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Simple Summary: With the development of molecular techniques, environmental DNA (eDNA)
methods are increasingly being applied to assess marine fish biodiversity. Fish biodiversity survey
methods have been difficult to standardize due to the diversity and complexity of reef habitats.
Traditional surveys can damage island ecosystems. A rational method for surveying fish biodiversity
in different habitats is urgently needed. This study aimed to investigate the practical validity of
the eDNA method for evaluating the fish composition and diversity in different habitats. Addi-
tionally, compared with traditional surveys, the eDNA method includes the same results, but also
includes species that would not be caught by traditional surveys due to the technical limitations of
traditional surveys. This is significant for continuous biodiversity monitoring and management in
protected areas.

Abstract: This study aimed to investigate the practical validity of the environmental DNA (eDNA)
method for evaluating fish composition and diversity in different habitats. We evaluated the fish
composition and diversity characteristics of seven different habitats in the Ma’an Archipelago Special
Protected Area in April 2020. The results showed that a total of twenty-seven species of fishes
belonging to six orders, eighteen families, and twenty-three genera of the Actinopterygii were
detected in the marine waters of the Ma’an Archipelago Special Protected Area. The dominant species
in each habitat were Larimichthys crocea, Paralichthys olivaceus, and Lateolabrax maculatus. The mussel
culture area had the highest number of species, with 19 fish species, while the offshore bulk load
shedding platform had the lowest number of species, with 12 fish species. The rest of the habitat was
not significantly different. The results showed that the mussel culture area had the highest diversity
index (average value of 2.352 ± 0.161), and the offshore bulk load shedding platform had the lowest
diversity index (average value of 1.865 ± 0.127); the rest of the habitat diversity indices did not differ
significantly. A comparison with historical surveys showed that the eDNA technique can detect
species not collected by traditional methods such as gillnets and trawls. Our study demonstrates the
role of eDNA technology in obtaining fish diversity in different habitats and provides a theoretical
basis for the continuous monitoring and management of fish biodiversity in protected areas.

Keywords: biodiversity; environmental DNA; island ecosystem; Ma’an Archipelago; special
protected area

1. Introduction

Inshore islands and reefs are important components of marine ecosystems, often
possessing a variety of habitat types with high primary productivity and abundant bait,
and thus providing suitable habitats for many marine organisms [1,2] as well as excellent
areas for the development of fisheries and mariculture [3]. Human activities can cause
declines in fish diversity or changes in the community structure in these habitats [4]. Reef
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fish communities are characterized by tropical reef fish groups that can move vertically in
depth, depending on the warmth of the ocean. These communities and the resources in
island reef waters have been mostly assessed through diving observations [5], gillnetting [6],
cage netting [7], electrofishing [8], and small bottom trawling [9]. Most of these traditional
sampling methods are limited to economic fish species and specific survey areas, and are
costly, time-consuming, and difficult [10]. For various specific life stages and very low-
density fish groups, field sampling can be very difficult [11]. The composition and efficiency
of catch species vary with different sampling methods, and this affects the accuracy of fish
resource assessments on island reefs [7,12]. In addition, offshore cargo-carrying platforms
and cage culture areas are prohibited from being surveyed by traditional methods such as
trawling and gillnetting [13]. Therefore, choosing a suitable sampling method is key for
accurately assessing fish communities in island waters.

Environmental DNA (eDNA) is obtained directly from the DNA of various organisms
extracted from environmental samples such as soil, water, glaciers, and sediments [14].
eDNA can reveal past and present-day biodiversity information, and it has been widely
used for biodiversity monitoring, including of marine organisms [15–18]. eDNA provides
a method for the comprehensive and systematic monitoring of biodiversity in island reef
ecosystems [18]. West et al. [19] used eDNA techniques to analyze fish community compo-
sitions in various habitats near southwestern Indian islands and showed that the habitat
area-specific variation was correlated with species’ habitat preferences. Giorgio et al. [20]
combined three methods, underwater video, fisheries fishing, and eDNA techniques, to
investigate fish diversity and found that the eDNA technique was the method that could
best reveal species diversity and contained the least redundant fish composition informa-
tion. This demonstrates that eDNA is an effective tool for monitoring and detecting the
diversity of the species in ecosystems. Currently, fish eDNA studies have been widely
used in specific ecosystem surveys, and few studies have reported on the use of eDNA
techniques for fish diversity surveys in different habitat types. Few researchers have fo-
cused on habitats such as rocky reefs and mussel grounds and, to our knowledge, no one
has compared the efficiency of eDNA with traditional survey methods for measuring fish
diversity in different habitats.

The Ma’an Archipelago Special Protected Area is the core part of the Zhoushan Fishing
Ground, which is located in the northeastern part of the Zhoushan Islands in the Zhejiang
Province. The Yangtze River water injects into the reserve, bringing many nutrients to
the reserve and providing more food for fish [21]. The Taiwan warm current and the
coastal cold current converge in the reserve, causing the currents to churn and nutrients to
rise [21]. The reserve has many islands and reefs with a variety of habitat types, including
rocky reefs, sandy areas, seaweed beds, marine ranching, and a mussel culture area. It
is an island-group marine ecosystem dominated by rich marine biological resources and
unique natural islands, landforms, reefs, and intertidal wetlands [2], which provide suitable
habitat for small coastal estuarine fishes and major economically important fishes [2,22].
To date, most studies have focused on the structure and distribution of fish communities
in different habitats in the reserve. Different studies have assessed the characteristics and
seasonal variation of fish communities in a variety of habitats in protected areas using a
variety of gears, such as trawls and gillnets [23,24]. The results show that different habitats
require different nets to obtain fish information, which is not only time consuming, but
also dependent on the taxonomic experience of the researchers. We used different nets
for surveys in the same habitat, and complete data about the fish were not available [7].
For example, we had difficulties in catching the dominant reef fish Sebastiscus marmoratus
with trawls and we also had difficulties in catching Harpadon nehereus with gillnets [25].
In summary, traditional fishery survey methods not only damage fish habitats, but also
require a lot of sampling time and provide incomplete information on fish communities.
The eDNA technology and other molecular techniques can be used as new surveying
methods for assessing the diversity and community composition of different island reefs,
making up for the shortcomings of traditional survey methods.
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With the development of massively parallel sequencing technologies, eDNA is being
used in a large number of studies for species diversity analyses of monitored areas. Bous-
sarie et al. [26] confirmed that eDNA can be used to detect fish diversity by comparing it
with a traditional underwater visual census. In addition, the eDNA quantity was found to
be significantly correlated with species abundance or biomass [27]. Stat et al. [28] applied
eDNA methods to assess fish diversity in the waters of Coral Bay, northern Australia, and
found that the fish species sequences showed a correlation between the number of fish
species sequences and the biomass. The choice of both adequate gene markers and related
primer pairs affects the eDNA results. The ribosomal small subunit 18S rRNA gene is a
common molecular marker for studying eukaryotic diversity in the environment because
of its good generality and the abundance of reference sequences in the barcode reference li-
braries [14]. In this study, we used 18S universal primers and PCR to amplify and sequence
eDNA from the Ma’an Archipelago Special Protected Area in order to obtain more accurate
biological information. We also used the alpha diversity indices to evaluate the diversity
of fish in different habitats. Finally, we compared the similarities and differences between
traditional methods and the eDNA technique on the fish information obtained, and we
analyzed the advantages and disadvantages of the two methods. This study presents a
new method for monitoring and protecting fish resources in protected areas, with a view to
provide basic information for the assessment of fish conservation effectiveness and resource
management in different habitats.

2. Materials and Methods
2.1. Sampling Time and Station

The survey was conducted in April 2020 (spring) in seven different habitats in the
Ma’an Archipelago Special Protected Area (Figure 1). These were the seaweed beds (A),
the mussel culture area (B), the offshore bulk load shedding platform (C), the rocky reefs
(D), the cage culture area (E), the open sea (F), and the marine ranching area (G).
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2.2. Water Sample Collection and Processing

At each survey site, three replicates of 1 L of surface water (1 m below the water
surface), 1 L of mid-water, and 1 L of bottom water (1 m above the bottom) were collected in
sterile sampling bags. The water temperature (T), salinity, pH, and dissolved oxygen (DO)
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were measured for each layer using a multiparametric probe. The eDNA in seawater was
filtered in the laboratory using a mixed-fiber membrane (47 mm diameter, 0.45 µm pore size)
immediately after water sample collection. To avoid filter clogging and contaminations, we
used pre-filtration with a 1 µm pore size membrane, followed by filtration with a 0.45 µm
pore size membrane. Three blank water samples (pure water) were filtered before filtering
the experimental water samples to avoid any contamination, and then the experimental
water samples were filtered. As we used the mixed-tissue method, water samples from
different layers of the same habitat had to be mixed. Therefore, a volume of 3 L of the
mixed water samples was filtered from each site by each membrane per replicate, and the
filtered membranes were sealed in 1.5 mL sterile centrifuge tubes by curling them with
forceps, marked with the sites and sampling times, and stored in liquid nitrogen at −80 ◦C
until DNA extraction. To avoid cross-contamination, the experimental equipment was
disinfected and cleaned before and after each filtration.

2.3. Environmental DNA Testing

We used the DNeasy Blood & Tissue Kit (Qiagen, Dusseldorf, Germany/cat. 69506)
and followed the instructions to extract the DNA from the filter membrane. The extraction
process was carried out according to the kit instructions and repeated three times for
each sample. The eDNA was quantified using the Qubit 3.0 DNA Assay Kit (Invitrogen,
Carlsbad, CA, USA/cat. Q33226), and the quantification method was adjusted according
to the kit instructions. The extracted eDNA was mixed and dispensed, and its quality
was checked using agarose gel electrophoresis and a NanoDrop2000 spectrophotometer
(Thermos Scientific, Waltham, MA, USA).

PCR Amplification and Sequencing

We used 18S universal primers (18SF: 5′-GGCAAGTCTGGTGCCAG-3′ and 18SR:
5′-ACGGTATCTRATCRTCTTCG-3′) for the PCR amplification of the environmental DNA
samples [29]. The amplification system comprised 35 µL, including 2 × Hieff® Robust
PCR Master Mix, 15 µL; PCR products, 10–20 ng; 1 µL each of forward and reverse primer;
2 µL of template DNA; 12 µL of distilled water; and 30 µL of total volume. Paired-end
libraries were prepared using a two-step PCR method. PCR thermal cycling was performed
after an initial denaturation at 94 ◦C for 3 min, followed by 35 cycles of (1) denaturation
at 94 ◦C for 30 s, (2) annealing at 45 ◦C for 20 s, (3) extension at 72 ◦C for 10 s, followed
by one cycle, and finally extension at 72 ◦C for 5 min, followed by cooling at 10 ◦C for
5 min. The solution was then kept at 10 ◦C and transferred to a refrigerator until further
use. A negative control was also established to detect microbial contamination from the
environment or reagents. Finally, the libraries were double-end sequenced on the Illumina
MiSeq platform (commissioned from Shanghai Meiji Biomedical Technology Co., Ltd.,
Shanghai, China).

2.4. Data Analysis
2.4.1. Fish Species Determination

The raw high-throughput sequencing data were quality clipped and spliced using
fastp software (https://github.com/OpenGene/fastp/, accessed on 21 October 2022) on
the double-ended raw reads data, and clustered by sequences ≥97% using the UPARSE
software [30]. The clustering results were called operational taxonomic units (OTUs) [30].
The obtained OTUs were compared with the NCBI database I (https://www.ncbi.nlm.nih.
gov/, accessed on 21 October 2022) [31] for sequence alignment. When using 18S rRNA
sequences for an environmental DNA macrobarcoding analysis, researchers generally use
96–100% as the species similarity threshold [32,33]. In this study, only marine fish diversity
was analyzed, so non-fish species and freshwater fish species were excluded.

https://github.com/OpenGene/fastp/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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2.4.2. Fish Diversity Analysis

The fish orders, families, genera, and species detected by eDNA sequencing were
counted using Excel (Microsoft, Redmond, WA, USA). We used the QIIME2 software to
count the number of species, the number of OTUs, and the number of sequences at different
taxonomic levels and to calculate the relative abundance of the species sequences. To
analyze the compositional characteristics of fishes in different habitats, all fishes were
classified into warm-temperature species, cold-temperature species, and cold-water species
according to their temperature suitability [34]. All of the fish species were classified into
sedentary, offshore-migratory, and estuarine-migratory fishes. All of the fish species were
classified into perennial, seasonal, and occasional (or rare) species based on the time scale of
fish use of the reef habitats. To understand the relationships between dominant species and
environmental factors, and the differences in the spatial distribution of fish communities in
different habitats, a redundancy analysis and principal coordinate analysis based on the
Bray–Curtis distance were performed using the vegan package and the picante package of
the R software [35].

In this study, we also used the R programming language (Auckland, New Zealand) to
analyze the sequence abundance of the species, and a diversity analysis was calculated to
comprehensively evaluate fish diversity among different habitats. We used the Shannon–
Wiener index to evaluate the diversity of the fish community distribution: the higher the
Shannon value, the higher the community diversity. The Simpson index was often used
to quantify the biodiversity of an ecoregion: the greater the Simpson index, the lower
the community diversity. The Chao1 index was used to calculate the abundance of fish
community distribution. The Pielou index reflected the evenness of the distribution of
different species in the community.

3. Analysis of Results
3.1. Results of eDNA Sequencing

A total of 21 water samples from seven different habitats in the Ma’an Archipelago
Special Protected Area were analyzed, and a total of 697,534 raw sequences were obtained
by processing the raw double-ended sequencing data, including 516,785 high-quality
sequences with an average length of 265 bp. A total of 1076 OTUs were obtained by
clustering at ≥97% sequence similarity. The high-throughput sequencing statistics of the
eDNA samples are shown in Table 1.

3.2. Fish Species Composition

The OTUs were compared with databases (NCBI); the OTUs of annotated sequences
were classified and their taxonomic statuses were identified. A total of twenty-seven species
of marine fishes in twenty-three genera of eighteen families and six orders were detected,
among which Perciformes was the most abundant with nineteen species (accounting for
70.37% of the detected species), followed by Cypriniformes with three species (accounting
for 11.11% of the detected species; Figure 2).

3.2.1. Fish Species Composition in Different Habitats

There were differences in the fish compositions between different habitats (Table 2,
Figure 3). The mussel culture area displayed the highest number of fish species, with
19 species. The seaweed beds and marine ranching were tested for 18 species of fish. The
numbers of species in the offshore bulk load shedding platform, the rock reef, the cage
culture area, and the open sea area were similar, with 13, 12, 14, and 13 species, respectively.

The endemic species of the seaweed beds were Scarus ghobban, Zoarces viviparus, and
Scomberomorus niphonius; the endemic species of the mussel culture area were Ilisha elongate
and Nibea albiflora. Coilia nasus was an endemic species of the offshore bulk load shedding
platform; Psenopsis anomala and Siganus fuscescens were endemic to the marine ranching,
and there were no endemic species in the rock reef, cage culture area, or open sea.



Biology 2022, 11, 1832 6 of 17

Table 1. Sequence quantity (eDNA) results from each station for fish species composition.

Habitat Type Sample Label Total Number of
Bases Sequenced Accounted for Effective

Sequence

A
A1 4,457,369 94.35 52,440
A2 4,563,778 93.97 53,692
A3 5,254,263 94.15 61,815

B
B1 5,784,349 94.40 68,051
B2 4,042,183 94.74 47,555
B3 4,118,932 93.73 48,458

C
C1 4,325,293 95.41 50,886
C2 4,301,465 94.62 50,605
C3 3,877,771 93.90 45,621

D
D1 4,330,038 93.58 50,942
D2 4,178,398 94.54 49,158
D3 4,064,025 93.18 47,812

E
E1 3,753,436 93.70 44,158
E2 3,845,085 95.75 45,236
E3 4,239,784 93.25 49,880

F
F1 5,016,051 94.58 59,012
F2 4,285,021 94.87 50,412
F3 4,031,488 94.86 47,429

G
G1 5,361,963 94.83 63,082
G2 4,028,498 94.05 47,394
G3 4,428,378 94.31 52,099
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Figure 2. Results of OTU division and taxonomic classification identification of fish.

For all fish species (Table 2), five types of thermochromic fish species were detected,
including two species of temperate-water fishes, three species of warm-water fishes, thir-
teen species of warm-temperature fishes, three species of cold-temperature fishes, and
five species of wide-temperature and wide-salinity fishes. We found a total of eleven off-
shore migratory fish species, one estuarine migratory fish species, and fourteen sedentary
fish species. We classified thirteen perennial fish species, ten seasonal fish species, and
three occasional fish species based on changes in fish time scales.
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Table 2. Fish species and ecotypes detected by environmental DNA.

Order and Species Habitat Type Ecological Types
A B C D E F G

Anguilliformes
1 Conger myriaster + + + + **N•

Clupeiformes
2 Engraulis japonicus + + + + **N•

3 Coilia nasus + *4•
4 Ilisha elongata + ***N•

Perciformes
5 Johnius belangerii + + + *
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 Mugil cephalus  Pagrus major  Conger myriaster  Oplegnathus fasciatus
 Lates calcarifer  Lateolabrax maculatus  Paralichthys olivaceus  Sebastiscus marmoratus 
 Scophthalmus  maximus  Larimichthys crocea

#
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7 Larimichthys crocea + + + + + + + *N•
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9 Miichthys miiuy + + + + + *N•
10 Pagrus major + + + + ***
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bastiscus marmoratus (Figure 4). 
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bastiscus marmoratus (Figure 4). 

 
Figure 4. Composition of dominant species at each site. 

A B C D E F G
0

1

2

3

4

Pe
rc

en
ta

ge
 o

f r
el

at
iv

e 
ab

un
da

nc
e o

f 
do

m
in

an
t s

pe
ci

es
 se

qu
en

ce
s %

Habitat Types

 Mugil cephalus  Pagrus major  Conger myriaster  Oplegnathus fasciatus
 Lates calcarifer  Lateolabrax maculatus  Paralichthys olivaceus  Sebastiscus marmoratus 
 Scophthalmus  maximus  Larimichthys crocea

#
16 Lateolabrax maculatus + + + + + �N•

17 Mugil cephalus + + + + + �

Biology 2022, 11, x FOR PEER REVIEW 8 of 17 
 

 

19 Dicentrarchus labrax + + + + + + + ◎ 
20 Sparus aurata + + + + + + + □◆◎ 
21 Seriola lalandi + + + + + + + *▲● 

22 Scarus ghobban +       ◎ 
23 Siganus fuscescens       + □◆○ 

Scorpaeniformes         
24 Sebastiscus marmoratus + +     + *◆○ 

Pleuronectiformes         
25 Paralichthys olivaceus + + + + + + + ***◆○ 

26 Scophthalmus maximus + + + + + + + *****◆○ 
Tetraodontiformes         

27 Takifugu niphobles + +      *◆○ 
Number of categories 18 19 13 12 14 13 18  

Special Species 3 2 1 0 0 0 2  
Note: +: occurrence; * warm-temperature species; ** warm-water species; *** warm water; **** cold-
temperature species; ***** cold-water species; ▲ offshore migration; △ estuarine migration; ◆ sed-
entary; ◎ occasional species; ● seasonal; ○ perennial species; □ wide temperature and wide salin-
ity. 

3.2.2. Species Diversity Indices of Different Habitats 
The mean Simpson index was 0.834 (range: 0.757–0.868), the habitat index values 

were highest for B and lowest for C, and three habitat index values were above the mean. 
The mean Shannon–Wiener index was 2.12 (range: 1.865–2.352). The Shannon index was 
highest in habitat B and lowest in habitat C, with significant differences between habitats. 
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index of 74,141. The Pielou evenness index varied between habitats, with the highest index 
values in habitat G (average values of 0.829 ± 0.038) and the lowest in habitat C (average 
values of 0.727 ± 0.033). 

3.2.3. Composition of Dominant Fish Species 
The top 10 dominant fish species in terms of abundance detected by eDNA analysis 

were Larimichthys crocea, Lates calcarifer, Oplegnathus fasciatus, Lateolabrax maculatus, Pagrus 
major, Mugil cephalus, Scophthalmus maximus, Paralichthys olivus, Conger myriaster, and Se-
bastiscus marmoratus (Figure 4). 
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bastiscus marmoratus (Figure 4). 
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3.2.2. Species Diversity Indices of Different Habitats

The mean Simpson index was 0.834 (range: 0.757–0.868), the habitat index values
were highest for B and lowest for C, and three habitat index values were above the mean.
The mean Shannon–Wiener index was 2.12 (range: 1.865–2.352). The Shannon index was
highest in habitat B and lowest in habitat C, with significant differences between habitats.
The high-throughput sequencing of all samples showed that the Chao1 index ranged from
74,144 to 96,912, with a maximum B-habitat index of 95.912 and a minimum C-habitat
index of 74,141. The Pielou evenness index varied between habitats, with the highest index
values in habitat G (average values of 0.829 ± 0.038) and the lowest in habitat C (average
values of 0.727 ± 0.033).

3.2.3. Composition of Dominant Fish Species

The top 10 dominant fish species in terms of abundance detected by eDNA analysis
were Larimichthys crocea, Lates calcarifer, Oplegnathus fasciatus, Lateolabrax maculatus, Pagrus
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major, Mugil cephalus, Scophthalmus maximus, Paralichthys olivus, Conger myriaster, and
Sebastiscus marmoratus (Figure 4).
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Figure 3. Results of fish OTU delimitation and taxonomic status identification.
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3.3. Correlation Analysis for Each Site

The PCoA results based on the Bray–Curtis dissimilarity showed that the fish commu-
nities of seven typical habitats in the Ma’an Archipelago Special Protected Area differed
and could be divided into five different communities, among which E (cage culture area),
C (offshore bulk load shedding platform), and G (marine ranching) were close together
and had similar fish structure compositions, and thus could be viewed as one commu-
nity (Figure 5). The remaining four sites, A (seaweed beds), B (mussel culture area), D
(rock reef), and F (open sea), were far away from each other and formed different fish
community structures.
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The RDA analysis using environmental factors (T, salinity, DO, and pH) and the se-
quence richness of dominant species showed that the eigenvalues of the first ordination
axis (RDA1) explained 72.57% of the variance (Figure 6). The eigenvalues of the second
ordination axis (RDA2) explained 19.75% of the variance (Figure 6). The correlation co-
efficients of pH and DO with the first ordination axis were 0.51 and 0.24, respectively,
which means that along the first axis of the RDA, there were gradual increases in the
pH and DO from left to right, and among all four environmental factors, the correlation
between pH and the first axis was the largest. The pH and DO were the main influencing
factors for the distribution of dominant fish species and fish community structures in the
Ma’an Archipelago Special Protected Area when surveyed using eDNA technology. The
pH and DO were also the main influencing factors of the fish community structures in A
(seaweed beds) and G (marine ranching), and pH was the main influencing factor of the
fish community structures in B (mussel culture area) and F (open sea). Salinity was the
main influencing factor of the fish community structures in C (offshore bulk cargo shedding
platform) and E (cage culture area), and salinity and T were the main influencing factors of
the fish community structure in D (rocky reef).

Biology 2022, 11, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 6. Redundancy analysis of fish species content and environmental factors. 

4. Discussion 
4.1. Category Composition 

The Ma’an Archipelago Special Protected Area has a wide variety of economic fish 
species [2], and due to severe environmental damage in recent years, the fishery resources 
have declined [36]. The basis and prerequisite for research and conservation, and even for 
the sustainable development and use of these resources, is a clear understanding of the 
composition and structure of the fish communities in the reserve. The current research 
methods are destructive to fish habitats and the community composition, are time-con-
suming and laborious to conduct, and are dependent on the taxonomic basis of the re-
searcher [10,23]. Therefore, we attempted to analyze the fish composition of typical habi-
tats in protected areas using eDNA techniques, and we expect that these methods/results 
will be useful for subsequent research and conservation measures. A number of econom-
ically important fish inhabit the area. Therefore, in this study, we analyzed the fish com-
position of seven typical habitats in the protected area using eDNA technology. The anal-
ysis detected twenty-seven species of fish belonging to twenty-three genera in six orders 
and eighteen families. The relative sequence abundances of L. crocea, L. maculatus, and O. 
fasciatus were higher, followed by S. maximus and P. olivaceus. 

The eDNA technique is highly sensitive, not only for the identification of fish diver-
sity in the water column, but also for testing the morphological identification results of 
some fish species, as well as for the detection of species with very narrow distributions 
and exotic species [37]. In this study, the eDNA technique was used to identify fishes that 
have not been reported or were less reported in the Ma’an Archipelago Special Protected 
Area, such as S. ghobban, L. calcarifer, and S. lalandi. S. ghobban, especially the juveniles, 
mainly inhabit algal thickets [38] and has been found in dive surveys of algal fields in the 
study area [39]. As a result, the eDNA technique, as a non-destructive survey method, is 
more labor-saving than traditional methods. It can greatly simplify fish diversity surveys 
and the monitoring of alien species in marine protected areas. 

Figure 6. Redundancy analysis of fish species content and environmental factors.



Biology 2022, 11, 1832 10 of 17

4. Discussion
4.1. Category Composition

The Ma’an Archipelago Special Protected Area has a wide variety of economic fish
species [2], and due to severe environmental damage in recent years, the fishery resources
have declined [36]. The basis and prerequisite for research and conservation, and even
for the sustainable development and use of these resources, is a clear understanding
of the composition and structure of the fish communities in the reserve. The current
research methods are destructive to fish habitats and the community composition, are
time-consuming and laborious to conduct, and are dependent on the taxonomic basis
of the researcher [10,23]. Therefore, we attempted to analyze the fish composition of
typical habitats in protected areas using eDNA techniques, and we expect that these
methods/results will be useful for subsequent research and conservation measures. A
number of economically important fish inhabit the area. Therefore, in this study, we
analyzed the fish composition of seven typical habitats in the protected area using eDNA
technology. The analysis detected twenty-seven species of fish belonging to twenty-three
genera in six orders and eighteen families. The relative sequence abundances of L. crocea, L.
maculatus, and O. fasciatus were higher, followed by S. maximus and P. olivaceus.

The eDNA technique is highly sensitive, not only for the identification of fish diversity
in the water column, but also for testing the morphological identification results of some
fish species, as well as for the detection of species with very narrow distributions and exotic
species [37]. In this study, the eDNA technique was used to identify fishes that have not
been reported or were less reported in the Ma’an Archipelago Special Protected Area, such
as S. ghobban, L. calcarifer, and S. lalandi. S. ghobban, especially the juveniles, mainly inhabit
algal thickets [38] and has been found in dive surveys of algal fields in the study area [39].
As a result, the eDNA technique, as a non-destructive survey method, is more labor-saving
than traditional methods. It can greatly simplify fish diversity surveys and the monitoring
of alien species in marine protected areas.

4.1.1. Comparison of Fish Diversity

The Shannon–Wiener and Simpson indices can indicate the level of fish diversity
(Table 3). The Simpson index in this survey was 0.75–0.86, the Shannon index was 1.86–2.35,
and their distribution trends were basically the same. Exceptionally, the OTU abundance
of fish species can be expressed as the Chao1 index. The results show large differences
between individual habitats. These may be due to the influence of individual habitats (C) on
the whole, but may also be related to the quality of eDNA and differences in the sampling
sites of marine samples. This may be related to the habitat characteristics, as B (mussel
culture area) was located in the open sea [40] and contained components such as floating
ropes, cultured mussel strings, and floating balls [39], which could have attracted a variety
of fish. The C habitat (offshore bulk cargo shedding platform) had lower temperatures
than the other habitats due to a lack of light all year round; the diversity of fish species
was the lowest in this habitat. When compared to historical survey data, we found that the
diversity of fish species obtained by eDNA testing was generally higher than that obtained
by traditional methods. This could be seen by comparing the diversity index values of
the same survey sites. It can also be shown that eDNA technology can be applied in fish
diversity surveys.

4.1.2. Analysis of Fish Species Composition by Different Survey Methods

Lin et al. [41] studied fish diversity in the rocky reef waters of Dachen Island, Taizhou,
Zhejiang Province, through eDNA and multi-mesh gillnets. They found that the number
of species detected by the eDNA technique was greater than or equal to the number of
species captured by multi-mesh gillnets, and the overall effect of detecting species diversity
was significantly higher than that of multi-mesh gillnets. In this survey, eDNA technology
was used to detect twenty-seven species of fish in twenty-three genera of six orders and
eighteen families in seven different island reef habitats, and the number of fish species
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detected by eDNA technology in marine rangeland habitats was greater than the number
of fish species captured by traditional methods (Table 4). The difference may have been
due to the following three reasons:

Table 3. Alpha diversity indices of relative abundances of fish species.

Habitat Type
Alpha Diversity Indices

Shannon–Wiener
Diversity Index

Simpson
Diversity Index Chao1 Index Pielou

Evenness Index

A 2.274 ± 0.163 0.839 ± 0.034 86.671 ± 7.178 0.786 ± 0.029
B 2.352 ± 0.161 0.868 ± 0.037 95.912 ± 7.581 0.799 ± 0.031
C 1.865 ± 0.127 0.757 ± 0.036 74.141 ± 4.997 0.727 ± 0.033
D 1.993 ± 0.102 0.826 ± 0.018 76.544 ± 4.657 0.802 ± 0.017
E 2.106 ± 0.100 0.846 ± 0.019 81.781 ± 4.462 0.798 ± 0.020
F 2.000 ± 0.122 0.816 ± 0.023 77.505 ± 5.425 0.779 ± 0.024
G 2.245 ± 0.113 0.863 ± 0.013 88.352 ± 4.415 0.829 ± 0.038

Table 4. Number of fish species in different survey methods.

Habitat Type eDNA * Bottom Trawling [21] Bottom Trawling
(Unpublished Data) Bottom Trawling [42] Multiple Gillnet [22]

Species * Species Specific
Name Species Specific

Name Species Specific
Name Species Specific

Name

Oceanic
ranch 18 9

N. lbiflora
L. polyacti

S. marmoratus
J. belangerii

Hexagrammos
indicus

Chelidonichthys
kumu

P. olivaceus
T.

kammalensis
C. nasus

7

Engraulis
japonicus

J. belangerii
M. miiuy

P. anomala
Pampus

argenteus
L. polyacti
C. lucidu

5

J. belangerii
L. polyacti

S. marmoratus
Stephanolepis

cirrhifer
P. olivaceus

4

S. marmoratus
T.

kammalensis
M. miiuy

A. schlegelii

Seaweed
beds 18 6

N. albiflora
S. marmoratus
L. maculatus
A. schlegelii

Hexagrammos
otakii

Agrammus
agrammus

- - 7

Trichiurus
lepturus

J. belangerii
M. miiuy

P. anomala
P. argenteus
L. polyacti
C. lucidu

Muraenesocis
cinereus

Cage culture
area and

nearby rock
reefs

12 5

S. marmoratus
N. albiflora

C. myriaster
L. maculatus
A. agrammus

2
N. albiflora

Cynoglossus
joyneri

- -

Mussel
culture area 19 4

S. marmoratus
J. belangerii
L. polyacti
N. albiflora

- - -

* The fish species names in this study are shown in Table 2.

(1) During the long sampling interval, the dominant fish species and community
composition in the reserve may have changed. For example, Han et al. [25] investigated
the fish community pattern of the reserve using bottom trawling, and found that Harpadon
nehereus, Psenopsis anomala, Collichthys niveatus, and Cynoglossus robutus were the dominant
species in the reserve in spring; compared with the survey by Wang [21], the dominant
species had changed, and Thryssa kammalensis did not appear among the dominant species
in the area. This study showed a change in the dominant fish species in the reserve. L. crocea
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had become the new dominant species, and species such as H. nehereus did not appear in
this study.

(2) Changes in fish habits and environmental factors may have affected the fish diver-
sity, as this survey was conducted in April, while historical surveys have been conducted in
May [21,25,42]. Offshore migratory fish (e.g., C. niveatus and Collichthys lucidus) will enter
the reefs to spawn in the spring and summer seasons when the temperature is higher [25].
The fish diversity of the reserve cannot be well described by a single sampling. Zamani
et al. [43] used the eDNA technique to analyze the different fish communities and diversity
of the reef and found significant differences in the fish diversity in both summer and winter.
Subsequent sampling between different seasons should be carried out for a comprehensive
evaluation of fish diversity and community structure in the reserve.

(3) The primer selection in the eDNA assays could have led to differences in com-
parative databases; for example, some freshwater fish species were detected in this study.
The choice of primers also differed from that of other studies. The results of the different
primers should be compared when the corresponding survey is carried out later. A suitable
primer should be selected for the detection of fish species in the reserve.

4.2. Biomass Analysis

Studies have shown that the eDNA abundance of organisms in aquatic ecosystems is
well correlated with biomass, and thus is widely used in biomass assessments [8,17,44,45].
In this study, the eDNA analysis showed that the dominant species in spring in the Ma’an
Archipelago Special Protected Area were L. crocea, L. calcarifer, L. maculatus, P. major, M.
cephalus, P. olivaceus, C. myriaster, S. marmoratus, and S. maximus. These results differ
from the findings of Wang [21,23] through gillnets and trawls. For example, M. miiuy, N.
albiflora, and S. marmoratus, which had a higher biomass in spring 2009 (April), were less
dominant in the present results, and fish such as T. kammalensis and Setipinna tenuifilis did
not appear in this study. The abundances of the dominant species in this survey, P. olivaceus
and S. maximus, were low in the traditional fishery resource survey. These differences
may be related to the habits of the target species and the degradation rate of eDNA in
the environment. For example, M. cephalus is a warm-temperate demersal fish with the
habit of sinking during the day and surfacing at night [46]. These patterns may affect the
environmental DNA content of otoliths in the samples collected during the day. Therefore,
the eDNA survey should fully consider the ecological habits of fishes that may exist in the
surveyed sea area and employ an optimized design in terms of the water depth and time
of sampling.

The Ma’an Archipelago, located in the center of Zhoushan Fishery, Zhejiang Province,
has traditionally been the spring spawning ground of the Daiku Nation of the East China
Sea, and the survey period coincided with the spring breeding period of L. crocea [47,48].
As a species with declining coastal resources in China, Zhejiang and other provinces and
cities have carried out larger-scale stocking activities in recent years to restore L. crocea and
have achieved certain results [36]. Wang et al. [49] evaluated the fishery resources of L.
crocea in the East China Sea based on eDNA technology and found that its distribution
area and water layer were consistent with the results of traditional trawling. The study
demonstrated the feasibility of the eDNA method for surveying and monitoring the natural
resources of the greater amberjack (an economically important fish species). In this study,
the eDNA test also showed that L. crocea was detected in all the surveyed habitats and was
the dominant species in the surveyed area, further indicating that the L. crocea resources
in the Ma’an Archipelago area had recovered well. P. olivaceus is an artificially cultured
species in the offshore area, and it has a high biomass in the Ma’an Archipelago Special
Protected Area [22,50]. Sato [51] assessed the biomass of fish in an artificial reef and the
open sea by the eDNA technique, and found that O. fasciatus had a large biomass and was
the dominant species in the study area, and this study also showed that O. fasciatus had a
large biomass and was the dominant species in the Ma’an Archipelago Special Protected
Area. The biomass of the other dominant species also varies from site to site, which is
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somewhat related to their habits. Overall, there was some increase in the fish biomass in
all habitats.

4.3. Differences between Different Habitats

There are many islands and reefs in the Ma’an Archipelago Special Protected Area,
with a variety of habitats such as rocky reefs, seaweed beds, and mussel raft culture areas,
forming a marine environment with extremely complex spatial and temporal changes in
environmental factors such as temperature and salinity [21]. The behavior and distribution
of fish are influenced by environmental factors such as the water temperature, water depth,
salinity, and dissolved oxygen [52,53]. Studies have shown that the seaweed beds have a
buffering effect on the distribution of and changes in the current, pH, dissolved oxygen,
and water temperature, and the internal macroalgae and their epiphytes can be used as
bait for a variety of marine organisms such as fish, providing them with an excellent
habitat [54,55]. The eDNA results showed that a total of 18 fish species were detected in
the seaweed beds, including L. crocea, A. schlegelii, and O. fasciatus. The fish community
structure was influenced by two environmental factors, pH and DO, and the respiration
of the algal species supported by the seaweed farm during the survey period may have
affected the changes in pH and DO [55,56]. This change occurred accordingly in our marine
environmental surveys. The rocky reef habitat is a “natural harbor” for fish community
reproduction, development, feeding and protection from enemies, and is dominated by fish
that prefer benthic animals and algae [6,57], such as O. fasciatus and A. schlegelii. The eDNA
results showed that O. fasciatus and A. schlegelii were the dominant species in the rocky
reef habitat, while changes in salinity and temperature affected the community structure
composition of this habitat. This result is also related to a study by Wang [48] on the
environmental factors affecting the changes in fish community patterns and compositions
in the Ma’an Archipelago Special Protected Area.

Studies have shown that rocky reef waters with an abundant seaweed attachment
have higher fish diversity than muddy or sandy habitats without seaweed [58], and the
density of fish resources is much higher in near-reef areas than in far-reef areas [55,59]. In
this study, the fish diversity in the open sea and the cage culture habitats were lower than
that in algal fields. Marine bulk reduction platforms, mariculture nets, and marine buoys
are important infrastructure elements for marine economic development and resource
exploitation [60], and a large number of fouling organisms such as barnacles and mussels
are often attached to the structures [59]. In this study, we found that A. schlegelii had a
larger biomass in the platform, while the stomach content analysis also showed that there
were more barnacles and mussels in the stomach, and thus the offshore bulk load shedding
platform provided a good habitat for A. schlegelii.

Artificial reefs are one or more natural or artificial structures placed on the seabed [61].
As an important initiative for the restoration of offshore biological resources, they combine
the characteristics of natural and artificial environments, and their unique fish aggregation
patterns have complementary and reinforcing effects on the natural community structure,
playing an active and special role in the conservation of rocky reef resources and island
biodiversity [24,62]. Some studies have found that artificial reefs are higher than natural
rock reefs and offshore platforms in terms of species richness, population density, and
diversity [63–65]. This study also found that the number of fish species, the diversity,
and the biomass in the marine ranching were higher than in rock reefs and the bulk load
shedding platform, indicating that artificial reefs in the marine ranching play the role of fish
attraction and the effect of ecological protection. Wang et al. [21] found that temperature
was the largest correlate of fish communities in the marine ranching area. This study
showed that the pH and DO of water bodies were the main influencing factors of the
fish community structure in the marine ranching area, probably due to the fact that this
study employed only a single sampling, without regard to seasonal variation, and the
temperature variation was low.
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In summary, the differences between different areas resulted in the formation of
reef ecosystems [6]. Biological surveys are easily hindered, and fish surveys based on
traditional methods often require multiple voyages, multiple combinations of nets, and
factors that consume large amounts of human and material resources [10]. They are also
constrained by the weather, fish habits, and the professional abilities of researchers (e.g.,
diving, taxonomy) [14]. The eDNA technique largely avoids these limitations, reduces
the biological damage caused by the survey, increases flexibility and sensitivity, and can
complement traditional methods for biological surveys of island ecosystems [17,18,45].

5. Conclusions

Accurate information on the composition, distribution, and abundance of major fish
communities is needed for fisheries management and resource conservation. We found
that the fish community compositions and structures differed among ecological types, and
that eDNA concentrations of the same species differed significantly among habitat types,
indicating a significant horizontal distribution of fish. We also determined the effect of
environmental factors such as SST and salinity on fish distribution, which has predictive
value for fish distribution. This study verifies the feasibility of eDNA. In the future, eDNA
technology will be used in the Ma’an Archipelago Special Protected Area to conduct fishery
resource surveys for different island habitat types, to provide information support for fish
diversity conservation in the protected area, and to provide a scientific basis for carrying
out fish resource management and detection in the protected area. At the same time, the
influence of environmental complexity on the detection results of eDNA technology should
be fully considered, and the influence of the environment on it should be reduced by
improving the precision and increasing the sampling time.
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