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Simple Summary: Here, we proposed a few-shot learning bacterial colony detection method based
on edge computing devices, which enables the training of deep learning models with only five raw
data through an efficient data augmentation method.

Abstract: Bacterial colony counting is a time consuming but important task for many fields, such
as food quality testing and pathogen detection, which own the high demand for accurate on-site
testing. However, bacterial colonies are often overlapped, adherent with each other, and difficult
to precisely process by traditional algorithms. The development of deep learning has brought new
possibilities for bacterial colony counting, but deep learning networks usually require a large amount
of training data and highly configured test equipment. The culture and annotation time of bacteria
are costly, and professional deep learning workstations are too expensive and large to meet portable
requirements. To solve these problems, we propose a lightweight improved YOLOv3 network based
on the few-shot learning strategy, which is able to accomplish high detection accuracy with only five
raw images and be deployed on a low-cost edge device. Compared with the traditional methods, our
method improved the average accuracy from 64.3% to 97.4% and decreased the False Negative Rate
from 32.1% to 1.5%. Our method could greatly improve the detection accuracy, realize the portability
for on-site testing, and significantly save the cost of data collection and annotation over 80%, which
brings more potential for bacterial colony counting.

Keywords: few-shot learning; bacterial colony counting; edge computing

1. Introduction

Bacterial Colony Counting (BCC) is a time consuming but important task for many
fields such as microbiological research, water quality monitoring, food sample testing,
and clinical diagnosis [1–3]. The predominant need for these applications is accurate
quantification, and with the growing problems of microbial contamination, the need for
on-site testing is also increasing daily [4–6]. Fast and accurate on-site testing can reduce the
cost of transporting samples and decrease the risk of leakage and further contamination [7],
which is important for the management of contaminants [8]. To achieve accurate counting,
image analysis methods play the most important role in BCC, and there are three main types
for the quantification now: manual counting, traditional image segmentation algorithms,
and deep neural networks [9]. The bacterial colonies are difficult to be recognized when
directly cultured on solid agar plates because they have the features of high density, low
contrast, adherence, and overlap [10]. So, manual counting is still the gold standard for
BCC because of the high precision, but manual counting is quite time consuming and
cannot be adapted to high throughput industrial testing [2]. Traditional algorithms such
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as threshold segmentation, watershed, and wavelet transform provide possibilities for
automation recognition, but they face difficulty in processing images with low contrast and
a complicated overlap situation [11,12]. On the contrary, deep learning networks based on
convolution neural networks (CNN) are good at dealing with complicated problems [13,14].
However, most deep neural networks are designed to be deployed on professional deep
learning workstations, which have a high requirement for device configuration [9,15,16].
However, professional workstations are expensive and bulky, making them difficult to
meet the requirement of portability, and for many application scenarios such as remote
reservoirs and farms, samples can only be taken back to the laboratory for colony testing,
which has a great delay and increases the cost of sample transportation [17–19]. In addition,
the training of deep neural networks usually requires a large number of data, but there is no
large public dataset of bacterial colony images at present, so the cost of data collection and
annotation would be high if the traditional deep learning strategy was adopted [20–23].

To solve these problems, we propose a new few-shot learning method that consists of
the improved You Only Look Once (improved YOLOv3) for image detection and Random
Cover Targets Algorithm (RCTA) for data augmentation. The improved YOLOv3 adopted
multi-scale features for object detection through the Feature Pyramid Network (FPN),
which effectively improves the detection accuracy for small targets. Therefore, our method
does not require special equipment such as colored Petri dishes or high-resolution cameras
to enhance the contrast, which greatly reduces the detection costs. On the other hand,
the training of most neural networks usually requires a large number of training images,
but colony images are expensive to collect and time consuming to label. The RCTA proposed
in this paper utilized the prior knowledge of bacterial colony images to solve this dilemma,
which could effectively increase the data to more than 300 times after combining with
cutting and rotation operations. Thus, our network was able to be successfully trained by
only five raw data and achieved the high accuracy of 97.4% on an edge computing device
that cost less than USD 100. Our method greatly reduced the cost of data collection and
annotation, increased the detection accuracy, and met the portability requirement of on-site
testing. In addition, with TesnorRT acceleration, our model could achieve all detection on
edge computing devices locally, eliminating the need to interact with the cloud for data
transmission, which reduced the dependence of network and costs significantly.

2. Materials and Methods
2.1. Data Preparation and Materials

The strain used in this experiment was Escherichia coli (ATCC8739) [24–27], which was
purchased from Guangdong Huankai Microbiology Technology Co Ltd. The Tryptic Soy
Broth (TSB) was used as the liquid medium [28], the Plate Count Agar (PCA) was used as
the solid medium [29], and the 0.9% sterile saline was used as the dilution solution [29,30].
The steps of colony culture are: first, inoculate the strain into 100ml TSB medium and
incubate it at 37 ◦C and 200 rpm for 20 h to obtain the bacterial solution [24]; second,
according to the Chinese National Standard [29], dilute the bacterial solution with saline to
30–300 CFU/mL, take 1 mL diluted bacterial solution and mix it with 15 mL PCA, then
place it at 37 ◦C for 48 h.

2.2. Equipment

The training of the models was performed on the deep learning workstation with an
Intel Core I7-9800X processor and 2 GeForce RTX 2080 Ti graphics cards. The testing of the
models was performed on a microcomputer jetson nano, which had a 128-core NVIDIA
Maxwell™ GPU and 4GB of 64-bit LPDDR4 memory. The prototype of our portable BCC
device based on deep learning method is shown in Figure 1. Most detection devices of
BCC require professional cameras with high resolution to enhance the contrast and thus
improve the algorithm detection accuracy. Considering the mobility and portability of de-
tection, we choose the smartphone rather than professional cameras to afford photographs.
The experimental images in this paper are all taken by the Sony IMX586. The camera of



Biology 2022, 11, 156 3 of 14

IMX586 has 48 megapixels with a resolution of 8000 ∗ 6000 (width ∗ height) and 0.8 µm per
pixel, and its field of view is 88◦.

Figure 1. The prototype of bacteria counting based on the edge computing device. The Petri dish
contains the bacterial colonies, the smartphone is the photo device, and the data are transmitted to
the jetson nano via Bluetooth. The jetson nano takes responsibility for the image detection, and the
screen is responsible for visualizing the detection results.

2.3. Dataset

The dataset used in this paper can be divided into three types: train, validation,
and test. The train and validation datasets were used to train the model, which contained
864 images and 96 images, respectively. All images of the train and validation dataset were
augmented by 5 original pictures, that of 2560 ∗ 2590 (width ∗ height) pixels. During the
augmentation procedure, we first used RCTA to randomly cover targets in each image,
which expanded the number of images to 60. Secondly, we divided the image into four
equal parts, which could magnify the relative proportion of targets and effectively augment
the data four times. For the final augmentation, we adopted three rotation operations:
90 degrees, 180 degrees, and 270 degrees. Finally, we obtained 960 images of 1280 ∗ 1290
(width ∗ height) pixels. These pictures were randomly allocated as the ratio of 90% and
10% to form the training dataset and validation dataset. As for the test dataset, the main
function of it was to measure the performance of trained models. So, we carried out
60 colony culture experiments to obtain 60 completely new images that were independent
of the train and validation dataset. Then, we randomly selected 10 images to compare the
performance of four models: simple threshold, comprehensive threshold, tiny YOLOv3,
and improved YOLOv3.

2.4. Method Overview

Our method can be mainly divided into two stages as Figure 2 shows: training and
prediction. Since there is a high cost attached to data collection and annotation, it is quite ex-
pensive to collect a large amount of dataset for BCC. So, we first need to effectively augment
the original data by Random Cover Target Algorithm, which is proposed in Section 2.5.
By rewriting the pixel values of target points, RCTA could change the structure of images
and make the target points decrease regularly as iterations increase. After adopting RCTA,
only the source images need to be fully manually annotated. For augmented images, RCTA
would copy the annotation file of the source file, and we only need to remove the redundant
labels rather than repeatedly mark all targets, which can greatly reduce the annotation
cost by over 80%. With this method, the improved YOLOv3 could successfully achieve the
few-shot learning with only 5 original training images and accuracy over 95%.
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Figure 2. Method overview. The input image is first augmented by RCTA, then bacterial colonies
need to be manually annotated. The annotation files and the augmented images will be used as the
input of improved YOLOv3 for training. The trained model needs to be converted to the intermediate
ONNX format first and then converted to the TRT format that can be deployed on jetson nano with
high processing speed. The colony detection and analysis will be performed by the converted model.

After successfully training the model with reliable accuracy through the darknet frame-
work, we need to deploy the model on the embedded device for ensuring the portability of
BCC. However, since the hash rate of embedded devices is much lower than workstations,
we need to optimize the model by TensorRT to guarantee the processing speed. Since
TensorRT does not support darknet models directly, we need to convert the trained model
and weights into .onnx format at first. Then, TensorRT will further convert the model to trt
format by building an inference engine that optimizes the CNN networks of the improved
YOLOv3 through precision calibration, interlayer merging, and dynamic memory manage-
ment. After optimization, due to the reduction in the number of data transfers between
layers and the narrowing of the data precision range, the processing speed of the model
will be greatly improved. In addition, by precisely positioning the detection boxes, we can
calculate the length, width, and size of each bacterial colony. The detection boxes of the
improved YOLOv3 contain two sets of information: (x1,y1) and (x2,y2), which represent
the coordinates of the top left and bottom right points of the detection box, respectively.
So, the width of the bacterial colony is x2 − x1, height is y2 − y1, and area is width ∗ height.
With these data, we are able to count the size interval and number distribution of the
corresponding bacterial colonies as shown in the analysis of Figure 2.

2.5. A New Data Augmentation Method

In recent years, deep neural networks have made great improvements in the field of
target recognition, solving many complex problems that are difficult to be processed by
ordinary algorithms. However, deep neural networks require a large number of labeled
images for training, and the annotation cost is pretty high for targets with complex features
or rare datasets [31]. Few-shot learning strategy can solve the problems of insufficient data
and high cost of labeling through effective data augmentation methods, and this strategy is
become an increasingly important branch of deep learning.
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For bacterial colony images, the targets are relatively small and the number of colonies
for a single image usually ranges from hundreds to thousands. Additionally, even under
the condition of heating catalysis, the culture time of bacterial colonies lasts hours. So, it is
difficult to obtain a large number of data, and the manual labeling method for traditional
deep learning networks is quite time consuming. Therefore, we proposed a data augmenta-
tion method, Random Cover Targets Algorithm, to achieve effective few-shot learning with
lower cost in this paper.

Functionally, RCTA realized the data augmentation by accurately changing the pixel
values of the target areas to the values of background, which could change the structure of
images and make them into new images. To achieve the above functions, RCTA would first
use threshold segmentation to initially segment the background and effective targets. Then,
we used the cv2.findContours() function to identify the contour of effective targets, which
aimed to obtain the area of each recognition area and set the approximate effective range
for secondary selection. The effective range was usually decided by past experience and
manual fine-tune, and it was (60, 3500) in this experiment. For secondary selection, only
the areas that were among an effective range would be kept. Third, RCTA would choose
the central area that excluded the boundary area as the final coverage area. For the effective
points in the coverage area, RCTA would store their (x, y) coordinates and radius into
the array, and it randomly selected one at a time as the parameter of cv2.circle() function.
Finally, in order to blend the target area with the surrounding background as much as
possible, we used the average pixel value of (xr : xr+20, yr : yr+20) to calculate the Rmean,
Gmean, and Bmean. According to the gray value analysis, the pixel value of the background
area was usually lower than 20, so we only chose the pixel values that were lower than 20
for calculation. The calculation method is as follows:

Rmean = ∑x=xr+20,y=yr+20
x=xr ,y=yr

R(x,y)/N (1)

Gmean = ∑x=xr+20,y=yr+20
x=xr ,y=yr

G(x,y)/N (2)

Bmean = ∑x=xr+20,y=yr+20
x=xr ,y=yr

B(x,y)/N (3) xR
yR
1

 =

 xo
yo
1

 cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

−0.5w cos (θ)− 0.5h sin (θ) + 0.5W −0.5w sin (θ) + 0.5h cos (θ) + 0.5H 1

 (4)

In Formulas (1)–(3): (xr, yr) represent the coordinates of the bacterial colonies centers;
Rmean, Gmean, and Bmean represent the mean value of the red, green, and blue channels;
R(x,y), G(x,y), and B(x,y) represent the pixel values that are lower than 20 in the calculation
area; N represents the number of pixels. In the actual experiments, the brightness value
of the background is not related to the surrounding environment since the photography
of BCC is usually carried out in a shading environment to avoid reflections of light spots.
So, the background brightness of BCC is relatively uniform, and the average value of
adjacent pixels can achieve a good coverage effect. Formula (4) is the calculation principle
for rotation operations, where xo and yo represent the coordinates of the original image; xR
and yR represent the coordinates after rotation; h and w represent the height and weight of
original image, respectively; H and W represent the height and weight of rotation image; θ
represents the rotation angle. For our experiments, we adopted three angles for rotation,
which are θ = 90◦, 180◦, 270◦.

Due to the low brightness and weak contrast of the colony, the threshold segmentation
and cv2.findContours() function can only find limited targets among the image, which
cannot be used as the precise quantitative method. However, they can effectively provide
a benchmark for the background transfer procedure in RCTA. The example of the RCTA
augmentation result is shown in Figure 3, through effective adjustment of parameters and
iterations, RCTA can amplify an original picture to more than hundreds, which can hugely
decrease the demand for the original training dataset. In addition, the annotation time
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comparison between the traditional annotation method and RCTA is shown in Figure 4.
Traditional annotation methods require fully manual annotation for each image, which
is time consuming because the colony images usually contain a large number of targets.
For this example, the annotation time for a single image using the traditional method is
typically over 18 min. With RCTA, we only need to manually annotate the source image,
and the subsequent augmented images will copy the annotation file of the source image, so
that only redundant boxes after masking need to be removed, which could greatly reduce
the average annotation time by over 80%.

Figure 3. Data augment result. (a) Original image. (b) Iteration = 1. (c) Iteration = 100. RCTA will
achieve different numbers of data augmentation by adjusting iteration, and i represents the number
of iteration. With i increases, the number of colonies whose pixel values are changed by RCTA will
also increase, thus changing the image structure.

Figure 4. Annotation time performance comparison between RCTA and traditional annotation
method. The blue bar represents the time used for the traditional annotation method, and the orange
line represents the time used for the RCTA annotation method. The traditional method needs to
manually annotate all targets, but RCTA only needs to remove the redundant annotation boxes
for augmented images, so the annotation time of RCTA is reduced by over 80% compared to the
traditional method as the number of images increases.

2.6. Training Strategy

Since most CNN models are not sensitive to small targets, for the previous works that
do not adopt any pre-process to increase the contrast between culture dish and bacteria,
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their recognition rate for small targets is relatively poor [9]. Although YOLOv3 improves the
detection performance for small targets by dividing the grids at three different scales, which
aims to predict the contour of the targets falling into the grid through different densities
and receptive fields, due to the extremely small size of the dotted bacterial colonies, they
are still difficult to recognize directly.

To solve this problem, we experimented a scaling mapping strategy between cutting
images and original images. By reducing the length and width of the image, we could
increase the relative size of the object. In our experiment, we divided the original im-
age into four equal parts so that the width and height of each part were reduced from
2560 ∗ 2590 pixels to 1280 ∗ 1295 pixels. Cutting images off did not change the absolute
length of the bacterial colonies, but due to the decrease in image size, the relative size ratio
of the bacterial colonies would be increased by two times. The corresponding relationship
between the bacterial colonies’ diameters before and after cutting is shown in Formula (4):

Lcut

Wcut
=
√

D ∗
Loriginal

Woriginal
(D = 4, 9, 16...) (5)

where Lcut and Loriginal represent the length of the bacterial colony, Wcut and Woriginal
represent the width of the image, and D represents the number of division parts for
the image.

2.7. Structure and Acceleration

The structure and backbone of the improved YOLOv3 is shown in Figures 5b and 6.
Our test equipment has a low price that costs less than USD 100. So, the embedded device
has a relatively limited processing power compared with the workstations. If the network
is deployed directly on the embedded device, it is difficult to compute efficiently. Therefore,
we need to accelerate the model via TensorRT.

Figure 5. Structure of deep learning networks. (a) Tiny YOLOv3. (b) Improved YOLOv3. Tiny
YOLOv3 has a simple structure with a backbone that consists of conv and max pool, while improved
YOLOv3 has a more complex structure of Resnet, DBL, and FPN, which makes it more accurate.
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Figure 6. Backbone of improved YOLOv3. The backbone of improved YOLOv3 adopts the Feature
Pyramid Network, so the features extracted from the upper layers are transferred to the lower layers
to improve the recognition accuracy.

First, we need to convert the darknet (.cfg) into the ONNX (.onnx) model. Then,
TensorRT will build the inference engine, which accelerates the CNN network of improved
YOLOv3. The TensorRT will take the following steps to improve the inference speed:
(1) Precision calibration. Deep neural networks need high precision data to ensure accu-
racy during the training step, but the data precision can be moderately reduced during
the inference process. So, we improve the inference speed by decreasing the data type
from float32 to FP16. (2) Layer fusion. TensorRT will fuse the structure of deep neural
networks. For example, it will fuse the conv, BN, and relu into one layer, so no more sepa-
rate calculations are performed on contact layer, which can significantly reduce the data
transfer time. (3) Multi-stream execution. TensorRT will perform parallel computation on
different branches with the same input and dynamically optimize the memory according to
batch size, which effectively reduces the transmission time. With the above optimizations,
the data transfer efficiency and computation speed of the model can be greatly improved
so that the model can perform inference at a rate of more than 1 frame per second (FPS) on
a jetson nano.

2.8. Comparative Methods

We choose the simple threshold, comprehensive threshold, and tiny YOLOv3, which
are commonly used in the field of BCC, as the comparative methods. Furthermore, we adopt
the human count result as the gold standard. Simple threshold segmentation firstly adopts
the cv2.cvtColor() function to change the input image into the grayscale mode, then uses
the cv2.threshold() function to segment the grayscale image. Since the contrast between
target and background is low, the segmentation effect of the automatic threshold value is
relatively poor, so we need to manually determine and adjust the appropriate threshold
value. After the threshold value is determined, the cv2.threshold() function will regard the
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pixels below the threshold value as background and the pixels above the threshold value
as valid targets. Since simple threshold segmentation treats every continuous area larger
than the threshold value as the effective target, it is very susceptible to noise interference.

Comprehensive threshold segmentation introduces the size filtering function on the
basis of simple threshold segmentation. By using the Cv2.findContours() function, the com-
prehensive threshold calculates the circular contour of the simple threshold segmentation
result, which could be used for classifying the radius and area. Then, we need to adjust
and set the min_area and max_area manually. Finally, only the targets that are among the
range of (min_area, max_area) will be regarded as effective. Therefore, comprehensive
threshold segmentation can filter out the interference of small noise effectively, but bacterial
colonies have a large number of overlapping targets that are difficult to process by threshold
segmentation, so the accuracy rate of the comprehensive threshold is still low.

Due to the computing power limitation of edge computing devices, tiny YOLOv3 is
one of the few deep neural networks that can be deployed on a jetson nano with relatively
good performance. The structure of tiny YOLOv3 is shown in Figure 5a. Tiny YOLOv3
removes the residual layers and some feature layers, and it only retains a backbone of
6-layer conv+max with 2 independent prediction branches that own sizes of 13 ∗ 13 and
26 ∗ 26 to extract features and make predictions. Tiny YOLOv3 greatly decreases the
network depth and reduces the performance requirements of computing devices, but it
correspondingly sacrifices the accuracy of feature extraction, so the accuracy rate is inferior
to improved YOLOv3.

3. Results and Discussion
3.1. Results Comparison

Table 1 and Figure 7 show the test results of different algorithms for low contrast
bacterial colony images. The validation dataset contains a total of 60 images, and we
adopted the sampling survey strategy to verify, which took out ten images randomly then
calculated the accuracy with human measurement results as the gold standard. In Table 1,
True Positive (TP) represents the number of positive targets that are correctly identified as
positive; False Positive (FP) represents the number of negative targets that are incorrectly
identified as positive; False Negative (FN) represents the number of positive targets that are
incorrectly identified as negative; True Negative (TN) represents the number of negative
targets that are correctly identified as negative; Average Accuracy (ACC) represents the
average percentage of positive and negative targets that are correctly identified; True
Positive Rate (TPR) represents the percentage of positive targets correctly identified as
positive; False Negative Rate (FNR) represents the percentage of positive targets incorrectly
identified as negative [32,33]; Detection Time (DT) represents the average processing time
for each image. In our experimental results, since TN represents the number of pixels that
belong to the background, which is an unquantifiable and unnecessary parameter, the TN
is defaulted to 0 [34]. The human reference represents the results of the manual counting
method for the colony images. Additionally, the formulas used are calculated as follows:
FNR = FN/(TP + FN), ACC = (TN + TP)/(TN + TP + FN + FP), TPR = TP/(TP + FN).
Since there is no True Negative situation in our samples, FN defaults to 0.

Among the three contrast methods, the comprehensive threshold and simple threshold
belong to traditional algorithms, and they are the most commonly used methods for bacte-
rial colony counting. However, they face difficulty when dealing with overlap and edge
targets. Therefore, the accuracy of the traditional algorithms is not satisfying. The simple
threshold is highly susceptible to small noise interference and generates a large number
of false-positive targets, so its accuracy is only 4.4%. The comprehensive threshold was
based on the simple threshold, and it added the size selection function. So, most small
noise could be effectively removed, but the accuracy of the comprehensive threshold was
still as low as 65% due to the phenomenon of adhesion and blurring of contours between
bacterial colonies. For these complex targets, it is difficult for traditional algorithms to
distinguish them effectively. For example, if there are multiple adhering or overlapping
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targets, traditional algorithms usually incorrectly consider them as the same target, thus
affecting the accuracy.

Table 1. Performance comparison. This table compares the performance of the five methods for
bacterial colony detection. Human reference is the manual count result, which is used as the gold
standard; ACC represents the average accuracy; TPR represents the percentage of colonies that
are correctly identified; FNR represents the percentage of colonies that are incorrectly identified as
background; DT(s) represents the average detection time in seconds for each image.

Method TP FP FN ACC TPR FNR DT(s)

Human reference 4898 0 0 100% 100% 0% 257.84
Simple threshold 3605 77,484 1293 4.4% 73.8% 26.2% 0.17
Comprehensive threshold 3327 279 1571 64.3% 67.9% 32.1% 0.26
Tiny YOLOv3 4489 321 409 85.9% 91.6% 8.4% 0.50
Improved YOLOv3 4826 58 72 97.4% 98.5% 1.5% 0.89

Figure 7. The recognition result comparison. (a) Original image. (b) Simple threshold segmentation.
(c) Comprehensive threshold segmentation. (d) Tiny YOLOv3. (e) Improved YOLOv3. (f) Gray level
histogram. Simple threshold has the most noise and false-positive results due to the small difference
in gray value between the colony and background; comprehensive threshold segmentation reduces
noise interference but has more false-negative results; tiny YOLOv3 has a large improvement in
accuracy but is less effective for small targets; improved YOLOv3 has optimal results.

As for tiny YOLOv3, it is one of the few lightweight deep learning networks that can
be deployed on a jetson nano directly; it improved the accuracy to 85% compared with
traditional algorithms. However, due to its shallow network depth, the recognition rate
for edge targets and overlapping targets is relatively poor when compared with improved
YOLOv3. On the contrary, the improved YOLOv3 proposed in this paper adopted the FPN
structure such as Figure 6 shows, which will reverse the features extracted by the high-level
convolution network to the lower-level convolution network, thus allowing a trade-off
between speed and accuracy. For example, there are targets of different sizes in the bacterial
colony images, the area of dotted bacterial colonies and circular bacterial colonies differ
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greatly, so the improved YOLOv3 can recognize large circular bacterial colonies through
the shallow layers and the 13 ∗ 13 feature map, as well as recognize small dotted bacterial
colonies through the deep layers and the 52 ∗ 52 feature map, which effectively improves
the detection efficiency. Improved YOLOv3 not only ensured feasibility on a jetson nano
but also retained the detection speed, which decreased the FNR to 2% and increased the
accuracy to over 97% at the processing speed of more than 1 FPS. The manual counting
method is the gold standard that has the highest accuracy, but it also takes the most time to
detect. The improved YOLOv3 has comparable accuracy to the manual counting method,
while detection time is greatly reduced.

3.2. Discussion

The principle of the simple threshold is to divide the image as valid and background
parts by the threshold value, where the pixel gray value below the threshold is set to
be 0, and the part above the threshold is set to be 1. This method is susceptible to noise
interference, and it is also difficult to calculate the targets on the edge of the culture dish and
overlap situation. Therefore, it is only applicable to pure pictures without noise and owns
the lowest accuracy among all methods. The comprehensive threshold is an upgraded
version of the simple threshold. It uses the findContours() function for calculating the
radius of each target on the basis of the simple threshold segmentation, thus adding a
size-based filtering function that can effectively reduce the interference of small noise.
However, the comprehensive threshold is also unable to deal with overlap and adherent
situations, and therefore the accuracy rate can only reach about 65%. Additionally, tiny
YOLOv3 is a lightweight deep neural network, which is able to effectively identify more of
the overlapping and adhering bacterial colonies and significantly improve the performance
compared with traditional methods. However, since the structure of tiny YOLOv3 is
relatively simple, the recognition performance for edge targets and extremely small targets
is not as good as improved YOLOv3, so the accuracy rate is around 85%. In addition,
traditional deep learning algorithms usually require at least hundreds of raw data to
complete the effective training of deep neural networks. The adequate number of training
datasets is one of the most effective methods to avoid the over-fitting problem of the
deep learning models. Our method can effectively change the image structure by the
data augmentation method, which can make the augmented images be regarded as a
new training image for the deep neural network, and thus can reduce the original data
requirement to less than 10. Compared with other traditional neural networks that require
at least hundreds of training datasets [20,35,36], our method reduces the data collection
cost by more than 90% while maintaining a high accuracy rate.

4. Conclusions

BCC plays a vital role in water contamination monitoring, food sample testing, and bi-
ological experiments. With the widening of application scenarios, accurate on-site testing
is becoming important, daily, for BCC, and the three most important challenges of it are
accuracy, data shortage, and portability. Currently, many labs and companies still adopt the
manual counting method for BCC; this is because BCC images often have low contrast and
overlap situations, making them difficult to be accurately counted. The commonly used
traditional algorithms such as simple threshold and comprehensive threshold often require
special color Petri dishes or professional photographic devices to enhance the contrast
between bacterial colonies and the background, but these devices will increase the cost of
the BCC. The development of deep learning brings new possibilities for BCC. However,
general deep neural networks usually require a large number of training data and need to
be deployed on professional workstations, which face difficulty in meeting the portability
of the on-site testing and have a high cost of data collection. In this paper, we propose a
new few-shot learning method that consists of improved YOLOv3 and RCTA to solve the
above problems. This method enables us to train a network with the detection accuracy
of over 97% on a jetson nano by only five raw data. RCTA can effectively augment the
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original training data over 300 times and save the annotation time over 80%, which greatly
reduces the cost of data collection and annotation. Improved YOLOv3 can be employed on
an embedded device that has low cost and achieves a high detection accuracy, which meets
the portability and precision requirement of on-site testing.

Compared with traditional algorithms, improved YOLOv3 greatly optimized the
detection accuracy for complex targets such as overlap and adherent, which decreased the
FNR from 32% to 1.5% and increased the ACC from 64% to 97%, respectively. Additionally,
if compared with one of the most widely used deep neural networks for embedded devices,
tiny YOLOv3, our method decreased the FNR by over 6% and increased the average
accuracy by over 10%. Moreover, our few-show learning strategy is able to train the deep
learning networks with less than ten raw data, which is an amount of data that is difficult
for any traditional neural network to train effectively. Furthermore, our model can achieve
an inference rate of more than 1 FPS on edge computing devices after acceleration, which
brings more possibilities for accurate on-site testing in the field of BCC.
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