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Simple Summary: The estimates of animal diets and trophic structures using stable isotope analyses
are highly influenced by the diet–tissue discrimination and tissue turnover rates. However, these
factors are often unknown because they must be measured using controlled feeding studies. Further-
more, these parameters may be influenced by the diet quality, quantity, toxic stress, and starvation or
fasting, as well as other factors. We measured the effects of toxic stress, starvation, and diet quality on
the turnover rate and diet–tissue discrimination in Daphnia individuals. We raised individuals with a
common laboratory diet and switched them to eight different dietary sources with varying levels of
nutritional quality, while one group experienced starvation. The isotopic values were assessed on
a daily basis post-diet change. Overall, we showed that in addition to the nutritional quality, toxic
stress and starvation are the main processes that affect the two key parameters of the stable isotope
analysis.

Abstract: Stable isotope values can express resource usage by organisms, but their precise interpre-
tation is predicated using a controlled experiment-based validation process. Here, we develop a
stable isotope tracking approach towards exploring resource shifts in a key primary consumer species
Daphnia magna. We used a diet switch experiment and model fitting to quantify the stable carbon (δ
13C) and nitrogen (δ 15N) isotope turnover rates and discrimination factors for eight dietary sources of
the plankton species that differ in their cellular organization (unicellular or filamentous), pigment and
nutrient compositions (sterols and polyunsaturated fatty acids), and secondary metabolite production
rates. We also conduct a starvation experiment. We evaluate nine tissue turnover models using
Akaike’s information criterion and estimate the repetitive trophic discrimination factors. Using the
parameter estimates, we calculate the hourly stable isotope turnover rates. We report an exceedingly
faster turnover value following dietary switching (72 to 96 h) and a measurable variation in trophic
discrimination factors. The results show that toxic stress and the dietary quantity and quality induce
trophic isotope variation in Daphnia individuals. This study provides insight into the physiological
processes that underpin stable isotope patterns. We explicitly test multiple alternative dietary sources
and fasting and discuss the parameters that are fundamental for field- and laboratory-based stable
isotope studies.

Keywords: stable isotopes; cyanobacteria; turnover-rates; discrimination factor; Planktothrix; δ 13C; δ 15N

1. Introduction

Studies on trophic structures and community dynamics are central towards under-
standing community ecology [1,2]. Trophic structures are based on food web networks
linked by feeding interactions, which ultimately define the ecosystem structure [3]. Thus
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far, much work on the spatial and temporal dynamic nature of trophic structures has been
conducted, and it is now well recognized that trophic variation occurs among and within
ecosystems across multiple scales [4]. In an aquatic ecosystem, energy is transferred from
the primary consumer level to higher levels, and a balance in these transfers is vital to
the health and stability of an ecosystem [5]. However, knowledge gaps remain for most
baseline primary consumers, such as Daphnia, which cannot be estimated using evolving
technological tracking tools for a more comprehensive, ecosystem-based understanding
(such as for those in fish). A stable isotope analysis (SIA) is a useful tool that has rapidly
expanded in primary consumer aquatic ecosystem studies. Such studies using SIAs rely on
the fact that consumers reflect the isotopic composition of the consumed prey item, which
varies with prey ecology, geographic location, and habitat conditions [6]. This fundament
has allowed investigations on consumer diets, trophic dynamics, and habitat use with SIAs,
most often by applying tissue carbon (δ 13C) and nitrogen (δ 15N).

Understanding isotopic turnover rates in consumer tissues requires the quantification
of the temporal scale of diet shifts. For instance, following a shift towards an isotopically
varying dietary source (e.g., algae), the δ 13C and δ 15N values of primary consumer tissues
(e.g., Daphnia) change over a period of time until arriving at a consistent value (steady-state
conditions) that mirrors the new dietary isotope value. The rate of change is driven by
the physiological processes of tissue synthesis (e.g., growth) and anabolic and catabolic
processes (e.g., fatty acid metabolism, detoxification). Briefly, the isotopic compositions of
primary consumer tissues reflect those of the diet.

In recent years, dramatic shifts in global and local environmental conditions have
been observed. Such shifts are often driven by climate change, with major impacts on
alterations in temperature [7], elevated atmospheric CO2 [8,9], and nutrient availability in
ecosystems [10]. Additionally, humans have a direct influence on the ecosystem nutrient
dynamics through supplementary feeding and fertilizer application [11–13]. In the context
of lake productivity, such ongoing changes result in changes in the physico- and bio-
chemical properties of lakes, hampering the growth of eukaryotic algae, e.g., Chlorella
sp. [14,15] and Scenedesmus [16], but favoring cyanobacteria [17–24]. Some species (e.g., of
the genus Microcystis) are directly favored by warmer surface water temperatures coupled
to eutrophying nutrient inputs [17,24–28], while others (e.g., Planktothrix rubescens) are
associated with stronger thermal stability of the water column, which may generate a rapid
shift in the quality or quantity of nutrient sources [29–31] in the eutrophic zone. On the other
hand, filamentous, diazotrophic cyanobacteria of the genus Dolichospermum are among
the most ubiquitous bloom-forming cyanobacteria, and their dominance and persistence
have increased due to anthropogenic eutrophication and global climate change [32]. As a
result, it is expected that herbivorous zooplankters will be increasingly confronted with
unicellular, colony-forming, and filamentous cyanobacteria in the future.

Controlled laboratory-based experiments quantifying primary producer and consumer-
specific isotopic turnover and discrimination factors may improve the knowledge on stable
isotope dynamics and its direct use towards the field study of stable isotope (SI) ecology.

Stable isotope (SI) turnover rates permit measurements of the temporal scale of the
diet through proxy demonstrations of the dietary source represented by the tissue SIA
composition. Moreover, the turnover rates can be applied as an ‘isotopic clock’ approach
(e.g., Madigan, et al. [33]), using isotopic endmembers, such as diet or aquatic water
depth and consumer SIA values, to measure the temporal scale of diet shifts, habitat
changes, and movements. Nonetheless, the accuracy of these spatial frames and timeframes
are maximized with species-specific isotopic turnover rates and discrimination factors,
which are best calculated from laboratory experiments. Cladocerans of the genus Daphnia
are key species in many lentic habitats that exhibit a variety of adaptive responses to
rapid environmental fluctuations [34] and are representative as baseline organisms in
freshwater food webs towards understanding the SIA ecology at the herbivore–grazer
interface. However, the lack of experimentally derived isotope turnover parameters and
discrimination factors for Daphnia limits the interpretation of SIA data for (a) spatial and
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temporal patterns in baseline food web and higher trophic-level dynamics and (b) temporal
scales of movement patterns within lake columns (e.g., pelagic vs. benthic and pelagic vs.
littoral).

The aim of the study was to evaluate whole-body isotopic turnover rates and diet–
tissue discrimination factors in individual Daphnia magna. The results of the study
(1) could be applied to field-collected SIA data for active, baseline trophic-level stud-
ies in freshwater systems and (2) could help to improve predictions of the responses of
Daphnia isotopic values towards cyanobacterial dynamics that could develop in times of
climate change.

2. Materials and Methods
2.1. Phytoplankton Culturing and Preparation

As stock cultures of Daphnia magna we used the green alga Acutodesmus obliquus (SAG
276-3a) as food, which was cultured in Cyano medium [35] in 5 L batch cultures under
permanent illumination (24 h light). The food was harvested in the late-exponential growth
period.

We considered a range of different phytoplankton species that are known and expected
to be potential dietary sources for herbivorous zooplankters. Specifically, we used eight
different algae species (Table 1) for the diet switch experiment. The phytoplankton species
differed in their cellular organization (unicellular or filamentous), photopigment and
biochemical compositions (sterols and polyunsaturated fatty acids (PUFA)), as well as in
the production of secondary metabolites and stable isotopic signatures (Table 2). Each
phytoplankton species was cultured semicontinuously in modified Woods Hole (WC)
medium without vitamins [36] at 20 ◦C with illumination at 62 × 1015 mol quanta m−2 s−1

and a light/dark cycle of 16:8. The algae were harvested in the late-exponential growth
phase. The carbon concentrations of the different food suspensions were estimated from
photometric light extinction (480 nm) and carbon extinction equations determined prior to
the experiment.

Table 1. Phytoplankton species used as dietary sources for Daphnia and their respective origin,
toxicity, polyunsaturated fatty acid (PUFA), and sterol provisioning information.

Phytoplankton Origin
Toxic

(+) Yes
(−) No

PUFAs
(+) Yes
(−) No

Potentially
Relevant
PUFAs

Sterols
(+) Yes
(−) No

Potentially
Relevant

Phytosterols

Microcystis
aeruginosa PCC 7806 (+) [37–41]

<C 18 (+) [42]
>C 18 (−)

[42,43]

ALA [42,43]
SDA [42] (−) [42] (−) [42]

Planktothrix
rubescens No

91/1

MON (isolated
Mondsee 2001,

Kurmayer)
(+) [41,44–46] no info. no info. no info. no info.

Planktothrix
agardhii No 829

MON (isolated
Russland 2008,

Kurmayer)
(+) [41,44] no info. no info. no info. no info.

Trichormus
variabilis P9 ATCC 29413 (−) [47]

<C 18 (+)
[42,48]

>C 18 (−)
[42,49]

ALA [42,48,49]
SDA [42,49] (−) [42] (−) [42]

Synechococcus
elongatus Bo
8801 (green)

KON 76
(isolated Lake

Constance)
no info. (−) [42,48,49] * (−) [42,48,49] * (−) [42,50] * (−) [42,50] *

Synechococcus
elongatus Bo
8809 (red)

KON 77
(isolated Lake

Constance)
no info. (−) [42,48,49] * (−) [42,48,49] * (−) [42,50] * (−) [42,50] *
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Table 1. Cont.

Phytoplankton Origin
Toxic

(+) Yes
(−) No

PUFAs
(+) Yes
(−) No

Potentially
Relevant
PUFAs

Sterols
(+) Yes
(−) No

Potentially
Relevant

Phytosterols

Acutodesmus
obliquus SAG 276-3a no info.

<C 18 (+)
[42,48]

>C 18 (−) [49]

ALA [48]
SDA [48] (+) [51,52]

chondrillasterol
[51]

fungisterol [51]
22-

dihydrochon-
drillasterol [51]

Chlamydomonas
klinobasis

KON 56
(isolated lake

constance)
no info. >C 18 (−) [53] ALA [53] (+) [51,54]

ergosterol [51]
7-dehydropori-
ferasterol [51]

Chlorella
vulgaris

KON 65
(isolated lake

constance)
no info. <C 18 (+) [55]

>C 18 (+) [55] *

ALA [55] *
EPA [55] *

DHA [55] *
(+) [51]

ergosterol [51] *
fungisterol [51]

*

PUFAs = polyunsaturated fatty acids; * = not the same strain; no info. = no information known.

Table 2. Mean (±SE) stable isotope values and C/N ratio of each phytoplankton species used as a
dietary source for the diet switch experimental setup.

Diet δ 13C δ 15N C/N Ratio

A. obliquus (Cyano-Medium) −25.59 ± 0.09 3.10 ± 0.01 2.86 ± 0.16

M. aeruginosa −32.28 ± 0.18 4.65 ± 0.85 3.43 ± 1.22

P. agardhii −32.80 ± 0.17 5.26 ± 1.35 3.10 ± 0.65

P. rubescens −34.35 ± 0.15 4.99 ± 0.36 2.74 ± 0.20

T. variabilis −31.44 ± 0.22 3.43 ± 0.17 2.50 ± 0.06

S. elongatus (green) −30.53 ± 0.16 3.83 ± 0.12 2.75 ± 0.21

S. elongatus (red) −30.40 ± 0.08 4.32 ± 0.35 2.56 ± 0.21

A. obliquus −32.99 ± 0.18 2.80 ± 0.23 2.19 ± 0.09

C. klinobasis −32.05 ± 0.10 2.75 ± 0.48 2.63 ± 0.15

C. vulgaris −32.08 ± 0.04 3.63 ± 0.12 2.89 ± 0.21

To determine the stable isotopic signature of each phytoplankton species, samples of
each food suspension were taken every day and filtered onto pre-annealed GF/F filters
(Whatman™, GE Healthcare Life Science, Chicago, IL, USA) over the whole experimental
period (four days). Subsequently, the filters were dried at 50 ◦C and stored in a desiccator
until further analysis.

2.2. Diet Switch Experimental Setup

The diet switch experiment was conducted with third-clutch juveniles (born within
<12 h) of D. magna clone S5 (originally isolated in Sheffield). The D. magna samples were kept
in glass beakers filled with 1.4 L of filtered lake water (0.2 µm pore-sized membrane filter)
at 20 ◦C and with a light/dark cycle of 18:6, with 20 individuals per beaker. Every other
day over a period of seven days, the animals were transferred to new beakers containing
freshly prepared food (2 mg C L−1 A. obliquus).

After seven days of growth, all Daphnia samples were subject to a simultaneous diet
switch. The animals were transferred to glass beakers filled with 200 mL of filtered lake
water containing 2 mg C L−1 each of the different algae. Each treatment consisted of
six replicates per time point with five Daphnia samples per beaker. The animals were
transferred every day to new beakers with freshly prepared food suspensions for the
different treatments.
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After 0 h, 24 h, 48 h, 72 h, and 96 h, six beakers (replicates) were subsampled from each
treatment. The animals were washed three times with demineralized water, transferred
into tin cups, dried for 24 h, weighed on an electronic balance, and stored in a desiccator
until further analysis.

2.3. Stable Isotope Analysis

The Daphnia samples were dried and 0.3–0.7 mg was weighted in small tin cups to the
nearest 0.0001 mg, using a microanalytical balance (Sartorius 4504MP8). The filters of the
algae were also dried and packed (1.5–2 mg) into small tin cups.

The stable isotope analyses were conducted in the stable isotope laboratory of the
Limnological Institute, University of Konstanz (Konstanz, Germany). The zooplankton
and phytoplankton samples were combusted in a Vario Micro-Cube elemental analyzer
(Elementar Analysensysteme GmbH, Hanau, Germany) connected to an isotope ratio mass
spectrometer (Isoprime Ltd., Cheadle Hulme, UK) for the determination of 13C/12C and
15N/14N. The accuracy of the instrument was assessed by measuring internal standards
along with samples. The stable isotope data are reported using the δ-notations (δ 13C and δ
15N) in parts per thousand (‰), where:

δ = 1000 ×
( Rsample

Rstandard

)
− 1 (1)

The data were relative to the Peedee Belemnite (PDB) standard for carbon and at-
mospheric dinitrogen (N2) for nitrogen. Two casein samples were placed between eight
unknowns in sequence as a laboratory standard.

Briefly, a total of 111 Daphnia samples (3 replicates of each treatment and time point)
and 38 phytoplankton samples (a single replicate of each time point) were used for the
stable isotope analysis. The δ 13C and δ 15N analyses were conducted for all samples.

2.4. Time-Based Stable Isotope Turnover Rates

The time-based turnover rates were calculated for the changes in δ 13C and δ 15N as
an exponential function of time following the diet switch using the model of Hobson and
Clark [56]:

δt = δeq +
(
δ0 − δeq

)
e−λt (2)

Here:
δt represents the δ 13C and δ 15N values of D. magna at the experimental time t;
δeq is the calculated asymptotic equilibrium with the new diet;
δ0 is the initial isotopic value prior to the diet switch;
λ is the turnover rate (h−1).
For the estimation of the variables in this model, we used the nls function in R with

the self-starting asymptotic regression model SSasymp with the following equation:

δt = δeq +
(
δ0 − δeq

)
e− exp (logλ)t (3)

The turnover rate expressed in terms of the half-life (T0.5), the time period needed to
achieve a 50% turnover of the isotopic composition of δ 13C, was calculated as [56]:

T50 =
ln(2)

λ
(4)

2.5. Determination of the Best Model Fit Using AIC

We also calculated Akaike’s information criterion for samples size scores (AIC) to
evaluate the relative support for each model and to determine how well the exponential or
linear model provided a better fit for the data:

δt = δeq − λ
(
δ0 − δeq

)
t (5)
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The model assumptions were checked using nlstools package and check of normal
distribution of Residuals using Shapiro Wilks test. The AIC differences (∆AIC) between the
two different models (exponential and linear) were calculated as

∆AIC = AICm − AICn (6)

Here:
AICm is the calculated AIC of a model;
AICn is the lowest AIC of the competing model.

2.6. Discrimination Factor (DF)

The isotopic differences between animal tissue and their diets during the experiment
were estimated by subtracting the animal isotope values from those of their respective diets
for two elements (δ 13C and δ 15N):

∆(tissue−diet) = δtissue − δdiet (7)

2.7. Statistical Analysis

All statistical analyses were performed using R (version 3.6.2). The data were checked
for the normality (Shapiro–Wilk Test) and homogeneity of variances (Levene test). For
comparison of the δ 13C signatures of the diet and the D. magna sample from the last
timepoint (M. aeruginosa 72 h, all other dietary treatments at 96 h after diet changed), we
used the parametric paired t-test. Due to the non-normal distribution of the pooled data,
we used the non-parametric Wilcoxon test.

To compare the difference between the isotopic signatures of D. magna and the diet
after 96 h of incubation, depending on normal-distribution, we used the paired t-test and
the Wilcoxon test. For the analysis of the differences between the stable isotopic signatures
of the respective diets over time, we used a homogeneity of variance ANOVA and a post
hoc Tukey test.

A cluster analysis was performed using the R packages factoextra, ggpubr, and cluster.
To define the optimal number of clusters, we used the average silhouette method, the elbow
method, as well as the gap statistic method [57].

3. Results

3.1. Isotopic Changes in Daphnia Tissues (δ 13C and δ 15N) after Diet Switch

Due to the increasing mortality rate of the Daphnia samples with the dietary treatment
of M. aeruginosa, no animals survived 96 h after the diet switch (Figure 1). Therefore, only
data up to 72 h are shown in Figure 1 and were used for the statistical analysis. Compared
to this, D. magna with the other dietary treatments had a 100% survival rate.

Figures 2 and 3 exhibit the δ 13C and δ 15N values for D. magna with the different
dietary treatments and starvation over a time period of 96 h, respectively. Table S1 shows
the SI values for D. magna with the different treatments listed.

In the following, the results for the various algal dietary sources are depicted, and all
values are given as means ± SE.

3.1.1. Chlorophytes: C. klinobasis, C. vulgaris, and A. obliquus

D. magna showed an initial rapid change in δ 13C when fed on the chlorophytes C.
klinobasis, C. vulgaris, and A. obliquus (Figure 2). The rate of incorporation for algal carbon
reached an equilibrium after 72–96 h. While the δ 13C values of D. magna changed rapidly
(−4.92‰ ± 0.26), the δ 15N values remained almost constant (−0.17‰ ± 0.74) (Figure 3).
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the signatures of the associated diet while the black lines represent the time-based exponential
(D–I) or linear (A–C,J) model fits. The letters represent statistical differences for the δ 13C values of
the different timepoints.
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values of the different timepoints.

3.1.2. Non-Toxic Cyanobacteria: S. elongatus and T. variabilis

Compared to the green algal carbon values, cyanobacterial carbon represented by S.
elongatus (Bo8801 and Bo8809) and T. variabilis was incorporated rather slowly (within 48 h).
After 48 h, the Daphnia did not incorporate the cyanobacterial carbon anymore and reached
its equilibrium, while the δ 15N values slightly increased (0.9‰ ± 0.82) (Figures 2 and 3).
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3.1.3. Toxic Filamentous Cyanobacteria: P. rubescens and P. agardhii

When fed with the filamentous cyanobacteria P. rubescens and P. agardhii, which do
not contain sterols or long-chain PUFAs, and in addition produce a number of harmful
secondary metabolites (Table 1), the mean (± SE) δ 13C values exhibited a minor shift
(P. rubescens: = −0.27‰ ± 0.26; P. agardhii: 0.74‰ ± 0.16), while the δ 15N values in-
creased after 48–72 h rather rapidly (P. rubescens: 5.15‰ ± 0.85; P. agardhii: 1.98‰ ± 0.59)
(Figures 2 and 3).

3.1.4. Toxic Unicellular Cyanobacteria and Starvation

The Daphnia samples that were fed on toxic Microcystis aeruginosa increased in δ
13C (1.57‰ ± 0.25‰) as well as in δ 15N (1.17‰ ± 0.59) compared to the initial values
(Figure 4).
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the different dietary treatments.

The starving D. magna samples showed a different SI value compared to all the
other dietary treatments. While the δ 13C signature of D. magna increased (1.17‰ ± 0.59)
comparable to the SI values of D. magna with the toxic cyanobacterial diet, the δ 15N
values decreased (−0.32‰ ± 0.51‰), as did the D. magna signature of the green algal diet
compared to their initial treatment. Even 96 h after the dietary switch, D. magna did not
reach equilibrium in terms of δ 13C.

Briefly, we note that the highest enrichment for δ 13C after 72 h in the D. magna tissue
was for the dietary treatment with M. aeruginosa. The overall δ 13C value of D. magna held
with the M. aeruginosa diet treatment was 1.57‰ (±0.25), which was enriched compared
to the initial value, while the δ 13C value of the starving D. magna tissue was enriched by
1.17‰ (±0.59) after 96 h. On the other hand, the animals fed with C. vulgaris showed the
steepest slope, with a decrease in the δ 13C signature of 5.00‰ (±0.38) compared to their
initial signature (Figure 4).

The highest enrichment of δ 15N for the D. magna tissue after 96 h compared to the start
signature was found in P. rubescens with 4.15‰ (±0.85), followed by the dietary treatment
with P. agardhii with 1.98‰ (±0.59) (Figure 4). The largest decrease in the δ 15N signature of
D. magna compared to the initial signature was found in C. klinobasis with −0.83‰ (±0.56),
followed by the starvation treatment with a decrease of −0.32‰ (±0.51) (Figure 4).

3.2. Trophic Discrimination Factors (TDFs)

The trophic discrimination factors are shown in Figure 5 and listed in Table S1.
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Figure 5. Discrimination factor (∆) values for stable carbon and nitrogen isotopes 96 h (M. aeruginosa
72 h) after the dietary switch.

3.2.1. TDF: Chlorophytes

The δ 13C value of D. magna individuals fed on chlorophytes was enriched by 0.84‰
(±0.49‰), while the δ 15N value increased by 5.47‰ (±0.26‰).

Specifically, the δ 13C value of D. magna with the C. vulgaris dietary treatment did not
show a significant difference from the dietary source (p > 0.05) (Table 3), while the δ 13C
signatures of all other D. magna samples differed significantly (p < 0.05) from their diet
source (Figure 5).

Table 3. A comparison of the δ 13C values for the diet and D. magna at the end of the experimental
timeframe (96 h, and for M. aeruginosa 72 h) (*** = < 0.001; ** = <0.01 & > 0.001; * = < 0.05 and > 0.01).

Diet t df Significance Level Statistical Test Significance Level

M. aeruginosa 48.336 2 ***

Paired t-test ***P. agardhii −50.803 2 ***

P. rubescens −40.07 2 ***

S. elongatus (green) −10.877 2 **

Paired Wilcoxon test **S. elongatus (red) −20.385 2 **

T. variabilis −11.746 2 **

A. obliquus −13.183 2 **

Paired Wilcoxon test **C. klinobasis −8.8552 2 *

C. vulgaris −3.6104 2 n.s.

3.2.2. TDF: Non-Toxic Cyanobacteria

The D. magna samples feeding on cyanobacteria of both strains of S. elongatus and of T.
variabilis were 2.17‰ (±0.44‰) enriched in δ 13C and 5.70‰ (±0.68‰) enriched in δ 15N.
Their δ 13C values also differed significantly (p < 0.05) from those of their diet. During the
96 h following the dietary switch, the ∆15N values increased by about 0.976‰ from 4.73‰
to 5.70‰, while the ∆13C values decreased by about 1.95‰ from 4.12‰ to 2.17‰.

3.2.3. TDF: Toxic Cyanobacterial

The D. magna samples on the treatments with M. aeruginosa, P. rubescens, and P. agardhii
did not incorporate the δ 13C signature of their diet. While the ∆13C values of D. magna
samples with the other treatments decreased, the ∆13C value of these D. magna samples
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increased during the experiment by about 0.53‰ from 6.53‰ to 7.06‰. Additionally, the
∆15N value increased rapidly about 4.36‰ from 2.64‰ to 7.00‰. The highest enrichment
compared to the dietary source was found in P. rubescens, with an average increase of 7.64‰
(±1.12), followed by P. agardhii, with an average increase of 6.36‰ (±0.40).

3.3. Cluster Analysis

A cluster analysis based on the δ 13C as well as the ∆13C values of D. magna tissues
with the different dietary treatments (Figure 6) identified 4 distinctive groups. Cluster I
was formed by the non-toxic dietary treatment with T. variabilis as well as both strains of S.
elongatus. Cluster II represents the toxic dietary treatments with P. agardhii, P rubescens, and
M. aeruginosa, while cluster III was formed by the chlorophytes A. obliquus, C. klinobasis,
and C. vulgaris. Cluster IV was represented by starving D. magna samples. Based on the
cluster analysis, the data for the different treatments were pooled for better fitting of the
decay models.
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Figure 6. A cluster analysis (k-means) of the δ 13C and ∆13C values of D. magna fed with different
dietary sources after 96 h (for M. aeruginosa after 72 h). Cluster 1 (blue) represents the cyanobacterial
diet for T. variabilis and S. elongatus (both strains); cluster 2 (turquoise) represents D. magna fed on M.
aeruginosa, P. rubescens, and P. agardhii; cluster 3 is shown in green and is formed by the chlorophytes
A. obliquus, C. klinobasis, and C. vulgaris; and cluster 4 (violet) is formed by starving D. magna samples.

3.4. Turnover Rates and Decay Models

The results of the comparison of Akaike’s information criteria (∆AICc) and the calcu-
lated parameters of the decay function are shown in Table 4.
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Table 4. Parameter estimates and standard errors of the linear and exponential decay function fitted
to the δ 13C values of D. magna samples fed on different dietary sources over an experimental time
period of 96 h and a comparison with Akaike’s Information criterion corrected for the small sample
size (∆AICc). Here, δ0 it the initial isotopic ratio of the experiment, δeq is the asymptote (plateau) of
the isotopic ratio, and λ is the incorporation rate of δ 13C. The models were fitted using a time-based
model for each dietary source (n = 3) and for pooled data for the three diets (n = 9), respectively.
E = exponential decay model; L = linear decay model.

Time (h) Diet δ0 δeq logλ λ AIC ∆AIC Half-Life δ 13C

96 T. variabilis −26.64 ± 0.03 −28.89 ± 0.03 −3.39 ± 0.05 0.034 −18.28 (E) 27.23 20.46

27.6396 S. elongatus
(green) −26.58 ± 0.18 −28.92 ± 1.20 −4.39 ± 0.87 0.013 0.95 (E) 5.84 55.69

96 S. elongatus
(red) −26.63 ± 0.05 −29.01 ± 0.07 −3.54 ± 0.08 0.029 −13.18 (E) 21.24 23.78

96 A. obliquus −26.70 ± 0.41 −32.64 ± 1.26 −3.99 ± 0.45 0.019 8.78 (E) 4.6 37.28

35.5296 C. klinobasis −26.65 ± 0.22 −32.38 ± 0.60 −3.91 ± 0.23 0.020 2.67 (E) 10.52 34.48

96 C. vulgaris −26.65 ± 0.33 −32.68 ± 0.91 −3.92 ± 0.34 0.020 6.60 (E) 7.34 35.02

72 M.
aeruginosa −6.05 (L) -

96 P. agardhii 11.05 (L)

96 P. rubescens 17.74 (L)

The best fit for the δ 13C values of T. variabilis, S. elongatus (green), and S. elongatus
(red) (difference in AICc: 14.21), as well as for A. obliquus, C. klinobasis, and Chlorella sp.
(difference in AICc: 7.37), correspond to the one-phase exponential decay. Due to the
increasing or stagnating δ 13C values of M. aeruginosa, the P. rubescens and P. agardhii
turnover rates and decay models could not be calculated.

The calculated carbon turnover rates (T0.5) for D. magna fed on chlorophytes were
very similar to each other and differed only slightly (T0.5: 35.52 h ± 1.49). The carbon
turnover rates of the cyanobacterial strains S. elongatus and T. variabilis were compared
to the chlorophytes, being 7.89 h faster. The average turnover time was 27.63 h, with the
fastest turnover being for the red strain of S. elongatus at 23.78 h and the slowest turnover
rate being for T. variabilis at 55.69 h.

4. Discussion

The results of these controlled laboratory experiments using eight species of algae
fed to Daphnia samples demonstrated that the dietary quantity and quality as well as
the toxic stress (presumably through production of harmful secondary metabolites) exert
a measurable influence on the fractionation and incorporation rates of the carbon and
nitrogen isotope values of the key aquatic consumer Daphnia.

4.1. Starvation

The starving animals in the present study showed enriched δ 13C values (1.17‰ ± 0.59),
while the δ 15N values decreased by approximately 0.32‰ (±0.51) over a time period of
96 h. A similar effect of starvation on the δ 13C values had been documented earlier by
Webb et al. [58] and Oelbermann and Scheu [59]. However, the decrease in δ 15N was
contrary to the result a growing number of studies have shown, whereby nutritional stress
(starvation) leads to an enrichment of the δ 15N values in consumer tissues in inverte-
brates [59–61].

In fact, Doi et al., 2017 conducted a meta-analysis of the δ 13C and δ 15N values of
consumers post- and pre-starvation and showed a large variation in consumer isotope
values (δ 13C range: −1.92 to 2.62‰; δ 15N range: −0.82 to 4.30‰). The analysis also
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showed both increases and decreases in δ 13C due to starvation, while the δ 15N values
of most consumers increased along the length of the starvation period. Our findings
also suggest that starvation induces changes in consumer δ 15N values, which are mainly
explained by the length of the fasting period. Previously, Adams and Sterner [61] showed
that starvation in Daphnia magna leads to δ 15N enrichment. While the available nitrogen
decreases, the organisms are forced to recycle existing internal nitrogen reserves, which
results in increasing δ 15N values as the lean body mass is lost without the replacement of
excreted 14N [62].

There is a wide variety of reports on the effects of starvation on consumer stable
isotope values. While some studies report δ 15N enrichments, no alteration [60], or enriched
13C [59] due to starvation, other studies have shown δ 13C enrichment [63] or no effect [64].
Elsewhere, chironomid starvation resulted in no change in δ 15N values but a significant
enrichment in δ 13C values, presumably due to the preferential degradation of low-δ 13C
components during periods of starvation [63]. In contrast to the other findings, Gorokhova
and Hansson [64] could not observe any effect of starvation on the stable isotopic composi-
tion of mysids. The process of nutrient recycling and trophic enrichment due to starvation
might induce a complex process and very variable isotope values within different species,
life stages, and body conditions.

4.2. Chlorophytes

In contrast to starving animals, we observed a rapid change in the isotopic signature
in Daphnia tissues feeding on chlorophytes. They reached isotopic equilibrium with their
diet after 72–96 h following the diet switch. After 96 h, the D. magna tissue showed a slight
enrichment of 0.84‰ in ∆13C and enriched ∆15N values (∆15N 5.47). Although there was
a slight decrease and an increase for the two isotopes, this result was in agreement with
previous values obtained from 25 different lakes lying in temperate zones with average
fractionation values of δ 13C ca. 0.4‰ (±1.3‰) and δ 15N 3.4‰ (±1‰). Earlier, Minagawa
and Wada [65] documented ∆15N enrichment rates for all consumers (zooplankton, fish,
and birds) of 1.3 to 5.3 (averaging 3.4‰ ± 1.1‰) with increasing trophic levels.

There were only slightly differences in isotopic fractionation between the different
chlorophytes used as dietary sources. While the D. magna tissue fed on Chlorella vulgaris did
not differ after 96 h from that of their diet, the isotopic signature of D. magna samples fed
on C. klinobasis and A. obliquus still differed significantly from their dietary source after 96 h.
Presumably, the biochemical composition of the different chlorophyte species might result
in differences in the isotopic composition of Daphnia fed on a specific diet. Indeed, Chlorella
species are known for the high variability of their biochemical composition [66]. Studies on
the algal species Chlorella vulgaris showed that in addition to phytosterols, which Daphnia
can convert to the required or important cholesterol, this alga also contains long-chain
polyunsaturated fatty acids (PUFAs) such as ALA, EPA, and DHA [55,67–70], which are
important for Daphnia. Evidently, the availability of sterols influences the somatic growth
of Daphnia, while the PUFAs primarily play a crucial role in Daphnia reproduction [71]. Due
to the essential nutrients present, Chlorella vulgaris can be considered a suitable food for
Daphnia.

In aquatic food webs, the lipid composition of the prey is of great importance for
the efficiency of the transfer of energy to higher trophic levels. In addition to the lipid
composition, the elemental C/N ratio of the diet plays a decisive role in the isotopic
fractionation in Daphnia and especially in the δ 15N enrichment of consumers. Adams and
Sterner [61] found an inversely relationship between the δ 15N values of Daphnia and the
diet–tissue isotopic fractionation factor with the nitrogen content of the phytoplankton’s
diet. In addition to the biochemical composition of the phytoplankton, the variability of
the C/N ratio could also cause an altered isotopic fractionation in Daphnia.
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4.3. Non-Toxic Cyanobacteria

The traits of the cyanobacteria, such as the absence of long-chain PUFAs [72] and
sterols [73], morphological properties (filamentous, pico-sized, colony-forming), and the
production of harmful secondary metabolites (cyanotoxins), reduce the fitness of the [42,74]
and mean they are a low quality diet for Daphnia. Our data show that the δ 13C isotopic
signature of D. magna slowly decreases. After 24 h, the δ 15N values start to increase while
the δ 13C values remain at the same level.

The increasing δ 15N levels suggest that the animals are in nutritional stress through
starvation or as result of the low dietary quality and quantity [58,62,75–77]. Herein, we
undertook a microscopic investigation of the guts of multiple individuals of D. magna
and found that the individuals had ingested the offered food algae (gut observation).
However, we did not measure the gut residence times or clearing rates so we were not able
to exclude starvation-like symptoms due to the inefficient uptake of carbon through the
thick cell walls or feeding deterrents. Most importantly, S. elongatus lacks sterols and is
of poor food quality [42,48,49,71]. T. variabilis produces the C-18 PUFAs (similar to ALA
and SDA) [42,48,49] but is deficient in long-chain PUFAs (e.g., C-20). Due to the absence
of sterols and long-chain PUFAs, Daphnia individuals are likely to suffer from nutritional
stress after 24 h, when the internal nutrient reserves are depleted. As a consequence, it is
likely that they recycle their own somatic nitrogen [58,61,62,78], resulting in an increase in
δ 15N values.

Previously, it has been suggested that the lack of sterols is the main reason for the low
food quality of cyanobacteria for Daphnia and that the lack of C-20 PUFAs in cyanobacteria
becomes relevant only when dietary sterol requirements are met by consuming eukaryotic
food sources along with the cyanobacteria, potentially resulting in a co-limitation by sterols
and C-20 PUFAs [71].

To summarize, the lipid composition of the primary producers can affect the fraction-
ation rate of the consumers in two ways. Firstly, an increased lipid concentration in the
primary producers can lead to an increased lipid content in the consumer tissues, depleted
δ 13C values, and reductions in ∆13C values. Secondly, a PUFA-rich diet might lead not
only towards an increased growth rate but also enhanced resource investment towards
reproduction [42,79] and can potentially affect the isotope discrimination factors [80–82].

4.4. Toxic Unicellular Cyanobacteria

In contrast to the isotopic signatures of starving animals, D. magna samples fed with
M. aeruginosa showed increases in δ 13C (1.57‰ ± 0.25‰) and δ 15N (1.17‰ ± 0.59‰)
during exposure to the toxic unicellular cyanobacteria.

In addition to the mechanical interference through colony formation and the lack
of essential nutrients, the cyanobacteria can affect the zooplankter fitness through the
production of harmful secondary metabolites and therefore can influence their isotopic
fractionation. The M. aeruginosa strain PCC 7806 is known to produce a variety of harmful
metabolites such as microcystins, cyanopeptolins, and anabaenopeptins [37], which can
lead to increasing mortality rates in Daphnia. In our experiment, the mortality rate of D.
magna reached 100% after 96 h of exposure to M. aeruginosa. Due to their non-selective
filtering process, Daphnia is unable to distinguish food particles in regard to nutritional
quality. However, the perception of toxic phytoplankton leads to a complete inhibition of
the filtering process [83], and individuals often display arrested feeding, at least for a while.
In our study, it is likely that the putative inhibition of food intake induced a starvation-like
state in the Daphnia, leading to an enrichment of the δ 15N and δ 13C values. Microcystis
may also form aggregates, potentially leading to mechanical interference with the Daphnia
filtration process. However, the microscopic investigation of the phytoplankton culture
showed no formation of aggregates. Since we cannot rule out that aggregates were formed
as a result of the feeding pressure, we examined the guts of D. magna microscopically and
observed that the cells were ingested. This implies that the observed shifts in isotopic
signatures were due to nutrient deficiencies or toxin production.
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In the study by Brzeziński et al. [84], the Daphnia magna individuals became progres-
sively enriched in δ 15N with the increasing concentration of a toxic chemical, while the
stable carbon isotopes were not affected. Since all Daphnia individuals from all treatments
were fed with food from the same source with the same isotopic signature, this ruled out
diet-related effects on the stable isotopes. Compared to their results, the D. magna individu-
als in our experiment showed enrichment in both δ 15N and δ 13C while exposed to toxic
cyanobacteria. The enrichment of stable nitrogen and carbon could occur due to reduced
growth [81], alterations of metabolic pathways involving protein synthesis, and carbon
turnover [85], as wells as the allocation of energy among detoxification processes [86,87],
with an enhanced excretion rate of 14N for detoxification [88] and increased respiration.

4.5. Toxic Filamentous Cyanobacteria

Compared to the M. aeruginosa exposure, the Daphnia individuals fed Planktothrix
agardhii and P. rubescens showed lower δ 13C values but stronger δ 15N enrichment, which
indicated a starving process in D. magna. After 96 h, the D. magna individuals from the P.
rubescens treatment showed the strongest δ 15N enrichment of the whole experiment, with
an increase of 5.15‰ (± 0.85‰).

The used strains of P. agardhii as well as P. rubescens are not able to synthesize micro-
cystins. Nevertheless, they produce harmful metabolites, such as anabaenopeptins [44–46].
Like microcystins, anabaenopeptins lead to the inhibition of Daphnia individuals’ swim-
ming behavior [89] and alter their physiology [90]. Additionally, Planktothrix individuals
can form long trichomes, which potentially interfere mechanically with the filtering process
of Daphnia individuals and may reduce their grazing efficiency [91–94] and increase their
metabolic rate [95]. However, Daphnia individuals are able to ingest particles of a wide size
range, reaching from particles of less than 1 µm [96] up to mm-sized filamentous algae [97],
including trichomes of Planktothrix [98]. Microscopic gut investigations revealed that the
D. magna individuals ingested both strains of Planktothrix species. Therefore, mechanical
interference and associated starvation due to lack of ingestion can be ruled out. The en-
riched isotope values indicative of starvation were likely caused by sterol limitations or the
inhibitory effects of secondary metabolites. By implication, if the animals cannot express
growth due to the lack of an essential nutrient or the inhibition of nutrient assimilation
due to harmful metabolites, then the isotope signature ’falsely’ mirrors values that imply
the lack of consumption of cyanobacteria. However, the shifts in isotopic signatures are
due to nutrient deficiencies or the influence of toxins, despite the cyanobacteria ingestion.
Finally, the production of harmful metabolites and the resulting toxic stress combined with
the mechanical interference and the lack of sterols and long-chain PUFAs may explain the
enrichment in δ 15N in Daphnia individuals fed with P. rubescens and P. agardhii.

5. Conclusions

In summary, in this study we parameterized and formulated stable isotope turnover
rates and discrimination factors to estimate the timing of resource shifts of Daphnia individ-
uals. The parameters generated in this paper for eight phytoplankton species and starvation
provide a strong base for future stable isotope studies of this key primary consumer species.
More generally, through model fitting and information based on the characterization of the
phytoplankton species approach, this study provides an overview into the physiological
reasoning underpinning stable isotope dynamics. Furthermore, through exploring the
strengths and limitations of the different diets and the influence of their potential quality,
quantity, and toxic stress on trophic isotope variations in Daphnia individuals, this study
illustrates how temporal estimates of resource switching are affected, while the tissue
turnover models and discrimination factors might also be influenced. It is evident that
advances in stable isotope studies will be most effective when they can be supported by
laboratory, theory, and field-based investigations.
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89. Pawlik-Skowrońska, B.; Bownik, A. Cyanobacterial anabaenopeptin-B, microcystins and their mixture cause toxic effects on the
behavior of the freshwater crustacean Daphnia magna (Cladocera). Toxicon 2021, 198, 1–11. [CrossRef] [PubMed]
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