
tions of β-thalassemia. Several studies have been performed on modifying specific point
mutations of β-thalassemia in the patient derived iPSCs [95–100]. In a noticeable study, a
wild-type HBB gene-complementary DNA is considered as a donor template for targeted
integration. This plan is capable of repairing various point mutations involved in β-
thalassemia [101]. However, the main limitation of this strategy is deficiency of a sufficient
protocol for the production of adequate population enriched for HSCs as described earlier.

Regarding the inefficiency of HDR-based repair system, the non-specific NHEJ strategy
was applied for long-term repopulation of HSCs. The imprecise disruption of DNA using
NHEJ generated mutations in the non-coding region of the HBB gene, including IVS1-110G
> A and IVS2-654C > T. These mutations were associated with the generation of new
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binding sites in the HBB introns, which led to synthesis of unusual mRNA and formation
of immature termination codon [102].

In parallel studies conducted in 2019, TALEN- and CRISPR/Cas9-based editing strate-
gies were applied for disruption of the unusual binding sites created by the mutations of
IVS1-110G > A and IVS2-654C > T in patient HSPCs, which led to normal HBB binding and
eventually elevated the expression of HbA gene [102,103].

Recently, a pair of engineered TALENs were used in order to induce targeted inte-
gration of a full-length β-globin complementary DNA subsequent to mutation induction
of about 50% of human β-globin alleles near the site of the sickle cell-related mutation
(Figure 4) [81].

In line with β-thalassemia studies, Ma et al. combined two methods of TALEN-
based repair strategy of HBB mutations with effective production of edited patient-specific
β-thalassemia iPSCs. Based on pluripotency, normal karyotype, lack of off-targets, and
capability of iPSCs to differentiate into hematopoietic progenitor cells and further to
erythroblasts with normal β-globin expression, this strategy seems the most ideal approach
among GETs for further clinical applications [104].

In research published in 2021, the b039 thalassemia mutation was corrected using
CRISPR-Cas9 technology. Consequently, erythroid progenitor cells formed and homozy-
gous b039-thalassemia patients express normal b-globin genes. In terms of efficiency, a
crucial point of this research is that the CRISPR Cas9-corrected cells have a significantly
high production of HbA and were associated with a considerable reduction in free a-globin
chains. The protocol could be the starting point for developing an efficient edition of CD34+
cells derived from b039 patients and designing combined therapies using the CRISPRCas9
editing of the b-globin gene [105].

6. Conclusions

Alongside the advances in gene therapy, gene editing tools offer an innovative ap-
proach for treating the β-hemoglobinopathies, which has recently emerged in clinical trials.
Animal and human studies have presented the efficacy of the gene therapy approaches,
currently based on GETs, in particular for β-thalassemia. Recent advances in genome se-
quencing methods, improvements in gene delivery systems, understanding the molecular
mechanism involved in regulation of the HBB locus, and the progresses in gene-editing
technology made a basis for new achievements in the treatment of hemoglobinopathies
concomitant with significant clinical benefit.

Several significant challenges are yet to be effectively addressed for in vivo genome
editing via CRISPR-Cas technology to be clinically translatable to different fields. CRISPR-
Cas guide RNAs and nucleases must be optimized for potent and straightforward on-
target consequences with minimal off-target consequences, and they should be delivered
efficiently to specific human cells and have minimal antigenic properties so that they are
accepted by human immune systems. Novel CRISPR-Cas enzymes and delivery systems
are being developed to overcome these obstacles. To enhance the specificity of CRISPR-
Cas9, researchers modified the Cas9 construct, optimized the configuration of sgRNA, and
developed a CRISPR-Cas9 double nickase system that presents only single-strand nicks at
target zones.

The more efficient approach using transient delivery systems instead of viruses for
in vivo applications could reduce safety concerns and off-target effects of sustained ex-
pression of CRISPR editing components. Nanoparticles have been designed to deliver
CRISPR components such as plasmid DNA, mRNA, and ribonucleoproteins, and polymeric
formulations encapsulating chemotherapeutic agents could also be engineered to deliver
CRISPR molecular components for combination therapy.

Hence, additional efforts are needed to address these problems, evaluate the safety
of genome editing tools at the clinical level and follow the outcomes of GETs-mediated
therapeutic approaches in related patients.
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Abbreviations

BCL11A BAF Chromatin Remodeling Complex Subunit BCL11A
BDDs blood disease disorders
BMT bone marrow transplantation
Cas CRISPR-associated protein
CRISPR clustered regularly interspaced short palindromic repeat
crRNA sequence-specific CRISPR RNA
EPO erythropoietin
FOG Friend of GATA
FOP Friend of Prmt1
GATA-1 GATA-binding factor 1
GATA-2 GATA-binding factor 2
GVHD graft versus host disease
GETs gene editing tools
HbF hemoglobin F
HDR homology-directed repair
HLA human leukocyte antigen
HPFH hereditary persistence of fetal hemoglobin
HSCs hematopoietic stem cells
IDLVs integrase-defective lentiviruses
iPSCs in pluripotent stem cells
KLF1 Kruppel Like Factor 1
NF-E2 Nuclear Factor, Erythroid 2
NHEJ non-homologous end joining
rAAV6 recombinant adeno-associated viral vectors serotype 6
RBCs red blood cells
SCD sickle cell disease
SCL Stem Cell Leukemia
SOX6 SRY-Box Transcription Factor 6
ssODN single-stranded oligodeoxynucleotide
TALENs transcription activator-like effector nucleases
tracrRNA trans-activating crRNA
ZBTB7A Zinc Finger and BTB Domain Containing 7A
ZFNs zinc-finger nucleases
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