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Simple Summary: Palm oil is one of the main crops produced in Southeast Asia. However, the palm
oil plantations within the region were severely affected by the basal stem rot (BSR) disease, caused by
Ganoderma boninense. The disease causes substantial economic losses to oil palm producers, especially
Indonesia and Malaysia. This review will cover the current knowledge on G. boninense published
within the last 10 years.

Abstract: Plant pathogens are key threats to agriculture and global food security, causing various
crop diseases that lead to massive economic losses. Palm oil is a commodity export of economic
importance in Southeast Asia, especially in Malaysia and Indonesia. However, the sustainability
of oil palm plantations and production is threatened by basal stem rot (BSR), a devastating disease
predominantly caused by the fungus Ganoderma boninense Pat. In Malaysia, infected trees have
been reported in nearly 60% of plantation areas, and economic losses are estimated to reach up
to ~USD500 million a year. This review covers the current knowledge of the mechanisms utilized
by G. boninense during infection and the methods used in the disease management to reduce BSR,
including cultural practices, chemical treatments and antagonistic microorganism manipulations.
Newer developments arising from multi-omics technologies such as whole-genome sequencing
(WGS) and RNA sequencing (RNA-Seq) are also reviewed. Future directions are proposed to increase
the understanding of G. boninense invasion mechanisms against oil palm. It is hoped that this review
can contribute towards an improved disease management and a sustainable oil palm production in
this region.

Keywords: basal stem rot; biological control; Ganoderma; fungal pathogen; mating; palm oil;
plant–microbe interactions

1. Introduction

Oil palm is one of the most important oil-producing crops in the world, as it contributes
~34% of the world’s vegetable oil and fat supply [1]. However, the sustainability of oil
palm plantations and palm oil production in Southeast Asia is affected by pests such as the
bagworm and the beetles Rhynchophorus ferrugineus and Oryctes rhinoceros [2–4], as well as
diseases like upper stem rot (USR) and basal stem rot (BSR), caused by fungi of the genus
Ganoderma [5–7]. BSR has by far been the most serious disease of oil palm in Malaysia in
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the last 30 years, with increasing disease incidents and infection rates from 1.5% in 1995
to 7.4% in 2017 [8]. Typically, plants infected by the fungus stop producing fruits and die
within 2–3 years [9,10]. Infected oil palms usually produce lower yields due to the reduced
weight of fruit bunches. Economic losses due to stem rot diseases in Malaysia are estimated
to reach values of up to USD500 million a year [11].

Multiple species of Ganoderma have been reported to incite BSR disease in oil palm
in Southeast Asia, namely Ganoderma boninense, Ganoderma zonatum and Ganoderma minia-
tocinctum [12]. Amongst these species, G. boninense is the most prominent causal agent of
both BSR and USR [13,14]. By 2020, the total plantation area affected by BSR is estimated to
be around 443,430 ha (equivalent to 65.6 million oil palms). Together, both BSR and USR are
the most severe diseases affecting oil palm plantations across Southeast Asia [15], reducing
yield, increasing plant mortality and necessitating replanting [11].

Ganoderma is a white-rot fungus that belongs to the family Ganodermataceae and the
class Agaricomycetes. As with all members of Basidiomycota, Ganoderma have specialized
reproductive spores (or basidiospores) that are important in maintaining the sexual cycle
and also serve as the main air dispersal unit. Ganoderma boninense is characterized by large
and woody bracket basidiocarps, which typically grow on the trunks of trees and, like all
other white-rot fungi, degrade the lignin component in wood (Figure 1).
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Figure 1. The morphological diversity of G. boninense observed during different life stages. (A) Ba-
sidiospore structure observed under the light microscope (100X magnification); (B) Monokaryotic
mycelia of G. boninense PER71 grown on Potato Dextrose Agar (PDA) (age 7 days); (C) Dikaryotic
mycelia of G. boninense PER71 grown on PDA (age 7 days); (D) Monokaryotic mycelia observed
under the light microscope (100X magnification); (E) Dikaryotic mycelia observed under the light
microscope (100X magnification) with the presence of a clamp connection in dikaryotic mycelia (red
circle); (F) Formation of basidiocarps on the basal stem of the infected oil palm tree; (G) Formation of
basidiocarps on rubber wood block (artificial inoculation and formation of G. boninense basidiocarps);
(H) The symptoms of BSR disease observed on oil palm trees, such as lower leaves collapsing and
hanging downwards vertically from the point of attachment to the trunk; (I) The oil palm trunk falls
over due to the decay of the inside basal stem (red arrow). Scale bars: 10 µm (A,D,E).
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2. G. boninense Life Cycle

Basidiomycetes employ two different strategies for reproduction: sexual spores and
vegetative mycelia. Although G. boninense possesses both mechanisms of reproduction,
basidiospores are believed to be the primary source of inoculum [16], as they are easily
dispersed by wind or animal vectors. Once it reaches a suitable environment, the basid-
iospores germinate to form monokaryotic vegetative mycelia. The monokaryotic mycelia
typically grow saprophytically in the environment by feeding on dead plant material. Nu-
clear exchange and migration follow, resulting in the formation of a dikaryotic mycelium,
which then invades and establishes itself within the plant host. The dikaryotic mycelia
later gives rise to the formation of the fruiting body (Figure 1F) under appropriate envi-
ronmental conditions. The fruiting body (or basidiocarp) is a multicellular reproductive
structure in which karyogamy occurs and meiotic spores are produced. The sexual cycle
of Ganoderma sp. is completed once the basidiocarp produces basidiospores (Figure 2).
The regulation of sexual reproduction by the tetrapolar mating system promotes outbreed-
ing and the diversity of their genetic content in the same plantation area, thus resulting
in dynamic populations, and is most probably the primary cause that leads to inefficient
disease management [16,17]. The genetic variability was reported to be higher especially
for isolates from different geographical origins. Due to the high divergence of the genetic
pool between distinct isolates, different strains exhibit a different degree of aggressiveness
and tolerance toward biological control and fungicides [6,17,18].

Previous reports have suggested that G. boninense is a heterothallic species with bifac-
torial incompatibility due to their possession of two unlinked mating-type loci, known as
mating-type A (matA) and mating-type B (matB) [19,20]. Further studies showed that this
species has multiple alleles at both mating-type loci, with at least 81 matA and 83 matB
alleles [21]. Studies have also shown that G. boninense requires a compatible partner in
order to mate and initiate the sexual cycle—a common feature of heterothallism. Only
monokaryons possessing two unlinked mating-type loci are able to initiate the mating
pathway and undergo the complete sexual cycle, as ruled by the tetrapolar mating sys-
tem [18]. The first locus, usually known as matA, is biallelic and harbors genes encoding
for homeodomain transcription factors, while the second locus, known as matB, is multial-
lelic and contains pheromone receptor genes and pheromone precursors [22]. Our initial
analyses using the available genomic data indicated that the matA locus of G. boninense
covers about 360 kilobases in size, and includes genes encoding for both homeodomain
transcription factors 1 and 2 (unpublished data), which is similar to those reported in
other Ganoderma sp. [23]. In addition, the matB locus of G. boninense contains at least ten
pheromone receptors and four pheromone precursors (unpublished data). The matB genes
also play a critical role in mate recognition and choreographs the interactions between
prospective mating partners. The initial stage of mating after hyphal fusion begins through
the activation of the pheromone response pathway. The activation of the mating pathway
is also necessary to override the heterokaryon incompatibility system that is ordinarily
triggered when different and genetically distinct hyphae fuse [24]. Other than mate recog-
nition, the matB genes are also essential for nuclear migration, septal dissolution and clamp
cell fusion [25].

The binding of the pheromones with compatible pheromone receptors activates the
transcription of genes related to the mating process through the MAP kinase-mediated
signaling cascade [26]. The successful activation of the pheromone response pathway leads
to the dissolution of septa and plasmogamy. Thereafter, the matA genes homeodomain
1 (HD1) and homeodomain 2 (HD2) will serve as the second incompatibility checkpoint.
Compatible mating partners bring together the HD1 and HD2 that heterodimerize by
polar-hydrophobic interaction, thereby generating an active transcription factor complex
that commits mated cells to sexual development [27]. The matA genes are essential for
nuclear pairing, clamp cell formation and coordinating nuclear division and are also
involved in clamp cell septation. Both matA and matB genes work coordinately to maintain
the successfully established dikaryotic stage. In Ustilago maydis, mating-type genes are
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also categorized as virulence factors because they are involved in the activation of other
pathogenesis-related genes [28]. Besides, mating is also crucial in ensuring survival and
maintaining the genetic variation of many pathogenic fungi.

The mating event provides numerous advantages: it gives rise to novel gene combina-
tions and facilitates the adaptation of the species toward changing environments; it serves
to remove mutations that have arisen within the genome as well as increase the efficiency of
DNA repair via homologous recombination, in which the second copy of the nucleus will
act as a template for DNA repair; and it helps raise the possibility of the fungi establishing
better-suited structures and mechanisms for host invasion [29,30], as has been shown in
other basidiomycete fungal pathogens, such as Puccinia graminis f. sp. tritici [31] and
U. maydis [32].
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Figure 2. The life cycle of G. boninense. The G. boninense fruiting bodies produce millions of basid-
iospores which can be spread by numerous vectors, such as wind and animals. The basidiospore
germinates to form mycelia (monokaryotic form), which is non-pathogenic to the oil palm tree [33].
The mating between compatible mates of choice (monokaryon/dikaryon) will form the pathogenic
dikaryotic mycelia. The dikaryotic mycelia then begins to colonize the root and basal stem of the oil
palm tree. Dikaryotic mycelia will undergo hyphae morphogenesis to form a needle-like structure to
facilitate the penetration into the host cells. G. boninense infection of the oil palm tree will manifest as
the formation of basidiocarps on the basal stem of the infected tree. However, there are cases where
the palms dies and collapses in the field without the formation of a G. boninense fruiting body.

3. Plant–Microbe Interaction

The mechanism of G. boninense infection of oil palm and its dispersal within oil palm
plantations is not fully understood. An earlier study suggested that the colonization of
Ganoderma sp. in the oil palm field is achieved through several methods, that include
contact between healthy and diseased roots [34]. Colonization by mycelia can also occur on
wounded or dead roots. As the oil palm roots can continue to grow beyond four planting
rows, this inevitably results in root-to-root contact between palms, enabling the spread of
Ganoderma sp. The growing presence of patches due to BSR infection over time has also led
to the theory that roots are the primary source of inoculum in the field [35]. Furthermore,
oil palm debris that has been colonized by G. boninense mycelia can also act as an inoculum
source, thus sustaining the spread of G. boninense even after the replanting of new trees [33].

Management of BSR is difficult and challenging, as the formation of infective dikary-
otic mycelia continues through mating between the mycelia and newly germinated basid-
iospores. The basidiospores can travel long distances through wind and disseminate in the
same, or even across different plantation areas [16,21]. The fungus then grows along and
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invades the roots through wounds or by puncturing the healthy plant cells [36] through
the formation of needle-like structures [37] that eventually penetrate the epidermis layer
of the oil palm roots. At advanced stages of infection, the fungal hyphae can be detected
in the xylem, phloem, pith and parenchymal cells [36,38,39]. The formation of black lines
within the infected tissues will lead to the infection in the stem [40]. Under microscopic
observation, the black lines are seen as embedded thick-walled, swollen structures of the
G. boninense hyphae, which are postulated to play a crucial role in long-term survival in the
soil [40] by generating a resistant barrier against other soil microorganisms. Conversely,
monokaryotic mycelia remain non-pathogenic due to their incapability of causing damage
to—and infecting—the oil palm [41,42].

Being a hemibiotroph, G. boninense is able to switch their lifestyles between biotrophic
and necrotrophic phases, depending on the environment and its conditions [36,43]. The fun-
gus exhibits a biotrophic phase during initial stages of infection when hyphae colonize
the host plant. The transition to the necrotrophic phase, which involves extensive cell
wall degradation, occurs once the pathogen overcomes the host defenses [11,44]. Other
pathogenic fungi with similar modes of infection include Botrytis cinerea, Rhizoctonia solani
and Sclerotinia sclerotiorum [44,45]. These pathogens produce small cell wall-degrading
enzymes (CWDEs), including cellulase, laccase, polygalacturonase and manganese per-
oxidase, to soften and loosen the host cell wall without detrimentally affecting the host
cells [46]. During early infection of the oil palm root, G. boninense hyphae will colonize the
roots and secrete trace amounts of CWDEs, including polygalacturonase and laccase [47,48],
to enable the establishment of a continued supply of nutrients from the living cells of their
hosts. The secreted CWDEs will then degrade the host cell wall and affect the integrity
of the cell-wall polysaccharides by triggering the release of damage-associated molecular
patterns (DAMP) molecules by the host [47,49]. These endogenous danger molecules inter-
act with transmembrane pattern recognition receptors to activate the plant host’s primary
innate defense response, also known as pathogen-associated molecular pattern-triggered
immunity (PTI) [50]. This process initiates the production of several response molecules
such as reactive oxygen species (ROS) and phytoalexins, and trigger cell wall alterations
and the accumulation of pathogenesis-related (PR) proteins [51,52].

Furthermore, the oil palm also initiates a secondary defense system, known as effector-
triggered immunity (ETI), to monitor the presence of effectors secreted by the pathogen [52].
The presence of an effector triggers a hypersensitive response (HR) that will execute
programmed cell death (PCD) and other locally induced defense responses to restrict the
growth of G. boninense [43]. The increased plant defense responses during the biotrophic
phase will trigger ROS overproduction, causing cellular damage in the fungus and a
change toward the necrotrophic lifestyle [43]. A phytopathogen’s biotrophic phase can
often be prolonged due to evolution under selection pressure in order to avoid host defense
responses and weaken the ETI of the host [44]. Effectors are important to suppress PTI
and HR, assisting disease development by inducing the abscisic acid (ABA) pathway and
producing metabolites to suppress jasmonic acid (JA)- and salicylic acid (SA)-induced
defense responses by the plant host [44,52,53]. The failure of the plant host to detect
the effectors will reduce the production of plant resistance proteins (RPs), whereas the
failure to trigger ETI leads to the susceptibility of the pathogen. During the necrotrophic
phase, the fungus will secrete various phytotoxic compounds and CWDEs to cause nutrient
leakage [43,52]. As the infection becomes more severe, hyphae outside the root will form
tough and melanized mycelia by encapsulating the thin-walled hyphae with layers of
thick-walled cells around the roots, resulting in massive hyphae aggregations and the
formation of basidiocarps [36]. The presence of basidiocarps on an infected palm signifies
that the plant is in the severe infection stage, and the progression of decay has occurred
inside the plant. Over time, the plant will die, and the necrotrophic phytopathogen causing
plant death will continue to live saprotrophically.

The microscopic examination of infected palms at the cellular level revealed the estab-
lishment of biotrophic nutrition by G. boninense during colonization. The fungus degrades



Biology 2022, 11, 251 6 of 18

the lignin to weaken the rigid plant cell-wall structure prior to starch consumption [36].
Generally, three key events occur during host colonization by hemibiotrophs, namely,
(i) penetration, (ii) nutrient absorption at the expense of the host, and (iii) host death [36].
Currently, little is known on the proteins or enzymes involved during host penetration,
whereas the second and third components are well characterized in G. boninense patho-
genesis. A recent study has shown that a reduction of G. boninense colonization occurred
along with a significant up-regulation of the pathogenesis-related protein 1-like (PR-1)
gene, which is produced as part of the oil palm’s defense mechanism [43]. They further
proposed that the high expression of PR-1 resulted in the sequestration of ergosterol, a part
of the primary metabolite and cell-wall component in G. boninense. PR-1 protein has been
reported to have fungicidal properties and is produced by the host plant to combat the
further invasion of the host by fungal pathogens [43].

Recently, it was revealed that G. boninense colonizes the host by forming needle-like
microhyphae that facilitate the penetration of oil palm roots [37]. The thin-walled microhy-
phae usually have an extracellular matrix that undergoes a highly localized degradation of
its cellulose component, resulting in a matrix that extends into minute cracks of the cell
wall (Figure 3). This feature has also been observed in other fungal pathogens such as
Fusarium oxysporum [54] and Heterobasidion parviporum [55]. In contrast, the microhyphae
produced by Neurospora crassa, Ophiostoma ulmi and Phellinus noxius are activated during
growth in the presence of inhibitors [56]. In response, the plant reacts by enhancing ROS
production through an oxidative burst [57].
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4. G. boninense Multi-Omics Data

With the advancement and improvement of sequencing technologies, genome and
transcriptome sequencing has become the approached method in understanding micro-
bial interactions with the environment [58,59], animal hosts [60] and plant hosts [61,62].
Currently, the genomes of five pathogenic strains of G. boninense have been sequenced:
two strains isolated from Indonesia, i.e., the strains NJ3 and G3 [63,64]; and three strains
isolated from Malaysia, i.e., PER71, BRIUMSc [65] and FGV-M [66]. All genome datasets
are freely available from the NCBI database (Table 1).

The difference in the genome size between all the sequenced G. boninense strains sug-
gests that a high genome diversity exists between these strains, and perhaps, portions of the
genome have suffered duplications or deletions during the evolution of the various strains.
In addition, the complete mitochondrial genome of this fungus is 86,549 bp. The total num-
ber of genes encoding for proteins is 51, with 15 conserved proteins, 4 hypothetical proteins,
5 homing endonucleases and 27 tRNAs, as well as small and large rRNA subunits [67].
Furthermore, a pan-genome analysis of eight draft genomes of Ganoderma sp. showed that
of 35,121 orthologous genes (OGs), only 4898 genes are shared in all species [68]. The re-
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maining 30,223 genes were classified as accessory genes in the genome, among which 1905
are species-specific genes. Interestingly, comparative genomic analyses between the non-
pathogenic G. lucidum and the pathogenic G. boninense led to the discovery of 607 genes
found only in the genome of G. boninense, thus suggesting their role in G. boninense‘s
pathogenicity toward its host [68]. Most phytopathogenic fungi have well-established
arsenals of carbohydrate-active enzymes (CAZymes), including CWDEs secreted during in-
fection. A recent study has shown that the G. boninense genome has 755 CAZyme- encoding
genes, of which 465 encode for CWDEs, including carbohydrate esterases (CE), glycoside
hydrolases (GH) and polysaccharide lyases (PL) [47].

Table 1. Current whole genomic and mitochondria data of G. boninense available in the pub-
lic database.

Strain Source of Isolate Sample Type Genome Size Accession Reference

PER71
Peninsular
Malaysia,
Malaysia

Genomic DNA - PRJNA182005 Broad
Institute

NJ3 North Sumatra,
Indonesia Genomic DNA 65.03 Mb PRJNA287769 [64]

G3 North Sumatera,
Indonesia Genomic DNA 79.24 Mb PRJNA421251 [63]

FGV-M
Peninsular
Malaysia,
Malaysia

Genomic DNA 66.57 Mb PRJNA503786 [66]

BRIUMSc Borneo, Malaysia Genomic DNA 52.28 Mb PRJNA553124 [65]

G3 North Sumatera,
Indonesia

Mitochondrial
DNA 86,549 bp PRJNA421251 [67]

The genomic analysis of the publicly available genome databases of Ganoderma sp.
strain 10,597 SS1, G. lucidum strain Xiangnong No.1, G. lucidum BCRC 37,177 and G. lucidum
strain G.260125 has found that the products of the matA genes from all strains are highly dis-
similar in sequence, and hence represent four different mating type specificities [23]. As for
the matB genes, around 8 to 9 different pheromone receptor genes and 10 pheromone
precursors were found to be located within a 60–100 kb long sequence region in all
4 genome databases.

Three different RNAseq G. boninense libraries, namely the monokaryon, dikaryon and
the mating junction of two compatible monokaryons, were generated and analyzed [69].
These datasets were deposited and are publicly available in the NCBI database with ac-
cession number PRJNA269646. Several mating factors were up-regulated in the mating
junction library, including the pheromone receptor, STE3 [70], which is involved in the mat-
ing signaling pathway of other fungi [71], thus confirming their function in the formation
of the dikaryon in G. boninense.

To further identify the pathogenicity factors produced by this fungus during infection,
RNAseq analyses of the fungus were carried out on the infected plant host. The RNAseq
data is available in the NCBI database with the accession number PRJNA514399 and is the
first reported data to uncover the molecular mechanisms and pathways during G. boninense
infection toward the oil palm in planta. However, external environmental factors such as
temperature, osmotic stress and moisture have affected the expression levels of several
pathogenicity genes [72]. Several genes including CAZymes, which belongs to six families
of auxiliary activities (AA) enzymes—such as five multicopper oxidases (AA1_1), four
glucose-methanol-choline (GMC) oxidoreductases (AA3) and a copy of peroxidase (AA2),
copper radical oxidase (AA5), and benzoquinone reductase (AA6)—were up-regulated
in the fungal–plant interaction [49]. Besides, a copper-dependent lytic polysaccharide
monooxygenase (LPMO) which belongs to the AA9 (formerly GH61) family was also
up-regulated during its interaction with the plant host [49] (Table 2). The oil palm tree
expressed several genes as its defense, such as the pathogenesis-related protein 1-like
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(EgPR-1), expansin-B18-like (EgEXPB18) and chitinases (EgCht), which were significantly
up-regulated during the early stage of infection (3 and 7 days post-inoculation). Besides,
some genes were down-regulated during the infection by G. boninense, such as GDSL
esterase/lipases 5 (EgGLIP5) and monogalactosyldiacylglycerol synthase 1 (EgMGD1) [43],
which has been simplified in Table 2.

Phytopathogenic fungi, including G. boninense, secrete several non-catalytic proteins,
including cerato-platanin proteins (CPPs), which play essential roles in the interactions
between fungi and hosts. Many CPPs are available in plant pathogenic fungi, and these
proteins serve as virulence factors in the interactions of fungi with plants [73]. Our pre-
liminary analyses have identified 22 CPPs in the genome of G. boninense G3 (unpublished
data). Generally, CPP encoding genes’ expression was higher during the early phase of in-
fection [68]; however, a previous study has shown that G. boninense CPP is down-regulated
during the infection [49]. We hypothesize that the infection was at the late phase because
the sample was collected 30 days after inoculation. Thus, the fungus did not require CPPs
to be expressed, as the host immune system had been activated.

RNAseq data sequences of infected oil palm tissues from three different conditions,
including the healthy section of infected oil palm (IPHT), the near-rot section of infected
oil palm (IPIT) and the cross-section of a healthy tissue section of healthy oil palm tree
(HPHT), have been generated [74]. These data will undoubtedly lead to a better under-
standing of the genes responsible for, and implicated in, G. boninense infection toward its
host. The raw RNAseq reads are available in the BioProject (NCBI) with the accession
number PRJNA530030.

Several genes encoding CWDEs, especially transcripts involved in the lignin degra-
dation process, including the laccase genes, were up-regulated in a carbon-rich culture
incorporating oil palm sawdust [48]. Laccase has diverse biological functions, and several
studies have shown that fungal laccases also play a role in pathogenicity. G. boninense‘s
genome possesses 33 laccase encoding genes. However, the expression levels of these
laccase genes were unique depending on the aggressiveness of the G. boninense strain; high
virulence (I13), moderate virulence (NJ3) and low virulence (G13) with 11, 7 and 5 lac-
case genes, respectively, were up-regulated [48]. It was postulated that the differentially
expressed laccase transcripts between isolates were related to the capability of the strain
to degrade the stem. In addition, another study has shown that two cyclophilin genes
(GbCYP203 and GbCYP205) were up-regulated during in vitro infection toward the oil
palm and were postulated to be involved in G. boninense pathogenicity [75]. Furthermore,
another gene postulated to play a role in the pathogenicity of G. boninense, known as necro-
sis and ethylene-inducing 2 protein (GbNEP), was studied. The gene encoding GbNEP
was cloned and expressed recombinantly in a bacterial system. The infection assay of the
recombinant protein (in vitro) revealed that the rGbNEP could induce necrosis in tobacco
and tomato. However, the rGbNEP was unable to induce the same symptoms in oil palm
leaves and root tissues [76].

Studies on the global gene expression analysis of the host response after the inoculation
with G. boninense have shown that the plant host expresses several genes that are required in
the biosynthesis of phytohormones such as ethylene, methyl jasmonate (MeJA) and methyl
salicylate (MeSA). Furthermore, several antioxidants, such as L-ascorbate and myoinositol,
were also highly expressed, whereas many genes required for photosynthesis were down-
regulated during infection by this fungus [53]. The oil palm also produces PR proteins
such as protease inhibitors, chitinases and secondary metabolites that possess fungicidal
properties against G. boninense as its defense response to the fungal pathogen [43,52].
All data generated from these different studies could be used to determine the genes
responsible for infecting the oil palm tree (Table 3).
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Table 2. List of up-regulated and down-regulated genes between G. boninense and the plant host
seedlings, E. guineensis.

Gene(s) Up-Regulated Genes Down-Regulated Genes

Fungus (G. boninense) [49]

Plant Cell Wall Degrading Enzymes (CWDEs)

multicopper oxidases (AA1_1) /(5) -
glucose-methanol-choline (GMC) oxidoreductases (AA3) /(4) -

peroxidase (AA2) /(1) -
copper radical oxidase (AA5) /(1) -

benzoquinone reductase (AA6) /(1) -
copper dependent lytic polysaccharide monooxygenase (LPMO)

(AA9) /(1) -

xyloglucan hydrolases (GH16) /(2) -
carboxylesterase enzymes /(2) -
α-glucosidase (GH31) /(1) -

β-galactosidases (GH35) /(2) -
α-glucuronidases (GH15) /(2) -
β-glucuronidases (GH79) /(2) -

pectate lyases 3 (PL3) /(2) -
pectate lyases 8 (PL8) /(1) -

Fungal Cell Wall Remodeling and/or Degrading Enzymes

chitin synthase (CHS) /(1) -
chitinase /(1) /(5)

endochitinase /(1) -
Beta-glucanase - /(2)

Small Secreted Proteins

hydrophobins - /(4)
cerato platanins - /(3)

Stress Response Proteins

thaumatin-like proteins - /(5)

Protease

metalloproteases /(5) -

Oil palm (E. guineensis) root tissues [43]

Pathogenesis-Related (PR) Proteins

pathogenesis-related protein 1-like (EgPR-1) / -
peroxidases (EgPER) / -

germin-like proteins (EgGLP) / -
chitinases (EgCht) / -

Secondary Cell Wall Biosynthetic Genes

cellulose synthase A catalytic subunits (EgCESA) / -
cellulose synthase-like proteins (EgCSL) / -

expansin-B18-like (EgEXPB18) / -

Lipid Metabolism

GDSL esterase/lipases 5 (EgGLIP5) - /
monogalactosyldiacylglycerol synthase 1 (EgMGD1) - /

Biosynthesis of Phytohormones

allene oxide cyclase 1, chloroplastic-like (EgAOC1) - /
12-oxophytodienoate reductase 1-like (EgOPR1) - /

1-aminocyclopropane-1-carboxylate oxidase-like (EgACO) - /
L-ascorbate L-gulonolactone oxidase-like (EgGULO) - /

(/) = Yes. (-) = No. Number of detected genes in parentheses.
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Table 3. Current G. boninense-related transcriptomic data are available in the public database.

Transcriptome Data Sample Accession Reference

G. boninense
Monokaryon
Dikaryon
Mating Junction

PRJNA269646 [69]

G. boninense at axenic culture
pathogen–oil palm interaction PRJNA514399 [72]

Oil palm root
infected with G. boninense
infected with G. boninense +
Trichoderma harzianum

PRJEB7252 [52]
[77]

Oil palm infected by G. boninense PRJNA530030 [74]
Oil palm leaf infected with G. boninense PRJEB17971 [53]

Oil palm early interaction with G. boninense PRJEB27915 [43]

5. Detection and Control Strategies

To date, no disease management method has been effective [10] in preventing the
continuing spread of Ganoderma disease. The primary mode of infection occurs in the soil,
thus making detection difficult [78]. Current detection methods rely on observing visible
symptoms exhibited by infected trees, such as a yellowing and orange discoloration of
the leaves, withering, crown flattening and unopened spear leaves [79]. However, this
detection method sometimes results in misdiagnosis because these symptoms could also be
caused by other factors, such as malnutrition and drought. The appearance of G. boninense
fruiting bodies on the infected trees indicates that the disease is already at the late stage of
infection [7]. In advanced cases, the oil palm stem might rupture [42], thus restricting the
absorption of water and nutrients from the roots to the leaves, leading to chlorosis [13].

A typical early detection method for BSR involves the drilling of suspected infected
plant material from the palm tree. The plant sample is then cultivated on selective media
to detect the presence of Ganoderma [80]. This method is time-consuming and inaccurate,
and the disease is already well-established by the time results are generated. Molecular
detection methods began to be developed after 2000 due to the advancement of techniques
during that time. A PCR-based detection was developed, involving a combination of
primers used to amplify specific markers for Ganoderma detection [81]. A detection method
utilizing an immuno-based assay by an enzyme-linked immunosorbent assay (ELISA) using
monoclonal antibodies was developed [82]. The immunosorbent assay has the advantage of
being more straightforward and faster compared to PCR; however, the results were varied
and inconsistent [83]. In addition, these assays produced false positives and cross-reactivity
with other fungi commonly found in oil palm plantations [82,84].

Currently, research has been focused on developing new detection methods that are
fast and highly specific. Loop-mediated isothermal amplification (LAMP)-based detection
was developed because it is highly sensitive as compared to PCR-based techniques, where
it only requires a 0.002 ng/µL DNA template compared to the 0.02 ng/µL needed for
PCR-based detection methods [85]. In addition, the LAMP primer pair designed to amplify
bug1A showed the potential to be used in detection because it can specifically identify
and differentiate pathogenic Ganoderma species (such as G. boninense, G. zonatum and
G. miniatocinctum) from other non-pathogenic Ganoderma [85]. Moreover, this LAMP-based
detection technique is superior in detecting pathogenic Ganoderma species as compared to
ELISA, which results in cross-reactivity and false-positive outcomes due to the unsuccessful
blocking between the antigen and the G. boninense polyclonal antibody. Another advantage
of using LAMP is its simpler sample preparation, minimizing cross-contamination and
generating results within 30 and 60 min [86]. Furthermore, the researcher can alter the
reaction mixture according to their preference, and the experiments can be visualized
on-site by a portable machine.

Furthermore, several groups have focused on developing a new detection method
using electrochemical sensors with different types of particles, including gold nanoparticles
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(AuNPs) and carbon nanotubes (CNTs) [87,88]. Recently, a combination of polymer pen
lithography (PPL) and DNA–gold nanoparticle (DNA–AuNP) conjugates were developed
for G. boninense [89]. This technique provides better precision in detecting G. boninense in
plant samples, including the unamplified genomic DNA of this fungus. However, these
electrochemical sensing methods are costly and time-consuming and can only detect BSR
at the later stage of infection. Therefore, it is vital to develop faster and cheaper methods
for detecting this fungus, especially at the early stages of infection.

Various methods have been used to control BSR, including soil mounding and surgical
removal of dead plant tissue, together with the basidiocarps and chemical treatments
by injecting fungicides into the tree [13,79]. Some plantations, however, still practice the
burning of infected materials, creating environmental issues in the region.

Several fungicidal chemicals have been tested for Ganoderma, and one of the most
widely tested chemicals in the field is hexaconazole [40,90]. Hexaconazole is able to reduce
the risk of Ganoderma infection in healthy mature palm trees [34]; however, field tests
have shown that the fungicide residues are moderately present in leaf samples up to
70 days after the treatment [91]. Another chemical that shows potential in Ganoderma
treatment is a microgranular fumigant known as dazomet, which emits a toxic gas known
as methyl isothiocyanate (MITC) when it interacts with water [92]. Dazomet treatment
(1000 g) can prevent the growth of a Ganoderma inoculum up to 90% in infected stumps [93].
A recent study identified pyraclostrobin, which could be used as a fungicidal agent against
G. boninense. Pyraclostrobin has shown dual functions: suppressing G. boninense while
concomitantly improving plant growth. Pyraclostrobin also induces the host-defense-
related gene, β-1,3-glucanase [94]. However, further investigation is still required to
determine the effect of the continuous usage of this fungicide on the biodiversity of the soil
microbiome, as well as its effect on the environment.

With numerous unsuccessful attempts to reduce the disease and the concerning effect
of fungicides on the environment, the current focus of research has shifted toward iden-
tifying potential biological control agents against the fungus. One of these focuses is the
identification of microbial antagonists to the phytopathogen. Although several potential
microbial biological control agents have been identified, including bacteria [12,95], acti-
nomycetes [95,96], endophytes [97], fungi [98] and seaweed [99], these biological control
methods do not act universally toward G. boninense (Table 4). An efficient microbial bi-
ological control agent with a high percentage inhibition of radial growth (PIRG) values
toward one strain of G. boninense did not exhibit similar high PIRG values toward a dif-
ferent dikaryotic strain of the same fungus. This is believed to be compounded by the
tetrapolar G. boninense mating system, which renders it highly capable of diversifying its
genetic makeup, leading to a variation in genome composition [100]. An advantage of
bio-control agents is their ability to evolve and adapt along with the phytopathogen, often
showing primacy over them. At the same time, it must be noted that their ability to adapt
determines not only the success of the control of the target pests, but also the possibility
(and extent) of non-target effects. Thus, follow-up studies or long-term monitoring needs to
be considered to properly assess the effect of bio-control agents in field conditions outside
of controlled laboratory settings. Furthermore, questions have also been raised regarding
the execution of this method, especially regarding the cost and reliability of biological
agents in alternative disease control strategies [10,100,101].

Biological control agents often secrete specific substances, otherwise known as sec-
ondary metabolites, responsible for their fungistatic and/or fungicidal effects on fungal
pathogens [103]. Currently, a few compounds isolated from different microbial species
were able to inhibit the growth of G. boninense in vitro. For example, Trichoderma virens
produce specific compounds such as phenylethyl alcohol (PEA), 3,4-dimethylpent-2-en-
1-ol and dodecanoic acid [98,104], whereas a mixture of several Bacillus spp. and Tricho-
derma spp. produced pyrene-1,6-dione, N-acetyl-leu-leu-tyr-amide and 12-deoxyaklanonic
acid [105]. A powdered mixture containing bio-control agents Streptomyces sp., such as
Streptomyces hygroscopicus, and known antifungal producer Streptomyces noursei showed a
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strong inhibition (PIRG = 100) against G. boninense in vitro [102]. Furthermore, this formu-
lation also reduced the disease incidence in oil palm seedlings to up to 73% after 6 months
of G. boninense inoculation [102]. Streptomyces sp. was known to produce several anti-
fungal compounds which might inhibit the growth of G. boninense, such as ribostamycin,
salinomycin and benzylmalic acid [106]. Besides that, another Streptomyces sp. known
as Streptomyces palmae CMU-AB204T also show the potential to be used as a bio-control
agent against G. boninense. The treatment of this microbe against G. boninense showed a
reduced percentage of disease severity (DS) of 81.6% and reduced the severity of foliar
symptoms (SFS) to 3.7% when the free-spores were applied to the seedlings. Moreover,
DS and SFS were also reduced to 75.8% and 4.5% when the spores were encapsulated
with alginate beads [107]. This actinomycete produced several bioactive compounds, such
as actinopyrone A, anguinomycin A and leptomycin A, which inhibited the growth of
G. boninense [107,108]. These compounds have the potential to be commercialized; however,
further studies need to be carried out before they are used in oil palm plantations.

Table 4. In vitro test of bio-control agents against G. boninense.

Bio-Control Agent
Dual Culture Other Test

ReferencePIRG Value
(%) Test PIRG Value

(%) Test

Pseudomonas aeruginosa 70.0 Dual culture 80.0 Culture filtrate [12]
Burkholderia cepacia 55.5 Dual culture 65.0 Culture filtrate [12]

Streptomyces hygroscopicus 50.0–80.0 Dual culture 100 Powder formulation [96,102]
Streptomyces ahygroscopicus 50.0–80.0 Dual culture 100 Powder formulation [96,102]

Aspergillus calidoustous BTF07 49.5 Dual culture - - [97]
Trichoderma asperellum T2 47.5 Dual culture - - [97]
Trichoderma virens 159C - - 44.3 Crude extract [98]
Sargassum oligocystum 38.64 Dual culture 42.5 Hexane extract [99]

Recently, a new fertilizer known as GanoCare® was formulated from a combination
of powdered empty fruit bunches (EFB) with a “beneficial element”, including a higher
content of calcium (Ca), silicon (Si), zinc (Zn) and boron (B) [109]. While the application of
this fertilizer significantly reduces the disease incidence by up to 70%, more in-depth studies
are needed, specifically to uncover their effect on the biochemical responses of oil palms and
the effect on oil production. Several studies suggested that these elements suppress several
plant diseases and enhance the resistance to the BSR disease [110]. Besides, we believe that
commercial GanoCare® also comprised a consortium of microorganisms that are able to
suppress the growth of G. boninense. GanoCare® shows promise by improving oil palm
growth and host resistance against Ganoderma infection [109]. Further molecular analysis is
still needed, however, to uncover how GanoCare® boosts the defense-related mechanisms
of the plant host against the fungus.

6. Future Directions for R&D

Current studies have shown promising results toward determining the pathogenicity
factors of this fungus using available molecular biology techniques. Next-generation
sequencing could be the best option in elucidating the determinants of pathogenicity
in this fungus. Although transcriptomic datasets between this fungus and plant hosts
are publicly available, the implications gleaned from these datasets are not conclusive
due to environmental factors. Thus, the most promising way forward in determining
the pathogenicity factors is by infecting the oil palm tissue culture with G. boninense
in a controlled environment to minimize external environmental factors. Recently, BSR
incidents were predicted to increase due to climate change in 2100, especially in Malaysia
and Sumatra [5,14]. The prediction is based on the fungus’s higher virulence, which could
reduce the oil palm resistance to the disease due to the unsuitable climate for oil palm. This
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situation will increase the risk of the unsustainability of oil palm production for the world’s
two largest oil palm producers.

Moreover, the draft genomes available are as yet incomplete assemblies, which poses
a significant problem for accurate gene characterization. The difference in the number
of genes generated is perhaps due to the incomplete or fragmented nature of the next
generation sequencing (NGS) datasets. Thus, an improved genome assembly, perhaps by
utilizing a hybrid genome assembly approach, is needed to accelerate molecular studies of
this phytopathogen.

One of the fundamental issues in solving the enigma of this fungus is how the
monokaryon selects a compatible partner to form the infective dikaryon. Transcriptome
data proved useful in identifying the candidate factors, such as the Ste3 gene, that are
essential in activating the mating signaling pathway [70]. An Agrobacterium-mediated
transformation has been successfully developed [37]. This technique could be utilized in
functional genomics studies; however, the technique is not compatible with the G. boninense
mycelia. Thus, promising genome editing based techniques such as the CRISPR/Cas9
system, conventional homologous recombination or transformation methods may serve as
more promising tools to advance knowledge on G. boninense. Developing such methods
will be vital for functional genomics studies of G. boninense, especially in identifying the
virulence factors during the infection [34].

The most studied Ganoderma species is currently G. lucidum, due to its medicinal
properties. Some studies have identified that G. boninense also exhibits antibacterial activity
against few nosocomial-infection-related bacterial pathogens, including Escherichia coli,
Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus and
Streptococcus pyogenes [111]. A further study has identified two compounds, ergosterol
and ganoboninketal, which possess a potent antibacterial activity against S. aureus and
S. pyogenes [112]. However, clinical studies mainly on the effect of the antibacterial com-
pounds still need to be carried out to determine the suitability of these compounds produced
by G. boninense as drug candidates.

A recent study has identified four Ganoderma resistance loci in oil palm, where two of
them were involved in regulating the incidence of the first Ganoderma symptoms, while the
other two were involved in the death of palm trees [113]. Thus, this information is vital in
developing a breeding program to produce new oil palm (Elaeis guineensis Jacq.) varieties
that are more resistant to the fungal pathogen.

7. Conclusions

Studies have shown the mechanism of infections governed by G. boninense which
stealthily penetrate and colonize the host cell. Moreover, with the availability of NGS
technologies, few genes related to the pathogenicity of this fungus have been identified.
However, there are no disease management strategies that can efficiently stop the Ganoderma
disease’s continuing spread. Future research should focus on the variability of the genetic
content between the fungal strains at the molecular level, as this factor has contributed a
variable tolerance to the current disease treatments. Besides, developing a suitable method
for functional genomic analysis would complement and gear up the development of new
approaches to cure the infected palms or control the spread of this fungus, aiming to
maintain sustainable oil palm production.
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