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Simple Summary: The properties and structure of ecological networks in marine microbial commu-
nities determine ecosystem functions and stability; however, the principles of microbial network
assemblages are poorly understood. In this study, we revealed the influences of species phylogeny
and niches on the self-organization of marine microbial co-occurrence networks and provided a
mathematical framework to simulate microbial network assemblages. Our results provide deep
insights into network stability from the perspective of network assembly principles and not just
network properties, such as complexity and modularity.

Abstract: Evolutionary and ecological processes are primary drivers of ecological network constric-
tions. However, the ways that these processes underpin self-organization and modularity in networks
are poorly understood. Here, we performed network analyses to explore the evolutionary and eco-
logical effects on global marine microbial co-occurrence networks across multiple network levels,
including those of nodes, motifs, modules and whole networks. We found that both direct and indi-
rect species interactions were evolutionarily and ecologically constrained across at least four network
levels. Compared to ecological processes, evolutionary processes generally showed stronger long-
lasting effects on indirect interactions and dominated the network assembly of particle-associated
communities in spatially homogeneous environments. Regarding the large network path distance,
the contributions of either processes to species interactions generally decrease and almost disappear
when network path distance is larger than six. Accordingly, we developed a novel mathematical
model based on scale-free networks by considering the joint effects of evolutionary and ecological
processes. We simulated the self-organization of microbial co-occurrence networks and found that
long-lasting effects increased network stability via decreasing link gain or loss. Overall, these results
revealed that evolutionary and ecological processes played key roles in the self-organization and
modularization of microbial co-occurrence networks.

Keywords: microbial ecology; microbial community; network; self-organization; marine

1. Introduction

The alterations of species interactions in ecological network, whether direct and
indirect, are giving rise to cascading extinctions [1,2]. Thus, there is an urgent need to
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explore the determinants of species interactions and the ways that they drive assemblage
dynamics of ecological networks. Direct species interactions are widely considered to be
constrained by evolutionary and ecological processes [3–8]. For examples, phylogeny and
optimal niches or functional traits, the proxies of evolutionary and ecological processes,
respectively, are key predictors of species interactions [9–13]. However, the question of
which process plays the dominant role in constructing species ties is still understudied.
Additionally, few studies pay attention to the relative contributions of these processes to
indirect species interactions within ecological networks.

Ecological networks are inherently hierarchical [14], and thus the assembly driven by
evolutionary and ecological processes can be characterized from various network levels,
such as nodes, sub-networks (e.g., motif [15] and module), and the whole network. The
metrics at node level, e.g., the degree [16] and within- and among-module connectivity [17],
could measure the topological role of species in ecological networks [18–20]. However, less
is known on how such topological properties are jointly driven by the phylogeny and niches
of these species. At the sub-network level, motifs are common network backbones, and their
elements may have similar traits or shared evolutionary histories [15,21,22]. Modules are
purely identified by mathematical methods, such as the algorithms of greedy modularity
optimization [23] and short random walks [24], but constrained by evolutionary and
ecological processes revealed by previous reports on pollination networks, seed-dispersal
networks and microbial networks [17,20,25,26]. At the whole network level, both processes
are observed as primary drivers that shape microbial networks [27–29], but how these
processes shape network global properties, such as self-organization and modularity, is
less reported.

Such self-organization and modularization of ecological networks could be essentially
revealed by establishing a mathematical model and simulating network assembly. In order
to construct ecological networks, there are the three key features that must be re-emphasized
from previous studies [30]: (i) the aggregations of nodes are dynamic; the network can gain
or lose them, and they can connect or disconnect with each other [31], meaning that species
have dynamic connections with other species. (ii) The nodes harbor specific properties,
such as phylogeny and niches. (iii) External forces such as environmental disturbance
can also act on network structures. Moreover, we expect that evolutionary and ecological
processes should further take into account the self-organization of ecological networks. It
is critical for us to understand how ecological networks respond to environmental changes
and access network stability beyond posteriori knowledge.

Here, our objective is to study the evolutionary and ecological processes that shape
marine microbial co-occurrence networks across multiple network levels. Based on global
ocean metagenomic data from the TARA project across three depth layers and two size
fractions [32], we analyzed the effects of phylogeny and niches on microbial co-occurrence
networks across the levels of nodes, motifs, modules and the whole network, and further
developed a novel mathematical model for simulating the self-organization of microbial
networks based on a scale-free network [33,34]. We focused on three key questions: (1) How
are direct and indirect interactions in microbial co-occurrence network constrained by both
evolutionary and ecological processes? (2) What is the relative importance of evolutionary
and ecological processes in determining co-occurrence network assemblages? (3) How do
the characteristics of these two processes underpin co-occurrence network stability under
environmental disturbance?

2. Materials and Methods
2.1. Datasets

We obtained meta data from the global ocean data of TARA project [32], and the
samples were grouped into six subsets according to the three depth layers (SRF: surface
water layer; DCM: deep chlorophyll maximum layer; MES, mesopelagic zone) and two
size fractions (free-living: 0.22–3.0 µm; particle-associated: 0.80–5.0 µm) [32,35]. For the
consistency of downstream analyses, the read depths of each sample of metagenomic 16S
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rRNA tags were rarefied to 10,000. Phylogenetic tree of representative OTUs was extracted
from SILVA 128 database (QIIME release) [36] based on 97% similarity.

2.2. Network Construction, Motif and Latent Space Analyses

In each sub-dataset, OTUs observed in over a half of the samples were selected
for network constructions. The correlations between OTUs were inferenced via SparCC
tool [37–39] and carried out by ‘sparcc’ function (iter = 100, inner_iter = 100, th = 0.3) [38].
The correlations between OTUs that were no less than 0.65 were kept for network con-
structions. The memberships of nodes were identified by the fast-greedy modularity opti-
mization method [23] via ‘cluster_fast_greedy’ function. The frequencies of each node for
motif positions in undirected networks were counted using Simmons’s method, which was
conducted via the ‘mcount’ function (six_node = TRUE) [40]. For each node in the network
with the largest connectivity, the positions within the latent space in two dimensionalities
and the probabilities of clustering memberships were calculated by the Variational Bayes
Latent Position Cluster Model (VBLPC) [41]. To determine the optimal number of groups,
we searched the minimum Bayes information criterion (BIC) with desired group scopes
(Figure S1A). The latent space distances between OTUs were calculated as Euclidean dis-
tances. These network analyses were conducted in R version 3.6.1 with the packages of
‘SpiecEasi’ V1.0.7, ‘iGraph’ V1.2.4.2, ‘bmotif’ V1.0.0 and ‘VBLPCM’ V2.4.5 [38,40–42].

2.3. Statistical Analyses

Phylogenetic tree was transferred into pairwise distance matrix via ‘cophenetic’ func-
tion. The optimal habitat value, as a niche for each out, was calculated based on envi-
ronmental variables [43]. Between-OTU niche differences were calculated as Euclidean
distances, and between-OTU differences in topology properties of network motifs and
module levels were calculated as Bray distance based on motif position frequencies and
the probabilities of clustering memberships. We used multiple logistic regression in the
distance matrices with 999 permutations [44] to quantify the effects of phylogeny and
niches on network adjacent matrices (binary data). Similarly, we also used multiple linear
regression in distance matrices to examine the regression coefficients of pairwise phylogeny
and habitat distance against pairwise motif or module differences. These analyses were
performed with packages of ‘base’, ‘vegan’ V2.5–6 [45] and ‘ecodist’ V 2.0.1 [46].

To estimate species preference in phylogeny and niches within networks, we proposed
the novelty network-based metrics (Figure 1), that is, the mean neighbor phylogeny distance
(MNPD) and mean neighbor niche distance (MNND), respectively. These two metrics
were calculated by the following formula:

MNPDi =
1
n
×

n

∑
j

PDij i 6= j (1)

and:

MNNDi =
1
n
×

n

∑
j

NDij i 6= j (2)

where PDij and NDij denote phylogenetic and niche distance between species i and its
neighbor j, and n is the number of neighbors belonging to species i. Further, we constructed
1000 random networks corresponding to empirical networks according to Erdos-Renyi
model and generated a null distribution of null.MNPDi and null.MNNDi values. The
standardized effect scores of ses.MNPDi and ses.MNNDi were given by:

ses.MNPDi =
obs.MNPDi −mean(null.MNPDi)

sd(null.MNPDi)
(3)

and:

ses.MNNDi =
obs.MNNDi −mean(null.MNNDi)

sd(null.MNNDi)
(4)
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pirical networks were randomly shifting with the Erdos–Renyi model, and null distributions of 
MNPD and MNND (null.MNPD and null.MNND) were generated. Third, the standardized effect 
sizes of MNPD and MNND (ses.MNPD and ses.MNND) were calculated based on observed and null 
values. The absolute values of ses.MNPD (ses.MNND) larger than two show statistical significance 
(two sides, p < 0.05). 
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used to classify the network path distance based on species phylogeny and niche distance. 
Finally, we calculated the Pearson’s correlations between phylogeny or niches distance 
and latent space distance across network path distance. These analyses were performed 
with packages of ‘base’ and ‘randomForest’ V4.6–14. 

2.4. Mathematical Mechanism Model 
2.4.1. The dynamic of a Scale-Free Network in Ecology Community 

Most of ecological networks were generally self-organized and exhibited scale-free 
property, such as food webs [48,49], species co-occurrence [20,50] and pollination net-
works [51,52]. In scale-free networks, the probability 𝑝 of a vertex with certain 𝑘 links 
(or degree) followed a power law distribution [33,34,53]: 𝑝(𝑘) =  𝑘  (9)

where γ is an attraction factor. A greater γ means the weaker ability of a node to 
attract other nodes [54]. The value of γ < 3.47 holds for almost all of empirical networks, 
and the most of these are range from 2 to 3 [53,55]. 

Figure 1. The flowchart of the summarizing procedure for estimating mean neighbor phylogeny
and niche distance (MNPD and MNND) at node level. First, the observed MNPD and MNND
(obs.MNPD and obs.MNND) were quantified based on empirical networks. Second, the links of
empirical networks were randomly shifting with the Erdos–Renyi model, and null distributions of
MNPD and MNND (null.MNPD and null.MNND) were generated. Third, the standardized effect
sizes of MNPD and MNND (ses.MNPD and ses.MNND) were calculated based on observed and null
values. The absolute values of ses.MNPD (ses.MNND) larger than two show statistical significance
(two sides, p < 0.05).

To further explore the design principles of ecological networks at the motif level, we
calculated the preferences in phylogeny and niche of motif position j (j = 1, 2, 3 . . . , 148) by:

ses.MNPDj = ∑
i
( fij × ses.MNPDi) (5)

and:
ses.MNNDj = ∑

i

(
fij × ses.MNNDi

)
(6)

where fij is the frequency of the node i in motif position j (∑i fij = 1). As for the module
level, the preferences in the phylogeny and niches of module k were given by:

ses.MNPDk =
∑i
(
λij × ses.MNPDi

)
∑i λij

(7)
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and:

ses.MNNDk =
∑i
(
λij × ses.MNNDi

)
∑i λij

(8)

where λij is the probability of node i clustering into module k.
We tested the linear relationships between the phylogenetic or niches distance and

network path distance with ‘lm’ functions. Further, a random forest algorithm [47] was
used to classify the network path distance based on species phylogeny and niche distance.
Finally, we calculated the Pearson’s correlations between phylogeny or niches distance and
latent space distance across network path distance. These analyses were performed with
packages of ‘base’ and ‘randomForest’ V4.6–14.

2.4. Mathematical Mechanism Model
2.4.1. The dynamic of a Scale-Free Network in Ecology Community

Most of ecological networks were generally self-organized and exhibited scale-free
property, such as food webs [48,49], species co-occurrence [20,50] and pollination net-
works [51,52]. In scale-free networks, the probability p of a vertex with certain k links (or
degree) followed a power law distribution [33,34,53]:

p(k) = k−γ (9)

where γ is an attraction factor. A greater γ means the weaker ability of a node to attract
other nodes [54]. The value of γ < 3.47 holds for almost all of empirical networks, and the
most of these are range from 2 to 3 [53,55].

To explore the assemblage dynamic of microbial co-occurrence networks, we took evo-
lutionary and ecological processes into account and extended the above formula (Figure 2A).
The connectivity strength cij between species i and j is given by:

cij = WPk
−γP,i,j
i,j + WNk

−γN,i,j
i,j i 6= j; i, j ∈ V (10)

where WP and WN are the weight of preferences for the similarity of phylogeny and niches
to cij, respectively, and ki,j is the average degree of i and j. The parameters of γP,i,j and γN,i,j
are the mutual attraction factors between i and j driven by phylogeny and niche similarity,
as described by following formula:

γP,ij = −a + ∑
l

wP,l × Pl (11)

and:
γN,ij = −a + ∑

l
wN,l × Nl (12)

where a is a constant representing the original attraction between species, wP,l and wN,l
are the weights of the preference of phylogeny and niches similarity among species across
network path distance l. If l = 0, wP,0 and wN,0 reflect the direct phylogeny (P0) and
niche (N0) attraction, respectively, originating from the preferences for phylogeny and
niche similarity between i and j. If l > 0, wP,l and wN,l reflect the weight of the indirect
phylogeny (Pl) and niche (Nl) attraction, respectively; attraction received from neighboring
(l = 1); and the non-neighboring (l > 1) vertexes with a distance of l to i or j.

We assumed that wP,l and wN,l accorded with an exponential attenuation model:

wP,l =
AP

1 + exp(BP × (l + 1))
l = 0, 1, 2, . . . , m (13)

and:

wN,l =
AN × (1 + Eh)

1 + exp(BN × (l + 1))
l = 0, 1, 2, . . . , m (14)
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where AP and AN reflects the relative importance of phylogeny and niches, respectively.
BP and BN is the attenuation rate of weight across network path distance l, Eh (Eh > 0) is
the degree of environment heterogeneity. Then, WP is given by:

WP = ∑
l

wP,l/ ∑
l
(wP,l + wN,l) (15)

and:
WN = 1−WP (16)
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Figure 2. The simulation of self-organized assemblages in microbial networks. (A) The self-organized
assemblages of microbial networks constrained by species phylogeny and niches. The connectivity cij

between species i and j is constrained by phylogeny (P) and niches (N). These two constraints could be
directly affected by this pair of species (l = 0) and their neighbor (l = 1) or non-neighbor species (l > 1).
(B) Characteristics of species pool and network initialization. In species pool, species i has preferences
in phylogeny (Ppi) or niche similarity (Npi). The phylogeny and niche distance between species
i and j are denoted by PDij and NDij, respectively. For network initialization, three pairs of species
are randomly selected and linked. The initialized network is denoted by symmetrical adjacent matrix
M (t = 0). (C) The simulation of self-organized assemblages in microbial networks. Symmetrical
adjacent matrix M (t) was repeatedly updated according to network assembly procedures until
termination events were triggered (See details in Supplementary Material) and the complete assembly
of a pre-steady network. When environment heterogeneity changes (∆Eh), M (t) becomes involved
in iterations until iteration termination and achieves a post-steady state. (D) The link dynamic in
network assembly process. The red line is the number of network links across assembly time. The
green and blue lines are the number of loss and gain links in assembly processes.
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The mutual attractions between pair nodes driven by phylogeny (Pl) and niches (Nl)
in network path distance l are given by following formula:

Pl=
1
2

(
Pi,j,l + Pj,i,l

)
, Pi,j,0 = Pj,i,0 (17)

and:
Nl=

1
2

(
Ni,j,l + Nj,i,l

)
, Ni,j,0 = Nj,i,0 (18)

where Pi,j,0 and Ni,j,0 represent the direct mutual attractions of phylogeny and niches
between i and j, respectively, given by:

Pi,j,0 =
1
2
×

Ppi + Ppj

PDij
(19)

and:

Ni,j,0 =
1
2
×

Npi + Npj

NDij
(20)

where Ppi and Npi denote the preference of species i in phylogeny and niche similarity,
respectively. The phylogenetic and niche distances between i and j are represented by PDij
and NDij, respectively. Considering the indirect effects on the co-occurrence of i and j,
the phylogenetic and niche attractions for i or j from non-neighbor species of j or i with a
distance of l are given by Formulas (19) and (20), respectively, as follows:

Pi,j,l =
1
2
×
(

1
q
×

q

∑
k=1

Pp(k,i,l) + Ppj

PD(k,i,l)j
+

1
p
×

p

∑
o=1

Pp(o,j,l) + Ppi

PD(o,j,l)j

)
(21)

and:

Ni,j,l =
1
2
×
(

1
q
×

q

∑
k=1

Np(k,i,l) + Npj

ND(k,i,l)j
+

1
p
×

p

∑
o=1

Np(o,j,l) + Npi

ND(o,j,l)j

)
(22)

where k 6= j, o 6= i, k, o εV. (k, i, l) and (o, j, l) is the aggregations of neighbor or not-
neighbor nodes belonging to i and j with distance l, respectively. The size of (k, i, l) and
(o, j, l) are q and p, respectively.

2.4.2. The Specie Pool Construction

In order to obtain the aggregation of species for ecological network simulations, we
generated species pools with regard to phylogeny and niches (Figure 2B). The community
phylogeny was constructed by a random phylogenetic tree according to the Paradis’s
algorithms [56], and the branch length was generated from uniform distribution U(0, 1).
The niche distance between species i and j is given by:

NDij = cPDi,j + ε for PDij < PS (23)

and:
NDij = U(β1cPS, β2cPS) + ε for PDij ≥ PS; β1 < β2 (24)

where PS is phylogeny signal in the optimal niche, which is a threshold of the phyloge-
netic distance for the linear relationship between phylogenetic and niche distance. The
parameters of c, β1 and β2, are constant, and ε is noise sampled from the normal distribu-
tion N(0, 0.01). Finally, pairwise phylogenetic distance PDij and niche distance NDij are
standardized by Z-score transformation.

2.4.3. Modeling of Network Assembly

At time t0, the species pool with v species and a symmetrical adjacency matrix
Mv×v(t = 0) (mi,j = mj,i, mi,j ∈ 0, 1) with e(t = 0) links is generated. Additionally,
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we then repeated the following five steps until there were no loss and gain links among
nodes or the number of iterations reached the maximum value. The brief procedures are
shown in Figure 2.

Step 1: At time t, existing species i in networks are likely to interact with new in-
troduced species or other existing species that have no interaction with species i. Re-
garding this, through Formula (25), we first calculated the pre-connectivity strength pci,j
between connected node i and its non-neighbor node j with a pre-average degree of i and
j: pki,j = ki,j(t) + 1:

pci,j = Wp pk
−γp,i,j
i,j + Wh pk

−γh,i,j
i,j (25)

Step 2: To restrict the number of novel interactions generated at time t, we define
a threshold pcth that is a quantile of pcij, with a given probability pcth and a minimal
threshold pccon

min. If pcij > min
(

pcth, pccon
min
)
, node i would prepare to connect node j with

probability min
(

pcij, 1
)

through a binomial experiment. After that, a pre-connectivity
adjacency matrix Mcon is created.

Step 3: Then, we generate a transitive adjacency matrix Mtra through:

Mtra = M(t) + Mcon (26)

Step 4: After the introduction of novel species or interactions, original network pat-
terns are changed and some existing interactions between species are weakened and may
disconnect. Thus, we calculated the connectivity strength matrix Ctra based on Mtra through
Formula (25), and then defined a threshold of connectivity strength pcdis

min for disconnection.
If ctra,i,j < pcdis

min, the link between i and j would disconnect with a probability pdis through
the binomial experiment. After that, a pre-disconnected matrix Mdis was created.

Step5: Finally, we obtained the new adjacency matrix at time t + 1 through:

M(t + 1) = Mtra −Mdis (27)

2.4.4. Sensitive Analysis

We conducted a sensitivity analysis for the network assemblage model by Gaussian
generalized linear model (GGLM) and random forest classification. First, the importance of
phylogeny was set as twice as niche in the network assemblage, and the other of parameters
varied within the given ranges (Table S1). Then, we varied the rest of parameters and gener-
ated 100 sets. For each parameter set, we sampled 100 replicates from modeling simulations.
Finally, we defined the sensitivity of modeling outcomes to parameters as the regression
coefficients of GGLM, where the dependent variables were the contributions of phylogeny
and niche distance to network path distance given by random forest classification, and the
independent variables were variable parameters.

To simulate the response of networks in the changes of environment heterogeneity, we
examined the effects of the indirect interactions on the response of network dynamics in
environment heterogeneity. In this model, environment heterogeneity is represented by Eh,
which alters the weight of the contributions of phylogeny and niches to the probability of
species co-occurrence. After completion of pre-steady network G(V, E) with presetting Eh
(default Eh = 0), Eh was increased to 2 and adjacent matrix of G was repeatedly updated.
When the iterations achieved termination, we obtained a post-steady network G′(V′, E′).
Finally, we calculated link turnover, including the percentages of link gain (G) and loss (L)
by following formula:

G =

∣∣Eg
∣∣

|E| × 100%, Eg ⊆ E′, Eg ∩ E = O (28)

and:

L =

∣∣Eg
∣∣

|E| × 100%, Eg ⊆ E, Eg ∩ E′ = O (29)



Biology 2022, 11, 592 9 of 19

where |E| represents the number of links in pre-steady network.

3. Results

Species phylogeny and niche similarity significantly correlated (p < 0.05) with, but
showed differentiated contributions to, the marine microbial co-occurrence network struc-
ture at the motif, module and whole-network level (Figure 3A). Particularly, phylogeny
made more contributions to network construction than niches at the motif level (Figure 3A;
paired t-test, p = 0.07), while it was inconsistent at the module and whole-network level
(Figure 3A; both p > 0.1). Specifically, at mesopelagic zone (MES), phylogeny, rather than
niches, was a primary driver of particle-associated communities across three network
levels (Figure 3A; p = 0.016), but not for free-living communities (Figure 3A). When the
network path distance between species was considered, both phylogeny and niche distance
positively correlated with network path distance up to around three, and then showed
incongruent trends (Figure 3B). Such a phenomenon was further supported by the fact that
phylogeny and niche distances were significantly (p < 0.05) positively related to network
path distance within the same modules (Figure 3C), and these relationships were stronger
than those across modules (Figure 3C). These results implied phylogeny and niche pro-
cesses had strong constraints on network assemblage within a short range of network path
distance, which may be particularly important for network module clustering.
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Figure 3. The effects of species phylogeny and niches on marine microbial network constructions.
(A) The relative contributions of species phylogeny (Phylo) and niche distance to network construction
across motif, module and whole-network (whole) levels in free-living (Free) and particle-associated
(Part) communities at surface water layer (SRF), deep chlorophyll maximum layer (DCM) and
mesopelagic zone (MES), where pattern size and color intensity are the strength of relative contri-
bution, and colors represent the positively (blue) or negatively (red) relative contributions. (B) The
relationships between network path distance and phylogeny or niche distance at the whole network
level, where color represent depth layers (red: SRF; green: DCM blue: MES), and line type represents
community fractions (solid: Free; dashed: Part). The curves were fitted by generalized additive
models. The shaded region indicates standard errors of the curves. (C) The linear relationships
between network path distance and phylogeny or niche distance across modules (blue line) or within
the same modules (red line), where line type is the statistical significance of linear regression analysis
(solid: p < 0.05).
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To determine whether species prefer to interact with phylogenetically close species or
ecologically similar species, we developed novel indicators of mean neighbor phylogeny
distance (MNPD)- and mean neighbor niche distance (MNND)-based ecological networks.
Compared with the module level, nodes and motif positions showed the highest and lowest
divergence, respectively, in ses.MNPD-ses.MNND plots (Figure 4A). Across six groups of
microbial communities, over 95% of nodes showed a preference in phylogeny or niche-
similar neighbors (ses.MNPD < 0 or ses.MNND < 0) and more than 65% of them showed a
statistical significance (ses.MNPD < −2 or ses.MNND < −2; Figure 4B). For motif positions,
all ses.MNPD and ses.MNND values were less than 0. This was especially true for the
mesopelagic zone as all motif positions showed significant preferences in phylogeny or
niche similarity: ses.MNPD or ses.MNND values <−2 (Figure 4B). These results indicate that
phylogeny and niche processes have stronger constraints on network motifs or modules
than on nodes. In addition, ses.MNPD had more significantly (p < 0.05) positive influences
on node connectivity in particle-associated communities than in free-living ones, which
were supported by the generalized linear model (Table 1).
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Figure 4. The mean neighbor phylogeny and niche distance of species in microbial networks. (A) The
ses.MNPD–ses.MNND plot for marine microbial communities across node, motif and module levels,
where ses.MNPD or ses.MNND of motifs and modules were calculated according to the proportions
of their node members. (B) The block proportions in ses.MNPD–ses.MNND plots across nodes,
motifs and modules, where a ses.MNPD (or ses.MNND) larger than 2 indicates that one object has a
significant preference in a more distantly related phylogeny (or niche) at same network level, while
a ses.MNPD (or ses.MNND) less than −2 indicates one object has significant preference in a more
closely related phylogeny (or niche).



Biology 2022, 11, 592 11 of 19

Moreover, a random forest classification analysis [47] showed that phylogeny and
niche distance affected both direct and indirect species interactions, that is, network path
distances = 1 and >1, respectively (Figure 5). Regarding a large network path distance,
the contributions of phylogeny and niches for the network path distance between two
species generally increased and then decreased with a network path distance of around six.
Such patterns showed a peak in the network path distances from two to five (Figure 5A).
Notably, the contribution of phylogeny was around two times higher than that of niches
in particle-associated communities at MES, and showed stronger long-lasting effects on
indirect species interactions (Figure 5A). The highest importance of phylogeny and niches
to network path distance classification were 0.286 and 0.247, respectively (Figure 5A).

Table 1. The influences of ses.MNPD and ses.MNND on node connectivity were analyzed by the
generalized linear model. SRF: surface water layer; DCM: deep chlorophyll maximum layer; MES:
mesopelagic zone.

Size Fraction Layer ses.MNPD ses.MNND

Free-living
SRF 0.133 −0.0236

DCM 0.2302 0.8291 *
MES −0.1677 −0.2277

Particle-associated
SRF 0.7122 *** −0.0927

DCM 0.3903 ** −0.0811
MES 0.1315 −0.7282 **

***: p < 0.001; **: p < 0.01; *: p < 0.05.

To further assess the influence of phylogeny and niches on indirect species interac-
tions, we calculated the latent space distance between species with a variational Bayes
method [41] and estimated the Pearson’s coefficients between the distance matrices of latent
space and phylogeny or niches across the network path distance. We found that species
phylogeny or niche distance significantly correlated with the latent space distance (p < 0.05;
Figure 5B), and these correlations generally decreased with increasing network path dis-
tance when ignoring modularity (Figure 5B). Interestingly, when including modularity, the
constraints of phylogeny on species latent distance in ecological networks weakened. This
is especially true for the particle-associated communities in the deep chlorophyll maximum
layer (DCM; Figure S1B) and there were no significant (p > 0.05) correlations between
species phylogenetic and latent space distances.

To disentangle the ecological significance of the observed indirect species interactions
from the perspective of network stability, we established a mathematical model based on
scale-free network and simulated the processes of microbial co-occurrence network self-
organized assemblages (Figure 2). In a sensitive analysis of model parameters, our results
showed that the distance of long-lasting effects l had a greater influence than the other
parameters, such as community size S and attraction constant a, regarding the contribution
of phylogeny and niche to indirect interactions, particularly in long-distance indirect
interactions (Tables S2 and S3). In addition, the strength of the phylogeny signal in the
niche optima of species significantly (p < 0.05) enhanced the contribution of niches to direct
interactions in the community assemblages, primarily driven by phylogeny (Table S3).

We further simulated the response of the ecological network in environment hetero-
geneity (defined as continuous variable Eh), which could decease the weight of phylogeny
preference on the probability of species co-occurrence [57]. After completeness of pre-
steady network assemblage, Eh was shifted from 0 to 20 and the post-steady network
and was completed until the iterations of the matrix of connection strength terminated
again (Figure 2C). To estimate network stability, we then calculated the link turnover [58],
that is, the percentage of the gain and loss links. When species indirect interactions were
considered in network construction, the ecological network had a better stability in more
heterogeneous environments. Specifically, towards the long distance of long-lasting effects
l, the percentage of gain (Figure 6A) and loss (Figure 6B) links reduced. Further, the influ-
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ences of long-lasting effects on network stability in reducing link turnover were stronger in
large, as opposed to small, communities (ANOVA p < 0.05). Moreover, the percentage of
gain links showed unimodal patterns along the gradient of phylogenetic signals in optimal
niches, with a peak at around 0.08 (Figure 6C). For the percentage of loss links, however,
there was a minor variation until the phylogenetic signal increased up to around 0.01, and
then it decreased rapidly (Figure 6D).
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4. Discussion

The evolutionary and ecological processes on direct [5,6,8,59,60] and indirect species in-
teractions [1,61–64] attracted extensive attention; however, the relative importance of these
two processes on ecological networks and its assemblage dynamics are less understood.
Here, we clearly showed that species interactions were evolutionarily and ecologically
constrained in marine microbial co-occurrence networks across the four levels of nodes,
motifs, modules and whole networks. We further found that evolutionary processes re-
vealed stronger long-lasting effects on indirect species interactions than ecological processes
and dominated the network assemblage in spatially homogeneous but microscopically
heterogeneous environments, such as particle-associated communities in MES. Finally, we
simulated the assemblage dynamics of microbial co-occurrence networks with mathemat-
ically modeling and revealed that, regarding large network path distances, long-lasting
effects improved network stability, as indicated by the decreasing link turnover.

We found that evolutionary and ecological processes generally constrained direct
and indirect species interactions in marine microbial co-occurrence networks. For direct
interactions, the findings were consistent with previous reports on predator–prey networks
and competition networks [11,60]. For instance, over 80% of the observed realized and unre-
alized predator–prey interactions, involving 20 ground beetles and 115 prey species, could
be predicted with phylogeny and functional trait information [11]. We further found that
node connectivity in ecological networks was also associated with phylogeny and niches,
implying that there was a phylogenetical conservatism [65] or niche specialization [66] in
species interactions.

For indirect interactions, the findings on the strong effects of the two processes were
consistent with previous reports of empirical networks among trophic levels, such as plant–
animal-mutualistic [67] or predator–prey networks [1]. For example, with regard to the
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evolutionary processes in mutualistic networks, it has stronger constraints on consumer
levels than resource levels and maintains network stability via positive within-guild indirect
interactions between phylogenetically related species [67,68]. As for ecological processes,
species density and function traits mediate indirect species coexistence and coextinction
in plant–insect communities [1,62,69]. However, these reports show that indirect species
interactions merely happen among three or four trophic levels, while we highlight that
the two species indirectly connected within an ecological network could be generally
constrained by phylogeny and niches, no matter whether they belong to different trophic
levels or not.

Species interactions are fundamental for the assembly of ecological networks, and we
expect that the assembly of the co-occurrence network is also driven by evolutionary and
ecological processes. However, the ways that co-occurrence network assembly is driven by
these two processes is a top-level issue, and could help us to essentially understand the
self-organization of the microbial co-occurrence network. With integrations of empirical
results, we proposed three reasonable principles of co-occurrence network assembly in
marine microbial communities.

First, the phylogeny and niche are the primary drivers used to build the basic network
blocks, such as motifs. For species, our null model analyses suggested that over 74% of
species preferred to co-occur with phylogeny- or niche-related species, which was strongly
supported by previous studies [20,26,28,70]. For motifs, all motif positions displayed the
accordant preferences in phylogeny and niche similarity, which revealed that evolutionary
and ecological processes had strong influences on building network motifs. It should be
noted that, here we did not further consider that the effects of phylogeny and niches may
vary regarding the type and strength of species interactions [10,12,71–74].

Second, both drivers had long-lasting effects on indirect species interactions within
co-occurrence networks, and the strength of such effects decayed toward large network
path distances. The long-lasting effects observed here are that the phylogeny and niche
distance of pair species partly contribute to their indirect interactions, despite the large
network path distance between them. Such findings agree with previous studies on food
webs [12,63,75]. Furthermore, we revealed that the strength of long-lasting effects generally
weakened with the increasing network path distance. Interestingly, the long-lasting effects
of phylogeny and niches mostly occurred within a network path distance of around six,
which may explain the phenomenon that the long-lasting effects were stronger within
the same modules than across different modules. Overall, these long-lasting effects are
short-range and could be the key mechanisms to enhance network modularity.

Third, phylogeny was more important than niches in determining direct or indirect
species interactions when spatial homogeneity was greater. As marine depth increased and
spatial homogeneity increased, the relative contributions of phylogeny to network construc-
tions increased, while niches decreased (Figure 3A). For example, in the mesopelagic zone
and surface water layer, phylogeny dominated the network assembly of particle-associated
communities. However, free-living communities in the mesopelagic zone have no such
phenomenon, which reveals that the microscale stability provided by particle may further
strengthen the effects of phylogeny on the co-occurrence network assembly.

Based on these three principles, we proposed a mathematical model based on a scale-
free network and simulated the self-organization of the co-occurrence network, which
was key to exploring the network properties preceding empirical evidence. For example,
regarding large network path distance, the long-lasting effects of both processes reduced
link turnover and gave the network a strong resistance to environmental disturbances,
indicating that the effects of indirect interactions on network stability may be more impor-
tant than direct interactions [76]. This is particularly true for trophic networks with a low
connectivity and high modularity [77] and for mutualistic networks with a nested archi-
tecture [78,79]. Moreover, the strong phylogenetic signals in optimal niches stabilized the
successions of the co-occurrence network as expected when the determinants of network
assembly shifted from evolutionary to ecological processes [80] (Figure 5B). However, for
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weaker phylogenetic signals, the percentage of gain links increased with the increasing
phylogenetically signal. This might be caused by the increasing level of species connectivity
with a higher strength than the minimum threshold of connections. This priori knowledge
highlights that network stability should be further explored from design principles, except
for network topologies such as size [81], connections [82] and modularity [83], because the
latter are post analytical results and the outcomes of the former. Finally, the contributions of
phylogeny and niches to direct and indirect species interactions had a great variety despite
being from the same set of parameters, and this variety was greater for large network path
distances (Figure S2). On the one hand, this supported multi-stability as the mechanism
gave rise to different communities under the same environmental conditions [84]. On the
other hand, it also indicated that stochastic processes may greatly affect the contributions
of phylogeny and niches to network assembly in remotely indirect interactions.

Here, although we show a reasonable picture on how species phylogeny and niches
shape microbial co-occurrence networks, three major caveats could be acknowledged re-
garding the analytical framework. First, microbial co-occurrence networks were inferenced
by the correlation detection technique, which would lead to reasonable false positive
rates [39], although we did not consider extremely rare species in network constructions.
Meanwhile, specific ecological relationships, such as predation, competition, symbiosis and
mutualism, could not be further accessed, and these ecological networks may have different
and novel findings. Second, there are many correlation detection methods used to construct
microbial networks, such as CoNet [85], RMT [86], MIC [87], LSA [88] and FlashWeave [89],
which consistently produce different numbers and types of significant species correlation
for the same data. Here, we used the SparCC tool for co-occurrence network constructions
because it performed well in compositional data and data sparsity [39] and had significant
edges with high correlations for analyses, which could greatly avoid noise and better than
other tools. Third, some direct species interactions could be driven by indirect species
interactions through other intermediary species, which could not be completely detected
by the current methods and thus would decrease the robustness of results.

5. Conclusions

We found that direct and indirect species interactions in marine microbial co-occurrence
networks were evolutionarily and ecologically constrained across four network levels of
node, motif, module and the whole network, resulting in the small-world phenomenon
of ecological networks. Compared to ecological processes, evolutionary processes domi-
nated network assemblages in spatially homogeneous environments and showed stronger
long-lasting effects on indirect species interactions. The contributions of two processes
decreased toward long network path distance, but such long-lasting effects played a key
role in stabilizing network link turnovers under environmental disturbances. These results
provide a novel insight into the self-organization and modularization of marine microbial
co-occurrence networks and highlight the importance of species phylogeny and niches in
ecological network assemblages.
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