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Simple Summary: We integrated three distinct methods (driver nodes, core module, and core
nodes) to produce different HNSs for identifying hub genes involved in epithelial ovarian cancer
(EOC). Immunohistochemical (IHC), qRT-PCR, and Western blotting were performed to validate
the expression of hub genes and proteins. The results of the clinical experiment and the other data
sets analyses confirmed the performance of the OHNS. Finally, the expression levels and diagnostic
performance of OHNS showed statistical significance in evaluating external databases. This study also
characterizes the critical genetic and transcriptomic features and their mutual regulatory relationships
in EOC, providing valuable resources for identifying new molecular mechanisms and potential
therapeutic targets for EOC.

Abstract: Epithelial ovarian cancer (EOC) is highly aggressive with poor patient outcomes, and a
deeper understanding of ovarian cancer tumorigenesis could help guide future treatment devel-
opment. We proposed an optimized hit network-target sets model to systematically characterize
the underlying pathological mechanisms and intra-tumoral heterogeneity in human ovarian cancer.
Using TCGA data, we constructed an epithelial ovarian cancer regulatory network in this study. We
use three distinct methods to produce different HNSs for identification of the driver genes/nodes,
core modules, and core genes/nodes. Following the creation of the optimized HNS (OHNS) by
the integration of DN (driver nodes), CM (core module), and CN (core nodes), the effectiveness of
various HNSs was assessed based on the significance of the network topology, control potential,
and clinical value. Immunohistochemical (IHC), qRT-PCR, and Western blotting were adopted to
measure the expression of hub genes and proteins involved in epithelial ovarian cancer (EOC). We
discovered that the OHNS has two key advantages: the network’s central location and controllability.
It also plays a significant role in the illness network due to its wide range of capabilities. The OHNS
and clinical samples revealed the endometrial cancer signaling, and the PI3K/AKT, NER, and BMP
pathways. MUC16, FOXA1, FBXL2, ARID1A, COX15, COX17, SCO1, SCO2, NDUFA4L2, NDUFA,
and PTEN hub genes were predicted and may serve as potential candidates for new treatments and
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biomarkers for EOC. This research can aid in better capturing the disease progression, the creation of
potent multi-target medications, and the direction of the therapeutic community in the optimization
of effective treatment regimens by various research objectives in cancer treatment.

Keywords: network control; hit network-target sets; driver genes; core module; epithelial ovarian
cancer; core nodes; EOC

1. Introduction

The study of human disease has been transformed by the computational modeling of
biological networks, which has also paved the path for the discovery of new therapeutic
targets and personalized medicine. In addition to outlining the pattern of molecular signal-
ing relationships, network-based research also shows transcriptional circuits, enrichment
patterns, and system-wide characteristics [1,2]. Additionally, network-based approaches
to biological research aid in our comprehension of the dynamics and control features
of many complicated biochemical networks in conjunction with congruent experimental
results. Pharmaceutical studies, especially those that offer substantial approaches in re-
search and development, have been concerning in recent decades because of the declining
efficacy of new medication designs [3]. The reductionist approach to medical research
can only provide a limited understanding of the complicated etiology and multi-target
pathologies of systemic diseases, and it has trouble defining the best strategies to address
these complexities. Because systemic diseases, such as cancer, cardiovascular disease, and
neurodegenerative disorders, are governed by complex biological networks and require
multiple steps of genetic and environmental challenges to progress, they cannot be ef-
fectively treated with mono-target or bullet-based drug designs [4]. Due to the disease
nature and pathway redundancy, numerous monotherapies have been shown in clinics to
have limited effects or too many adverse effects when used in the long-term treatment of
systemic disorders. For example, mono-target cancer therapy may allow cancer cells to
evolve a resistance to the drug [5–7]; in contrast, multi-target therapeutics may be more
effective or less prone to allowing adaptive drug resistance [8–10] due to the biological
system’s decreased capacity to simultaneously compensate for multiple actions orches-
trated by two or more drugs. On the other hand, when an illness strikes, the body loses
homeostasis. The purpose of treating diseases is to correct this imbalance and bring the
body back to a healthy state. How to effectively control the disease network and affect
the capacity of biological systems to choose states by manipulating signals is one of the
most appealing topics of research. Excellent control methods can help with the creation
of therapeutic targets for viral diseases, the design of ideal molecules with desired effects,
and the discovery of new applications for prescription drugs already on the market [4].
Disease development is significantly influenced by hit network-target sets (HNS), which
are groups of multi-component units with network-controlling capabilities that occupy the
network’s center nodes and are easily accessible. These components have the potential
to be important system perturbation drivers for the network. However, understanding
HNS is far from complete, which makes it difficult to use to control disease and find new
medicines. Recent advances in network-based target research and prediction have been
made possible by the constant accumulation of omics and big data. The effectiveness of
network-based drug discovery will depend on the choice of pharmacological targets. It
is now possible to locate the HNS in the network, but it can be difficult to condense the
main traits of HNS even though numerous exploratory investigations have been conducted.
For instance, driver nodes (DNs) based on structural control theory [11] and network
core module nodes (CMs) for measuring the significance of node sets are used to identify
the important nodes in complex networks as drug targets [12]. The module nodes allow
automated prediction of the function of unidentified protein complexes from high-quality
protein–protein interaction data. By using core nodes (CNs), often referred to as hub nodes,
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which rank elements in a network by the network properties that reflect their relevance
in the network [13], we can discover important elements of biological networks. Because
it enables researchers to manipulate targets in intricate networks, a full-fledged, abstract
state-dependent dynamical model of diffusion dynamics in genomic networks is often em-
ployed to investigate cancer [14]. The computational methods for the identification of HNS
based on network topologies have made tremendous progress, but there are still several
obstacles that need to be overcome. For example, highly connected genes (hubs) have a
major impact on the network’s structure, which is crucial for cell growth and survival due
to their strong centrality [15]. The network can be significantly disrupted by using these
nodes as targets; however, removing the related genes will render the organism lifeless
and result in death or infertility. It is vital to find a method that can both avoid hubs and
have some level of network control. Hu et al. [10] coined the phrase “driving nodes” to
refer to important nodes having a strong capacity to affect the states of other nodes and a
weak sensitivity to being affected by those states. Additionally, by administering control
inputs (drugs, signals from the environment or within the organism, etc.) to critical and
high-frequency driver nodes, the disease’s overall state could be controlled, suggesting
that these nodes could serve as potential drug targets [16].

The precision and effectiveness of disease control must be improved as a result of these
findings by choosing a strategy to reach a balance that can defy the disease and guarantee
the survival of the organism. In this study, the multi-angle properties of network topology
and structure control theory were used to build the regulatory network HNS. Regarding
structural integrity and network information, we evaluated the developed ovarian cancer
network. This study recommends a computational technique for simplifying the control of
complex dynamical systems and biochemical regulation. In addition to in silico analyses,
we aimed to investigate whether hub genes induce a change in biological functions in EOC.
Furthermore, we used cancer cells to explore whether the hub high-traffic gene exerts effects
on EOC. Finally, immunohistochemical (IHC) staining, qRT-PCR, and Western blotting
were performed to examine and validate the expression of hub genes in ovary functions.
Our results provide a new perspective on interactions and identify therapeutic targets
for EOC. This approach will benefit logical drug design and aid in selecting appropriate
drug targets.

2. Materials and Methods
2.1. Data Collection

Over 20,000 primary cancer and matched normal samples from 33 different cancer
types are available in the Cancer Genome Atlas (TCGA) database, which can be accessed at
http://cancergenome.nih.gov (accessed on 12 May 2022). In addition, Cancer-associated
targets were obtained from the Comparative Toxicogenomics Database (CTD, http://
ctdbase.org/ (accessed on 12 May 2022)) [17], Gene Cards (https://www.genecards.org/
(accessed on 14 July 2022)) [18], NCBI Gene (https://www.ncbi.nlm.nih.gov/ (accessed
on 14 July 2022)) [19], Online Mendelian Inheritance in Man (OMIM, https://omim.org/
(accessed on 12 May 2022)) [20], Therapeutic Target Database (TTD, http://db.idrblab.
net/ (accessed on 12 May 2022)) [21], PubChem (https://pubchem.ncbi.nlm.nih.gov/
(accessed on 23 May 2022)) [22], and the DisGeNET (http://www.disgenet.org/ (accessed
on 23 May 2022)) database [23]. In addition, the top 1,235,000 targets from the CTD and the
GeneCards database based on the “Inference score” were selected as the screening criteria.
These databases are crucial tools for assessing the biological significance of cancer genomics
discoveries. We used ovarian cancer tissues and normal tissues from 910 samples of the
mRNA-seq data in this study. The batch effects of the RNA-seq raw data were removed by
the ComBat-seq method using the R package sva [24].

2.2. Detection of Differentially Expressed Genes

The quality of the raw RNA sequences was evaluated using FastQC software (v0.11.9) [25];
after that, these sequences were pre-processed to remove adapters, low-quality reads, and
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PCR primers using Trimmomatic software (v0.38.1) [26]. The remaining reads were mapped
to the reference genome using HISAT2 software (v2.2.1) [27]. Afterward, differences in
transcript expression were detected using DESeq2 software (v2.11.40.7) [28]. The criteria of
logFC (fold change < −1.5 and >1.5) and FDR < 0.05 (false discovery rate) were used to
determine the threshold for statistical significance of the differential expression of each gene.

2.3. Gene Regulatory Network Construction

A gene regulatory network was constructed using Internet databases and gene inter-
actions. These included MIPS (Mammalian Protein–Protein Interactions Database), BIND
(Biomolecular Interaction Network Database) [29], PPI (Protein–Protein Interaction) [30],
and BioGRID (Biological General Repository for Interaction Datasets) [31]. Additionally,
interaction data were discovered by looking through related studies and research in inter-
action databases including Gene-MANIA and the STRING database [32,33], and cytoscape
plugins were used to extract, integrate, visualize, and analyze interactive data [34].

2.4. Core Nodes/Genes Identification and Identification of Driver Nodes

More essential proteins are included in the top-ranked list of both high-degree and
low-degree genes according to maximal clique centrality (MCC). MCC (v) equals the degree
of node v if there is no edge between its neighbors. A node’s MCC is defined as MCC(v)
= ∑C∈S(v)(|C| − 1)!, where S(v) is the set of all maximal cliques that contain v, and
(|C| − 1)! is the sum of all positive integers less than |C| [35]. In a bipartite graph
corresponding to the original network, the identification of driver nodes can be formulated
as a maximum cardinality bipartite matching problem [36], which contains information
about the identification algorithm and the driver nodes in detail. The maximum cardinality
matching problem was resolved in this work using the HopcroftCKarp algorithm [37]. The
concept of control centrality was created to quantify a node’s capacity for network control,
which equates to the dimension of the controllable subspace and is calculated using an
algorithm proposed by Liu et al. [12].

2.5. Modular Screening and Stability

The Markov cluster algorithm (MCL; parameters: number of iterations = 16) [38]
and the molecular complex detection (MCODE; parameters: degree cutoff = 2, K-core = 2,
and node score threshold = 0.2) [39] were two module-screening techniques that were
contrasted. Simple connectivity-based divisions make up the connected components. Gene
families are assigned using the MCL algorithm based on information about pre-calculated
sequence similarity.

A column stochastic matrix is a non-negative matrix with the property that each of its
columns sums to 1. Given such a matrix M and a real number r > 1, the column stochastic
matrix resulting from inflating each of the columns of M with power coefficient r is written
Γr (M), and Γr is called the inflation operator with power coefficient r. Write Σr,j (M) for
the summation of all the entries in column j of M raised to the power r (sum after taking
powers). Then, Γr (M) is defined in an entrywise manner by setting:

Γr(Mij) = Mijr/Σr,j(M) (1)

where each column j of a stochastic matrix M corresponds with node j of the stochastic
graph associated with M. Row entry i in column j (i.e., the matrix entry Mij) corresponds to
the probability of going from node j to node i.

In order to isolate dense regions that meet the specified criteria, MCODE relies on
vertex weighting by local neighborhood density and outward traversal from locally dense
seed genes [39]. To counteract the selective speculation, their network structure entropies
were calculated. The following is a definition of network structure entropy:

E = −∑N
i=1 IiIn Ii (2)
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where N is the number of nodes in the network, and Ii is the importance of node i. A smaller
entropy value means a higher similarity between modular nodes, thereby determining the
module stability.

2.6. Core Module Identification

The module was considered important, and the weighted edges between these mod-
ules were derived from the intermolecular relations across modules. The methods of
multiple modular characteristic fusing (MMCF) were employed for this search process [40].
These methods included weighted degree, betweenness centrality, and PageRank. We
removed each core module from the whole network and the module network, respectively,
and then observed the rate change of the characteristic path length L22 to validate the
results of identification:

L =
1
n ∑i∈N Li =

1
n ∑i∈N

∑i∈N.i 6=j dij
n− 1

(3)

where i and j are the different nodes in the network, Li is the average distance between
node i and all other nodes, and dij is the distance between node i and j.

2.7. Performance Assessment of the OHNS

We removed each CN, CM, and DN from the whole network and observed changes
in the characteristic path length and giant component. We randomly selected genes from
CN, DN, CM, and RN (random nodes in the entire network) and OHNS (the combination
of CM and the top 50 control centrality of DN) to better compare the change trends of the
characteristic path length and giant component. Since the cardinal number starts with 5,
10 random copies of 5 genes were added. We measured the size of the remaining giant
component in the graph and the characteristic path length for each one removed.

(a) Characteristic path length (L) [41] based on Equation (3);
(b) Giant component (GC): The giant component is the most significant connected compo-

nent in each network. The fraction was calculated by dividing the number of nodes in
the giant component by the total number of nodes in each network [10];

(c) Calculation of the F-measure: To assess the F-measure, taking into account the preci-
sion and recall of the predicted HNS using the following formula, the key cancer genes
are annotated in the list of drug targets and biomarker genes (Supplementary Table S1)
for ovarian cancer (Comparative Toxicogenomics Database, http://ctdbase.org/ (ac-
cessed on 23 May 2022)) were chosen:

Fi = 2 × (Precision × Recall)/(Precision + Recall) (4)

where precision is a measure of how many of the positive predictions made are correct
(true positives), recall is a measure of how many of the positive cases the classifier correctly
predicted, over all the positive cases in the data.

(d) Perturbation effects: Cancer Dependency Map’s genome-scale CRISPR-Cas9 knockout
data were used (https://depmap.org/portal/ (accessed on 23 May 2022)). In CM,
CN, and DN, the required genes for perturbing 178 cancer cell lines were gathered,
respectively. A lower Chronos score suggests a higher probability that the target gene
is crucial in a particular cell line. A gene with a score of 0 is not considered influential;
a score of −1 is comparable to the median of all genes considered necessary.

2.8. Gene Ontology and Functional Enrichment Analysis

Functional enrichment analysis of the differential expressed genes was performed
by the online programs the KEGG database (release 71.0), DAVID [42] (Database for
Annotation, Visualization and Integrated Discovery; https://david.ncifcrf.gov/ (accessed
on 27 July 2022)), and g:Profiler [43] (https://biit.cs.ut.ee/gprofiler/gost/ (accessed on
24 July 2022)). We used the ClueGO plugin for Cytoscape (v2.5.9) in order to identify
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biological processes, molecular functions, and the involvement of cellular components [44].
Hochberg (p < 0.05) [45].

2.9. Prognostic Risk Assessment

The TCGA dataset (https://portal.gdc.com/ (accessed on 12 May 2022)) was used
to download the RNA-sequencing expression (Level 3) profiles and associated clinical
data for ovarian cancer. P-values and hazard ratios with 95% confidence intervals for
Kaplan–Meier curves were calculated using log-rank tests and univariate cox proportional
hazards regression; p < 0.05 was regarded as statistically significant, and R version 4.0.3
was used to implement all the analysis techniques and R packages.

2.10. Tissue-Specific Enrichment and Correlation Analyses of Hub Genes

We carried out Spearman’s correlation analysis to identify the correlations between
hub genes in multiple tissues through the “Cor. Test” function in R, and results were
presented by a scatter plot [46].

2.11. Replication and Validation Analyses

Validation and replication of the OHNS were performed using datasets (GSE211669)
in the Gene Expression Omnibus (GEO) related to 131 samples of ovarian cancer [47].
RNA-seq analyses were performed as mentioned in Section 2.2.

2.12. Samples Collection

All tissue samples were obtained from patients enrolled in a national ongoing co-
hort initiated in 2008. Patients were diagnosed and surgically treated for EOC between
October 2014 and January 2020. We received approval of the experimental protocol from
the Experimental Ethics Committee of the Tehran Specialist Hospital and Research Center
(No. 2022–0260). A specialized pathologist in gynecology revised histologic diagnoses for
all tissue samples. A total of 59 biopsy attempts were made; 54 (92%) resulted in obtaining
an ovary tissue specimen at the first attempt. The average size of the obtained biopsy core
was 1 mm in diameter and 1.8 mm in length (range, 0.5 to 3 mm). Samples were instantly
frozen in liquid nitrogen and stored at −80 ◦C.

2.13. Sample Preparation

The samples were transferred to the laboratory as fast as possible. Cells were separated
by means of a stereo microscope. After washing in the PBS containing 1% Bovine serum
Album (Bio-Rad Laboratories, CA, USA), the cells of the ovaries were cultivated in the
balanced M16 medium under 5% CO2 at 37 ◦C. Samples were processed in cells with a
healthy named normal group and EOC group. After 24 h or 72 h, the cells of the tissues
were observed, and we calculated the developmental rate, respectively.

2.14. Validation of RNA-Seq Results Using qRT-PCR

Pooled samples were dissolved using a GenElute RNA Extraction Kit (Sigma) to isolate
total RNA. The total RNA of the cell sample was extracted using the Steady Pure Universal
RNA Extraction Kits (Accurate Biology, AG21017, Changsha, China). Total RNA was
utilized for the synthesis of single-stranded complementary DNA using Evo M-MLV Mix
Kits (Accurate Biology, AG11728). Real-time PCR was conducted with SYBR green premix
pro-Taq qPCR Kits (Accurate Biology, AG11701). Next, quantitative re-verse-transcription-
PCR was carried out for six genes, including SCO2, FBXL2, COX15, MUC16, NDUFA, and
FOXA1. The following PCR cycling conditions were used: 30 s at 95 ◦C; 40 cycles of 5 s
at 95 ◦C and 30 s at 60 ◦C. Melting-curve analysis was used to check product identities.
PCR was carried out in triplicates, and the values of the mean threshold cycle (Ct) were
normalized to GAPDH expression. Finally, the relative mRNA expression levels were
analyzed. Forward and reverse primer sequences and accession numbers of selected genes
are given in Supplementary Table S2.
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2.15. Western Blotting

Total proteins from tissues were extracted using RIPA lysis buffer containing a mix-
ture of protease inhibitors. Protein concentrations were measured using the BCA Protein
Assay Kit according to the manufacturer’s protocol. After boiling the total protein, the
proteins (20 µL per well) were separated in 10% SDS-PAGE and then transferred to PVDF
membranes. To seal the proteins, the PVDF membranes were incubated with 5% fat-free
milk for 90 min. Then, the membranes were incubated overnight at 4 ◦C using primary
antibodies MUC16 (1:500, Abcam, UK), FOXA1 (1:1000, Abcam, UK), NDUFA (1:1000,
Abcam, UK), COX15 (1:1000, Abcam, UK), β-actin (1:3000, Abcam, UK). After washing,
the membrane was incubated with the appropriate secondary antibody for 2 h. After the
detection of the signal using digital imaging equipment, the protein bands were quantified
by ImageJ software.

2.16. Immunohistochemistry

The ovary tissues were fixed in 4% paraformaldehyde, paraffin-embedded, and then
sliced into 5-µm sections. After deparaffinization, rehydration, and antigen retrieval, non-
specific binding of sections was blocked with goat serum. Subsequently, the sections were
incubated with antibody MUC16 (1:500), NDUFA (1:100), FOXA1 (1:1000), and COX15
(1:500) primary antibody overnight at 4 ◦C. The tissues were then incubated with a sec-
ondary antibody at 37 ◦C for 40 min, followed by incubation with diaminobenzidine as
a chromogen. Images were assessed using an Olympus optical microscope (Japan). The
immunohistochemistry (IHC) scores were evaluated by multiplying the 2 scores. Five
200-fold visual fields for each sample were randomly selected, and the average score of the
five visual fields is the final score of the sample.

2.17. Statistical Analysis

SPSS 22.0 was used for the statistical analyses, and a p value of 0.05 was regarded
as statistically significant. The degree (in and out) distribution ratio of various groups
in the network was examined using the Chi-square test. The data are presented as the
mean ± SEM. We used the package ggplot2 in R, and results were presented by a bar and
violin plot. The degree (in and out), characteristic path length, and giant components of the
HNS were correlated using the Pearson correlation coefficient.

3. Results
3.1. Hit Network-Target Sets Identification

We obtained 12,659 differentially expressed genes from the TCGA, with 10,102 being
upregulated and 2557 being downregulated (Supplementary Table S3). After removing
individual genes, we obtained a regulatory network with 1506 genes and 8718 directed
edges (regulatory links). Supplementary Table S4 presents a list of genes and their regula-
tory interactions. The core genes were found using the MCC algorithm, and the top 120 are
displayed in Supplementary Table S5. For the HopcroftCKarp algorithm, 214 driver nodes
were obtained based on control centrality (Supplementary Table S6). MCODE, MCL, and
the connected components were used to divide the disease network modules, and mod-
ules 38, 34, and 18 were obtained. Entropy values for the MCODE, MCL, and connected
components, respectively, were 5.105, 5.986, and 6.018 (Supplementary Table S7).

The MCODE method showed strikingly consistent stability in each group compared to
two other methods (connected components and MCL), according to the minimum entropy
criterion. Using MMCF comprehensive ranking, we identified core module No. 2 as having
50 genes and 369 edges (Supplementary Table S8).

3.2. Characteristics of Clustering and Scattering of the Network Distribution

CM and CN had more overlap (Figure 1A) and were more centralized in the network,
while DN was more scattered. We obtained a regulatory network (Figure 1B) after removing
individual nodes. CM, CN, and DN distributions in this network are very dissimilar.
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3.3. Out-Degree-Dominant Characteristics of Driver Nodes

We selected to use the average degree of the network, 7, as the baseline and set up
four standards: average degree-out > 7, average degree-out 7, average degree-in > 7, and
average degree-in 7 (Figure 2A). This allowed us to demonstrate the degree (out and in)
differences between nodes in the HNS. Comparative analysis revealed that the driver node’s
degree-in was lower (29% average degree-in > 7), which distinguished it significantly from
the module and core nodes (p < 0.05). Moreover, by comparing the difference of the value
between the out-degree and in-degree of the three node sets, it is shown that the degree
difference ≥ 0 is CN 45%, CM 39%, and DN 98%, respectively (Figure 2C).

3.4. Characteristic Path Lengths and Giant Components of HNSs

We evaluated the significance and robustness of the deleted genes for the network
using characteristic path length and giant components after deleting single genes and
random polygene combinations. The outcomes demonstrated that only a few nodes could
disrupt the network after deleting the genes in the three HNSs (only deleting one node at a
time) (Figure 2B,D). Notably, only one of these perturbed genes matched a set of biomarkers
and drug targets for treating ovarian cancer, suggesting that these genes could be potential
new targets for treating ovarian cancer. As seen in Figure 3, the three distinct node sets are
more evident than the random nodes after each random polygene combination has been
eliminated. The length (L) of the remaining network gradually increases after removing
CM (from 4.812 to 5.881) and CN (from 4.722 to 6.541), which shows that the CM and the
CN are crucial for information transmission between network nodes.

In contrast, there is no change in the remaining network length after removing the
random DN combination. The changing trend of the GC is different from that of length;
when the combination of random nodes is deleted in turn, the GC of the remaining network
shows a gradual downward trend. One has a lower GC than the other nodes because it is
the only network left without a CN. The synergy of the node sets between networks may
be the reason why the remaining network’s GC rapidly declines after the removal of the
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CM set (seventh time) and the DN set (eighth time) in turn (CM from 0.819 to 0.812, CN
from 0.810 to 0.798) (Figure 3).
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the OHNS of the network: (A) the disturbance of CM, CN, DN, OHNS, and RN on the network; the
smaller the giant component, the greater the disturbance of the network; (B) CM, CN, DN, OHNS,
and RN are important in the network; the larger the characteristic path length, the more important.
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3.5. Characteristic Path Lengths and Giant Components

We determined the Pearson correlation coefficient between length (L) and GC to
determine whether the degree (in and out) of various node sets is a determining factor for
L and GC. The findings demonstrate that the degree (in and out) of the driver nodes and L
only have a marginally significant weak correlation (Table 1).

Table 1. The correlation between the degree (out and in), the characteristic path length and the giant
component in CM, CN, and DN.

Characteristic Correlation CM-OUT CM-IN CN-OUT CN-IN DN-OUT DN-IN

GC

Pearson
correlation
coefficient

0.045 0.121 0.065 0.131 0.024 0.084

Significance 0.801 0.334 0.499 0.177 0.562 0.271

L

Pearson
correlation
coefficient

0.035 0.211 0.041 0.112 0.341 ** 0.503 **

Significance 0.821 0.062 0.694 0.082 0.00 0.00

** Denoted by the different letters are significantly different at p < 0.01.

3.6. F-Measure and Perturbation Effect

The target prediction capability of HNS was assessed using the F-measure in the list of
drug targets and biomarker genes for ovarian cancer. We obtained 4, 6, and 22 markers and
therapeutic targets when we mapped ovarian biomarkers and therapeutic targets from the
CTD database to CM, CN, and DN. DN is more efficient than CM and CN at identifying
drug targets and biomarkers (Figure 4A). It might also depend on the benefit of having
a large enough number of DNs. The mapping outcomes of CN and CM overlap, which
is consistent with the previous observation. It is important to note that the F-measure for
OHNS is 0.134, almost identical to DN (Figure 4A). However, only one of the mapping
outcomes from DN and CM overlaps (Figure 4B), meaning that their merging can boost the
likelihood that drug targets and biomarkers will be discovered. We determined the Chronos
dependency scores of CM, CN, and DN in 186 ovarian cancer cell lines using the genome-
scale CRISPR-Cas9 knockout data. In 186 ovarian cancer cell lines, only 11 genes (MUC16,
FOXA1, FBXL2, ARID1 A, COX15, COX17, SCO1, SCO2, NDUFA4L2, NDUFA, and PTEN)
in OHNS had clear perturbation effects (Supplementary Table S9). It is interesting to note
that OHNS also contains these 11 genes. A comparison of distributions of CM, CN, DN,
and OHNS in biomarkers, pathway and hub genes, risk-prognostic genes, and perturbation
effects is shown in Figure 4C.

3.7. Pathway Enrichment Analysis of HNSs

To examine the functions of HNS, online tools were used. In the findings, OHNS had
27 pathway overlaps and 10 functional overlaps (Supplementary Figure S1). Contrary
to popular belief, CM and CN overlap, but they have distinct biological functions. This
may be because of the many genes that do not exist in both. Using Cytoscape-ClueGo,
we constructed a pathway network while visualizing the genes connecting different path-
ways. The results showed that 9, 33, and 43 pathways were present in CM, CN, and DN,
respectively (Supplementary Figure S2). The pathway to which the CNs are enriched in the
pathway enrichment, however, also contains the pathways of all the CMs (Supplementary
Table S10) (Figure 3.9). After comparison with CN, CM, and DN, four unique pathways
were discovered in OHNS: the endometrial cancer signaling, the PI3K/AKT pathway, the
NER pathways, and the BMP pathway (Figure 6).
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Figure 4. Correlation and F-measure: (A) the F-measure of genes overlapping with CM (core module),
CN (core nodes), DN (driver nodes), and the OHNS in the CTD list; (B) comparison of the overlapping
genes with CM, CN, DN, and OHNS in the CTD list; (C) comparison of distributions of CM, CN, DN,
and OHNS in biomarkers, pathway and hub genes, risk-prognostic genes, and perturbation effects.
The width of the extended branch in the figure corresponds to the data flow size.
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Figure 5. Enrichment analysis of the pathways related to CM (core module), CN (core nodes),
DN (driver nodes); the visible output in GO terms is an interactive Manhattan plot that illustrates
the enrichment analysis results: (A) this figure represents the result of a multiquery with CM;
(B) this figure represents the result of a multiquery with CN; (C) this figure represents the result of
a multiquery with DN. * and ** denoted that the biological pathways are significantly different at
p < 0.05 and p < 0.01 levels, respectively.

3.8. Survival Analysis of Perturbed Genes
The prognostic factors in the entire genome were observed, and the single-factor cox and log-
rank tests were used to assess the prognostic significance based on the level of expression
of a single gene. The findings revealed 2362 risk-prognosis-related genes in total, of which
3, 11, and 48 were discovered in CM, CN, and DN, respectively (Supplementary Table S11).
Of the 48 DN risk prognostic genes, 11 were consistent with perturbed genes.

3.9. Tissue-Specific Enrichment and Correlation Analyses of Hub Genes
The scatter plot displayed the results of the correlation analysis of hub genes in multiple
normal tissues. From Figure 7, the hub targets positively correlated with EOC were NDUFA,
MUC16, MMP2, FOXA1, and ARID1A. The hub targets negatively correlated with EOC
were SCO1, SCO2, COX15, COX17, FBXL2, PTEN, and NUFDA4L2.RETRACTED
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Figure 6. Gene ontology was constructed by integrating WikiPathways, Reactome, and KEGG. Each
node shows a pathway or term and the percentage of visible shared genes between pathways or terms
and edges present relationships between pathways: (A) relationship between enriched pathways
and genes in CM (core module); (B) relationship between enriched pathways and genes in CN (core
nodes); (C) relationship between enriched pathways and genes in DN (driver nodes).RETRACTED
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Figure 7. Spearman correlation analysis of hub genes in EOC and multiple normal tissues (a–k). 
Rows represented “-Log10P”, and the vertical line in the middle of the graph indicates p = 0.05. 
Columns represent the correlation between hub genes and EOC, and “0” value axis indicates no 
correlation between hub genes and EOC. The upper part of the “0” value axis indicates a negative 

Figure 7. Spearman correlation analysis of hub genes in EOC and multiple normal tissues (A–K).
Rows represented “−Log10P”, and the vertical line in the middle of the graph indicates p = 0.05.
Columns represent the correlation between hub genes and EOC, and “0” value axis indicates no
correlation between hub genes and EOC. The upper part of the “0” value axis indicates a negative
correlation, and the lower part indicates a positive correlation. Red shape represented positive
correlation of the gene with different cancers. Green shape represented negative correlation of the gene
with different cancers. Blue shape represented none correlation of the gene with different cancers.
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3.10. Replication and Validation Analyses

The GEO data were processed using the same methodology, and 2825 differentially
expressed genes in ovarian cancer were discovered (Supplementary Table S12). We con-
structed a set of 933 nodes and 4336 directed edges. Following network analysis, we
discovered that the degree distribution of CM, CN, and DN in the GEO network, the
degree difference, the F-measure, and the L and GC scores of deleting a single node almost
precisely match the trend of TCGA (Figure 8).
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Figure 8. GEO data validation results: (A) the distribution probability of 4 levels of the HNS;
(B) compare the degree difference values in CM (core module), CN (core nodes), and DN (driver
nodes); (C) comparison of the changes in the giant component after the nodes in CM, CN, and DN
are deleted; (D) comparison of the changes in the characteristic path length after the nodes in CM,
CN, and DN are deleted; (E) the F-measure of genes overlapping with CM, CN, and DN in the CTD
list. All data are represented as the mean ± SEM. ** p < 0.05.

3.11. The Deficiency of Proteins Expression and Biological Functions

The expressions of COX15, MUC16, NDUFA, and FOXA1 protein in ovary tissues
from three normal and three patients were evaluated by Western blot analysis (Figure 9A).
The result coming from the qRT-PCR analysis also exhibited a similar outcome (Figure 9B).
Immunohistochemistry revealed that the location of MUC16, NDUFA, and FOXA1 was
in the nucleoplasm of ovary tissues, and the expressions were remarkably high in OVC
samples than in the control group (Figure 9C).
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Figure 9. Dysregulated hub genes: (A) Western blotting showed alteration in the levels of MUC16,
NDUFA, FOXA1, and COX15; (B) q-PCR assay was adopted to verify the changes of several hub
genes; (C) IHC staining images of healthy samples and EOC samples and relative quantitative
analysis in two groups; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

4. Discussion

The network’s molecular targets were found using a variety of systems biology tools.
The development of translational analysis as well as the design of the best network-based
multi-target medications would benefit from further integration of various ‘-omics’ levels
and databases. The current effort to use various network- and algorithm-based computa-
tional tools for clarifying the target network of herbal formulations and optimizing their
molecular synergy looks to be advantageous, and it would also be a viable method for build-
ing network-based multi-component medications. The quality and quantity of the models
will be improved by standardizing the drug design process, normalizing, and conducting
research on herbal synergy with network-target sets, which will facilitate integration. The
main concept of an effective target control approach is to disregard the nodes that are un-
necessary to manage and concentrate on the nodes that are. For instance, in cancer, certain
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proteins are recognized as being necessary (for that malignancy) if they are necessary for
the proliferation or survival of the tumor cells. Because of a mutation in the driver genes,
some proteins become crucial in cancer. This indicates that these proteins are necessary
for pathogenesis (i.e., the driver), and the tumor thereafter becomes dependent on the
emergence of oncogenes [48]. In addition, in the post-genome era, selecting efficient “HNS”
at the network level has gained much attention. It can assist us in learning more about
the essential elements of the disease network. Since identifying HNS has good theoretical
and application value, more studies about methods have been put forth. The methods can
be viewed from two angles: one identifies the network’s fundamental structure, and the
other considers the network’s controllability. It makes sense to assume that controlling the
hubs will be crucial to controlling disease networks, given the crucial role nodes with a
high degree (hubs) play in preserving the structural integrity of networks against failures
and attacks [49], in spreading phenomena [50], and in synchronization [51]. Some hub
nodes result in death or infertility, making them poor candidates for pharmacological
therapy. Using network control theory to anticipate medication targets is a popular idea,
but in reality, fully managing disease networks is difficult. The underlying significance and
characteristics of the various forms of HNS are also not fully understood by researchers.
They have only examined them from one angle, which has advantages and disadvantages.
To overcome these obstacles, we compare different approaches from a variety of angles,
such as core structure, control forces, and therapeutic value, and we emphasize the unique
characteristics of each. The results show that DN has benefits in risk prognosis, pathway
and hub genes, perturbation effects, and biomarkers. We come to the conclusion that
DN will probably play a control role because of the cooperation of these four factors. The
essential structure and control capabilities of the network were taken into account when
building the OHNS. The F-measure indicates that the OHNS was more effective in compar-
ison to CM and CN and was neck-and-neck with DN, which gives us the impression that
combining various calculating techniques may raise the possibility of illness control. This
might be a result of the OHNS, which controls the network and is built on the conservative
evolution of core genes. On the other hand, 11 genes in OHNS were predicted to play a role
in biomarkers, risk prognosis, and disruptions connected to ovarian cancer. After OHNS
enrichment analysis, the same results were seen. The enriched pathways of CM and DN
did not completely take up the enriched pathways of OHNS. These signaling pathways
may be responsible for the structural centrality and control capacity of the ovarian cancer
regulatory network. Our results are consistent with other studies that claim many MUC
genes are expressed more frequently in ovarian cancers [52]. Since mucins are substantial
extracellular proteins that can act as biomarkers (indeed, MUC16 is also referred to as
CA125), overexpression of the MUC genes is clinically significant, and their overexpression
is well established as a prognostic predictor [53]. When comparing normal cells to ovar-
ian tumors, we discovered that FOXA1 was increased, whereas COX15, COX17, FBXL2,
and cytochrome genes (SCO1 and SCO2) were downregulated. According to published
research, FOXA1 is overexpressed in ovarian cancer, with aberrant expression linked to
carcinogenesis and an aggressive character [54]. There have been reports of potential tumor
suppressor functions of FBXL2 through the ubiquitin-mediated degradation of significant
cell cycle regulators [55]. Low expression of SCO2, which is linked to a worse prognosis in
populations of people with breast cancer, is one of the cytochrome oxidase C genes that
also serve as a tumor suppressor [56].

Our analysis demonstrated dysregulated genes in the endometrial cancer signaling,
the PI3K/AKT pathway, the NER pathways, and the BMP pathway in the normal cohort
compared to the ovarian malignancies. It has been determined that PI3K/AKT mutations
have a significant role in cell survival, proliferation, and angiogenesis in ovarian cancer;
as a result, therapeutic targeting with PI3K/AKT inhibitors and mTOR inhibitors has
been studied [57].

Although high levels of ATM protein and mRNA in ovarian carcinomas are associated
with poor survival and platinum resistance, there is no information on the effect of the
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downregulation of ATM signaling in the normal cell [58]. Strong evidence points to the
dysregulation of the mitochondrial, oxidative phosphorylation, and ubiquitination path-
ways as contributing factors to carcinogenesis [59]. In contrast to the normal cell where
NDUFA4L2 expression is high, many NADH dehydrogenases (ubiquinone) 1 alpha (ND-
UFA) genes were downregulated in our cohort relative to ovarian malignancies, serving as
a unique molecular target for treatment [60]. It has been noted that basal cell carcinogenesis
suppresses NDUFA [61].

Numerous metabolic pathways (including retinoate biosynthesis, glycine, serotonin
degradations, glucocorticoid receptor signaling, nicotine degradation, thyroid hormone
metabolism, and the role of lipids), immune response pathways, and thyroid hormone
metabolism were among the key upregulated pathways in our ovarian normal cohort
compared to ovarian tumors (RIG1-like receptors in antiviral innate immunity, and the
role of cytokines in mediating communication between immune cells). The strong body
of literature demonstrating that reprogramming of biosynthesis and continuous cellular
proliferation are hallmarks of tumorigenesis is consistent with the upregulation of metabolic
pathways as the predominant phenotypic expression of differentially expressed genes in
ovarian normal cohorts [62]. Metabolic reprogramming of glucose use is essential for the
development and spread of tumors [63].

Unsurprisingly, the majority of the pathways that were downregulated in our data
were those related to the DNA damage response, which promotes carcinogenesis by al-
lowing uncontrolled progression through the cell cycle and metabolic reprogramming [64].
Based on the metabolic up- or downregulation of substances, such as serotonin and glycine,
both of which are upregulated in our population, two subtypes of cell carcinoma have been
identified [65]. We concentrated on ARID1A and PTEN because of their pre-existing con-
nections to normal cells. Compared to cancer cells, transcription of the tumor suppressor
gene PTEN was dramatically downregulated in normal cells, while transcription of the
tumor suppressor gene ARID1A was significantly increased in cancer cells [66].

Additionally, Cheng et al. [67] proposed a network-based approach to demonstrate
that clinical medication combinations can have superior efficacy according to the target
distribution of two pharmaceuticals in the protein interaction network. In a clever graph
research, Gates et al. [68] explained why a combination of drugs could in this model re-duce
cancer proliferation to zero while a single drug could not, and they proposed that only
combinations of interventions could entirely resolve the status of the proliferation variables.
In order to obtain long-lasting clinical results, multi-target medications or pharmacological
combinations are more likely to trigger a cascade of several pathways that will vigorously
alter disease characteristics. A complete understanding of the meaning or characteristics
of HNS calculated by different methods can prompt us to choose the appropriate method
and help explore the space of gene combinations more effectively to identify synergistic
gene interactions based on network topology. Therefore, it is reasonable to use more than
one kind of method from multiple perspectives, not only considering the network’s core
position but also the network’s control ability.

It should be noted that this study only used data from ovarian cancer. The universality
of the research findings cannot be guaranteed, even if we select a thorough and reliable
database. However, this work’s relevant hints at the OHNS method can provide strategies
and ideas for other disease treatments and provide more insights into complex diseases
from multiple perspectives.

5. Conclusions

We proposed the OHNS target combination based on the core structure and con-
trol ability of the ovarian cancer regulatory network and obtained four unique ovarian
cancer-related pathways. At the same time, 11 genes were predicted, which may serve as
potential candidates for new treatments and biomarkers for ovarian cancer. These genes
assume the roles of risk prognosis, disease driver, and cell perturbation effect. Although
further experimental studies are needed, our study shows that OHNS contains multiple
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disease biomarkers and therapeutic targets that can guide the therapeutic community to
optimize appropriate strategies according to different cancer treatment targets, providing
new avenues for disease intervention and drug discovery.
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