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Simple Summary: Flower color is a complex plant trait that is mainly controlled by the accumulation
of pigments, such as anthocyanins. However, the great diversity of flower color in plants cannot
be attributed to a single pigment. Therefore, a more comprehensive approach is needed to fully
understand the whole pigment spectrum. In this study, we used metabolomics to profile more
than 100 plant pigment in red-flowered cyclamen. By comparing the anthocyanins metabolome
in white-flowered cyclamen, we were able to identify key anthocyanins that are highly abundant
in red flowers, but low in white flowers. Thus, we can pinpoint the pigments underlying specific
flower color phenotype. To further reveal the gene expression network that ultimately controlling
the production of pigments, we also performed RNA-Seq using the same plant materials. The
transcriptomics revealed a significant altered gene expression profile between red flowers compared
to white flowers. More importantly, differential expression analysis allowed us to identify key genes
governing the pigment metabolome and flower color. Collectively, our study significantly advanced
our understanding of the molecular basis of flower color in cyclamen.

Abstract: Pigments in cyclamen (Cyclamen purpurascens) endows flowers with great ornamental
and medicinal values. However, little is known about the biosynthetic pathways of pigments,
especially anthocyanins, in cyclamen flowers. Herein, anthocyanins profiling and RNA-Seq were
used to decipher the molecular events using cyclamen genotypes of red (HXK) or white (BXK)
flowers. We found that red cyclamen petals are rich in cyanidin-3-O-rutinoside, cyanidin-3-O-
glucoside, delphinidin-3-O-glucoside, malvidin-3-O-glucoside, peonidin-3-O-rutinoside, quercetin-3-
O-glucoside, and ruti. In addition, our transcriptomics data revealed 3589 up-regulated genes and
2788 down-regulated genes comparing the BXK to HXK. Our rich dataset also identified eight putative
key genes for anthocyanin synthesis, including four chalcone synthase (CHS, g13809_i0, g12097_i0,
g18851_i0, g36714_i0), one chalcone isomerase (CHI, g26337_i0), two flavonoid 3-hydroxylase (F3′H,
g14710_i0 and g15005_i0), and one anthocyanidin synthase (ANS, g18981_i0). Importantly, we found
a 2.5 order of magnitude higher expression of anthocyanin 3-O-glucosyltransferase (g8206_i0), which
encodes a key gene in glycosylation of anthocyanins, in HXK compared to BXK. Taken together, our
multiomics approach demonstrated massive changes in gene regulatory networks and anthocyanin
metabolism in controlling cyclamen flower color.

Keywords: anthocyanins profiling; RNA-Seq; Cyclamen purpurascens; anthocyanins-3-O-rutinoside;
g8206_i0

1. Introduction

Cyclamen (Cyclamen persicum Mill.) is a pot crop extensively cultivated worldwide [1–3].
The flower color spans from white to purple, reflecting great genetic diversity and creating
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great commercial value. The color variation stems mainly from pigment components that
are derived from flavonoids, especially anthocyanins [1–3].

Flavonoids are water-soluble pigments synthesized from 4-coumaroyl-coenzyme A
(CoA; via the phenylpropanoid metabolism) and malonyl-CoA (via the fatty acid synthesis
pathway) through phenylprop a metabolism [4]. Six major subgroups of flavonoids exist in
the leaf, flower, seeds, and fruit in higher plants: the colorless chalcones, flavones (celery),
flavonols (tea, apple, wine), flavandiols, anthocyanins (wine, blueberry), and proantho-
cyanidins/condensed tannins. Besides, isoflavonoids had been found in legumes and some
nonlegume plants, while 3-deoxyanthocyanins are present in Sorghum bicolor, Zea mays,
and Sinningia cardinalis [5]. The biosynthetic pathway of flavonoids had been established
by characterizing mutants deficient in the key enzymes in multiple species [6–9]. For
anthocyanins, chalcone synthase (CHS) catalyzes the reaction between malonyl-coenzyme
A (CoA, derived from the fatty acid synthesis pathway) and 4-coumaroyl-CoA (derived
from the phenylpropanoid metabolism) to form naringenin chalcone [10]. Next, CHI (chal-
cone isomerase) catalyzes the transition from naringenin chalcone to produce naringenin
flavanone [11]. Under the direction of F3H (flavanone-3-hydroxylase), F3′5′H (flavonoid-
3′5′-hydroxylase) and F3′H (flavonoid-3′-hydroxylase), the naringenin flavanone is con-
verted to dihydroflavonols [12]. DFR (dihydroflavonol 4-reductase) catalyzes the formation of
leucoanthocyanins, while ANS/LDOX (anthocyanidin synthase/leucoanthocyanidin dioxyge-
nase) covert leucoanthocyanins to anthocyanidins (delphinidin, cyanidin, pelargonidin) [8,13].
In addition, UFGT (uridine diphosphate-glucose:flavonoid 3-O-glucosyltransferase) cat-
alyze anthocyanidins to produce glycosylated anthocyanins, such as delphinidin-glycosides,
cyanidin-glycosides, and pelargonidin-glycosides [8]. The anthocyanins may be further
methylated by OMTs (O-methyltransferases), leading to the formation of O-methylated
anthocyanins (malvidin-glycosides, peonidin-glycosides, petudin-glycosides) [8,14].

Anthocyanins are the most important flavonoid pigments widely distributed in nature,
dressing the flowers of plants with colors ranging from pink, red, magenta, purple, and blue
to blue-black [15,16]. In addition to serve as coloring pigments for attracting dispersers and
pollinators, anthocyanins also play a role in protecting photosynthetic tissues from light
stress [17]. Moreover, anthocyanins benefit human health given their potential functions in
anti-oxidation, anti-ageing, retinal protection, anti-cancer, and hypolipidemia [5,15]. Chem-
ically, they are glycoside derivatives of 2-phenylbenzopyrylium or flavylium. More than
thirty types of monomeric anthocyanidins or aglycone had been described with variations
in the number of hydroxyl groups, position, number, and kinds of glucoside attached,
and nature and number of aliphatic acids (or aromatic) attached to the glucoside [18,19].
Cyanidin, delphinidin, pelargonidin, peonidin, malvidin, and petunidin are six common
types of anthocyanidins in various parts of plants.

The anthocyanin biosynthetic pathway is strictly regulated at the transcriptional
level [8,14]. Transcription factors (TFs), including those in the MYB and bHLH fami-
lies, have been shown to regulate the gene expression profiles of the pathway. By either
positively or negatively controlling the gene expression level, they regulate anthocyanin
biosynthesis and determines pigmentation patterns [8,14,20–25].

Anthocyanins, especially malvidin, peonidin, and cyanidin derivatives, are the pre-
dominant pigments in cyclamen flowers [1–5]. Herein, the anthocyanin metabolic profiling
was performed in cyclamen of different colors (red or white) flowers to explore the domi-
nating pigments. Moreover, comparative transcriptome analysis was performed to explore
key enzymes participating in the synthesis of relevant pigments (anthocyanins).

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

Two cyclamen (Cyclamen persicum Mill.) varieties with white (BXK) or red (HXK)
colors were grown in the orchard of Nursery of Wuhu Vocational and Technical Col-
lege, respectively. Flowers were snap frozen in liquid nitrogen immediately after collec-
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tion and stored at −80 ◦C for until use. Three biological repetitions were performed for
all experiments.

2.2. RNA Sequencing

RNA sequencing was performed by Wuhan MetWare Biotechnology. Total RNA
was extracted using RNAprep Pure Plant Plus (DP441, TIANGEN, Beijing, China) and
then enriched for total mRNA using poly-T oligo-attached magnetic beads. For library
construction, NEBNext1 Ultra™ RNA Library Prep Kit (NEB, Ipswich, MA, USA) was used
according to the kit instructions. Briefly, mRNA was fragmented and first strand cDNA was
synthesized using random hexamer primer and M-MuLV Reverse Transcriptase, followed
by second strand cDNA synthesis. cDNA fragments were then methylated at the 3′ ends
and then ligated to adaptor for hybridization. Purificaiton was performed using AMPure
XP beads (Beckman Coulter, Beverly, MA, USA). Then, PCR was performed after adding
the Index (X) Primer, Universal PCR primers and High-Fidelity DNA polymerase. PCR
products were purified and then assessed by Agilent Bioanalyzer 2100 system. Sequencing
was performed on Illumina HiSeq2500™ (Illumina, San Diego, CA, USA). The entire
experiment was repeated three times.

2.3. Splicing of Transcripts, Reads Mapping, Gene Expression Level Quantifying, and Differential
Expression Analysis

Reads were filter by removing low quality ones (>10% unknown nucleotides or >50%
low quality nucleotides). Then, transcripts were spliced using Trinity. The spliced tran-
scripts were regarded as the reference sequences and the beads were mapped to the spliced
transcripts using Hisat2. Relative gene expression was denoted with FPKM. Differential
expression analysis was performed using DEGSeq. Two criteria were used for defining
differentially expressed genes (DEGs): Fold Change ≥2 or ≤−2, and FDR < 0.01.

2.4. KEGG Pathway Enrichment Analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially ex-
pressed genes was performed using http://www.genome.jp/kegg/ (accessed on 1 January
2022) and KOBAS software1.0 [26].

2.5. qRT-PCR Analysis

The expression of g1022_i0, g10365_i0, g10266_i0, g10340_i0, g10589_i0, g11358_i0,
g34436_i0, g18620_i0, g526_i0, g5626_i0, and g8206_i0 was analyzed by real-time quantita-
tive RT-PCR. cDNAs were synthesized using the iScript Reverse Transcription Supermix.
qRT-PCR was performed on a Opticon 2 system (MJ Research, St. Bruno, QC, Canada).
Each reaction was performed in triplicate, and eEF1α was chosen as the reference gene.
The expression levels of the tested transcripts were calculated by the 2−∆∆CT method [27].
All primers were designed using primer3.0 software (https://primer3.ut.ee/ (accessed on
1 January 2022) and listed in Supplementary Table S1.

2.6. Anthocyanin Metabolic Profiling Analysis Using LC-MS/MS
2.6.1. Sample Extraction

In total, 100 mg powder was dissolved in 1.0 mL Buffer A (70% aqueous methanol).
Samples were incubated overnight at 4 ◦C, and then centrifugated at 10,000× g for
10 min. The supernatant was filtrated using 0.22 µm pore size (SCAA-104, ANPEL, Shang-
hai, China). Then, HPLC-MS/MS analysis was performed LC-ESI-MS/MS consisting of
Shim-pack UFLC SHIMADZU CBM30A coupled to 6500 Q TRAP.

2.6.2. HPLC Conditions

HPLC was performed according to a published method [16]. The injection was 2 µL.
The column was 10 cm long HSS T3 C18 (Waters, 1.8 µm, 2.1 mm. The gradient was: 100%
of A (water, 0.04% acetic acid) at 0 min, 95% of B (acetonitrile, 0.04% acetic acid) at 11 min,

http://www.genome.jp/kegg/
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95% of B at 12 min, 5% of B at 12.1 min (till 15 min). The flow rate was 0.40 mL/min and
temperature was 40 ◦C.

2.6.3. Mass Spectrometry

Mass spectrometry was performed on 6500 QTRAP equipped with an ESI Turbo
Ion-Spray interface as described. Positive ion mode was used. Analyst 1.6.3 software
(AB Sciex, Framingham, MA, USA) was used for setting up instrument method and data
acquisition [23].

2.6.4. Metabolite Identification and Quantitative Analysis

Metabolites identification and quantification were performed using MultiaQuant
software 3.0.3 with the MWDB database (Metware Biotechnology, Woburn, MA, USA). The
spectra of each metabolite were calibrated based on peak pattern and retention time. The
reproducibility among different samples was determined by overlapping display the total
ion chromatography (TIC) [28–31].

3. Results
3.1. LC-MS/MS Analyzes the Anthocyanin Metabolic Profiling in Two Cyclamen Varieties with
Different Colors

In this study, metabolic analysis of anthocyanin was carried out using an LC-MS-based
metabolomics approach.

As shown in Supplementary Table S3, 108 anthocyanin metabolites, including
17 Cyanidin metabolites, 16 Delphinidin metabolites, 13 Malvidin metabolites, 19 Pelargoni-
din metabolites, 28 Peonidin metabolites, 6 Procyanidin metabolites, and 9 other flavonoid
metabolites were detected and quantified. Hierarchical clustering analysis showed a consis-
tent pattern of metabolite profiles among biological repetitions within each variety (Figure 1,
Supplementary Figures S1–S6).
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Orthogonal partial least squares discriminant analysis (OPLS-DA), which could max-
imize the difference among groups, was employed to screen differential anthocyanin
metabolites. As shown in Table 1, 45 significantly different anthocyanin metabolites
(including 37 up-regulated and 8 down-regulated) were identified. As expected, the
content of most anthocyanin metabolites in flowers of “HXK” is higher than that in
“BXK”, especially for cyanidin-3-O-rutinoside, cyanidin-3-O-glucoside, delphinidin-3-O-
glucoside, malvidin-3-O-glucoside, peonidin-3-O-rutinoside, quercetin-3-O-glucoside, and
rutin (Table 1). The content of these 3-O-glucoside or 3-O-rutinoside glycosylated cyanidin,
delphinidin, malvidin, pelargonidin, and peonidin is prominent higher than the derivatives
of them, suggesting that they may be the main reason for the color difference between
red and white flowers. Among them, cyanidin-3-O-rutinoside, cyanidin-3-O-glucoside,
malvidin-3-O-glucoside, and peonidin-3-O-rutinoside, which contribute to the red color,
are the most abundant anthocyanin in red flowers.

Table 1. The content of anthocyanins in flowers of two cyclamen varieties with different color (µg/g,
dry weight).

Compounds HXK_1 HXK_2 HXK_3 BXK_1 BXK_2 BXK_3

cyanidin-3,5-O-diglucoside 6.68 6.70 6.18 0.79 0.95 0.86
cyanidin-3-O-sambubioside-5-O-glucoside 0.21 0.21 0.19 0.00 0.00 0.00

cyanidin-3-O-xyloside 0.05 0.04 0.05 0.00 0.00 0.00
cyanidin-3-O-sambubioside 31.10 29.64 29.32 0.00 0.00 0.00

cyanidin-3-O-rutinoside-5-O-glucoside 0.59 0.49 0.49 0.00 0.00 0.00
cyanidin-3-O-rutinoside 188.05 188.79 169.85 0.00 0.00 0.00

cyanidin-3-O-(6-O-malonyl-beta-D-glucoside) 1.26 1.17 1.14 0.00 0.00 0.00
cyanidin-3-O-sophoroside 25.73 24.20 23.41 0.00 0.00 0.00

cyanidin-3-O-glucoside 117.54 112.72 109.88 0.00 0.00 0.00
delphinidin-3-O-(6-O-p-coumaroyl)-glucoside 0.00 0.00 0.00 0.04 0.04 0.04

delphinidin-3-O-glucoside 22.23 20.42 19.97 0.13 0.12 0.11
delphinidin-3-O-galactoside 0.23 0.25 0.24 0.02 0.03 0.03

delphinidin-3-O-sambubioside 0.10 0.09 0.09 0.00 0.00 0.00
delphinidin-3-O-rutinoside 0.13 0.13 0.13 0.00 0.00 0.00

delphinidin-3-O-sophoroside 0.23 0.26 0.24 0.03 0.03 0.03
delphinidin-3,5-O-diglucoside 0.00 0.00 0.00 0.07 0.06 0.06

delphinidin 0.72 0.67 0.68 0.00 0.00 0.00
malvidin-3-O-(6-O-malonyl-beta-D-glucoside) 53.95 50.78 49.96 0.17 0.17 0.17

malvidin-3-O-galactoside 68.52 63.64 65.12 0.00 0.00 0.00
malvidin-3-O-(6-O-p-coumaroyl)-glucoside 0.31 0.30 0.29 0.00 0.00 0.00

malvidin-3-O-glucoside 2969.14 2746.50 2602.56 0.00 0.00 0.00
malvidin-3-O-arabinoside 0.33 0.29 0.31 0.00 0.00 0.00

pelargonidin-3-O-(6-O-p-coumaroyl)-glucoside 0.00 0.00 0.00 0.09 0.09 0.10
pelargonidin-3-O-galactoside 0.00 0.00 0.00 0.07 0.07 0.07

pelargonidin 0.07 0.06 0.06 0.00 0.00 0.00
pelargonidin-3-O-glucoside 0.06 0.06 0.07 0.00 0.00 0.00
pelargonidin-3-O-rutinoside 0.46 0.47 0.54 0.00 0.00 0.00

pelargonidin-3-O-sambubioside 3.49 3.26 3.27 0.00 0.00 0.00
pelargonidin-3,5-O-diglucoside 0.02 0.02 0.02 0.57 0.63 0.58

peonidin-3-O-arabinoside 0.05 0.04 0.04 0.00 0.00 0.00
peonidin-3,5-O-diglucoside 12.96 12.31 11.93 3.27 3.52 3.18

peonidin-3-O-(6-O-malonyl-beta-D-glucoside) 0.70 0.61 0.64 0.00 0.00 0.00
peonidin-3-O-glucoside 22.29 21.18 20.67 0.02 0.02 0.01
peonidin-3-O-rutinoside 742.94 733.11 716.02 0.00 0.00 0.00

peonidin-3-O-(6-O-p-coumaroyl)-glucoside 14.85 13.20 13.96 0.00 0.00 0.00
petunidin-3-O-galactoside 17.94 17.30 17.09 0.00 0.00 0.00
petunidin-3-O-glucoside 3.83 3.55 3.45 0.00 0.00 0.00

procyanidin B2 7.00 6.55 5.93 0.41 0.52 0.43
procyanidin B1 0.24 0.21 0.21 0.01 0.01 0.01



Biology 2022, 11, 1721 6 of 13

Table 1. Cont.

Compounds HXK_1 HXK_2 HXK_3 BXK_1 BXK_2 BXK_3

procyanidin B3 0.48 0.42 0.39 0.00 0.00 0.00
quercetin-3-O-glucoside 380.52 353.15 356.23 37.09 40.72 38.06

kaempferol-3-O-rutinoside 7.57 7.12 6.35 14.08 14.88 15.02
rutin 694.99 696.19 640.73 45.35 50.33 45.72

dihydromyricetin 3.64 3.22 3.01 8.28 9.09 8.85

3.2. RNA Sequencing Analysis of Flowers of Two Cyclamen Varieties with Different Color

Six cDNA libraries derived from flowers of HXK and BXK (namely HXK_1, HXK_2,
HXK_3, BXK_1, BXK_2, and BXK_3, respectively) were constructed and sequenced. After
quality control, 14,8922 transcripts, 11,0942 unigenes, and 21,622 conden genes were ac-
quired (Table 2). The detailed sequence of spliced transcripts, unigenes, and conden genes
are presented in Dataset S2, S3, and S4. Detailed information of beads and probability of
mapping of the six samples are presented in Table 3.

Table 2. Number of transcripts, unigenes, and conden genes with different lengths after splicing.

Transcript Length Interval 200–500 bp 500–1k bp 1k–2k bp >2k bp Total

Number of transcripts 62,606 25,307 31,355 29,654 148,922
Number of unigenes 62,588 21,048 14,300 13,006 110,942

Number of conden genes 302 3345 7946 10,029 21,622

Table 3. Total reads number, clean reads number, Q20 value, Q30 value, total mapped reads, and
unique mapped reads based on the RNA-Seq data in libraries of HXK and BXK. _1, _2, and_3
represent the three biological replicates of each sample. Q20 and Q30 represent the percentage of
bases with a Phred value greater than 20 and 30, respectively.

Samples Total_Reads Clean_Reads %>Q20 %>Q30 Mapped Reads (%) Secondary
Alignments (%) Unique Mapped (%)

BXK_1 81,727,748 81,727,706 97.81% 93.52% 67,113,867 (67.24) 18,086,546 (18.12) 49,027,321 (49.12)
BXK_2 93,641,990 93,641,948 97.87% 93.71% 76,691,067 (67.22) 20,445,351 (17.92) 56,245,716 (49.3)
BXK_3 106,129,474 106,129,422 97.96% 93.97% 86,499,777 (66.63) 23,691,204 (18.25) 62,808,573 (48.38)
HXK_1 91,740,416 91,740,386 97.92% 93.85% 77,487,325 (68.14) 21,970,557 (19.32) 55,516,768 (48.82)
HXK_2 96,117,694 96,117,654 97.73% 93.31% 81,692,006 (68.9) 22,455,670 (18.94) 59,236,336 (49.96)
HXK_3 94,944,072 94,944,020 97.78% 93.44% 81,438,637 (69.49) 22,253,903 (18.99) 59,184,734 (50.5)

DEGs, including 3589 up-regulated genes and 2788 down-regulated genes, were
detected comparing the two varieties (Figure 2A, Dataset S5). To verify the RNA-Seq data,
the expression level of nine randomly chosen DEGs was validated. As shown in Figure 2C,
qRT-PCR analysis showed that the relative expression patterns of the genes were consistent
with RNA-Seq data.

3.3. KEGG Analysis of DEGs

Functional subcategories of DEGs were shown in Figure 2B. The most enriched
24 KO terms were beta-alanine metabolism, stilbenoid, diarylheptanoid and gingerol
biosynthesis, starch and sucrose metabolism, sesquiterpenoid and triterpenoid biosynthesis,
ribosome, photosynthesis-antenna proteins, phenylpropanoid biosynthesis, phenylalanine
metabolism, pentose and glucuronate interconversions, PPAR signaling pathway, NOD-
like receptor signaling pathway, metabolism of xenobiotics by cytochrome P450, linoleic
acid metabolism, gap junction, flavonoid biosynthesis, estrogen signaling pathway, DNA
replication, cysteine and methionine metabolism, cutin, suberine and wax biosynthesis,
bile secretion, antigen processing and presentation, anthocyanin biosynthesis, and ABC
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transporters. Notably, a large number of genes related to flavonoid biosynthesis, antho-
cyanin biosynthesis, and phenylpropanoid biosynthesis were significantly differentially
expressed in BXK compared to HXK (Figure 2B). Thus, we next analyzed the expression
patterns of the DEGs in these pathways.
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Figure 2. Transcriptional profiles of flowers of HXK and BXK. (A) Total numbers of DEGs. (B) KEGG
pathway categories of DEGs. The X-axis (Rich factor) represents the proportion of DEG accounted for
all genes of a specific KO term. The size of the point represents the number of DEGs. The Q value is
the calibration of p value. (C) qRT-PCR analysis to verify the result of RNA-Seq. Randomly selected
DEGs were labeled on the x axis. Relative expression levels between HXK and BXK (normalized to 1)
for both the RNA-Seq and qRT-PCR data were shown. Means ± SE were shown from three replicates.

3.4. Analysis of DEGs Related to Anthocyanin Biosynthesis

As shown in Figure 3, the transcript levels of most genes involved in phenylpropanoid
biosynthesis and flavonoid biosynthesis were significantly up-regulated in BXK-VS-HXK
comparison. Interestingly, the expression levels of many potentially key genes for an-
thocyanin synthesis, including four potential chalcone synthase genes (CHS, g13809_i0,
g12097_i0, g18851_i0, g36714_i0), one potential chalcone isomerase gene (CHI, g26337_i0),
two potential flavonoid 3-hydroxylase gene (F3′H, g14710_i0 and g15005_i0), and one po-
tential anthocyanidin synthase gene (ANS, g18981_i0), in flower of HXK were higher than
that of BXK (Figure 3). These genes may be responsible for the synthesis of anthocyanidin,
which colored the flower of HXK with red.
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Figure 3. Putative key genes in anthocyanin biosynthesis and glycosylation. The expression heatmap
represented log2 fold change of transcriptional level (BXK vs. HXK). ANS, anthocyanidin synthase;
CHS, chalcone synthase; CHI, chalcone isomerase; DFR, dihydroflavonol 4-reductase; F3H, flavanone-
3-hydroxylase; F3′H, flavonoid-3-hydroxylase; and UFGT, uridine diphosphate-glucose: flavonoid
3-O-glucosyltransferase.

3.5. g8206_i0, a Potential UFGT Responsible for Glycosylating Anthocyanins

Anthocyanins can be further glycosylated by UFGT (uridine diphosphate-glucose:
flavonoid 3-O-glucosyltransferase), leading to the formation of glycosylated anthocyanins.
Significantly, glycosylated anthocyanins are the major anthocyanins that contribute to
the color variation among different varieties. We found the abundance of 3-O-glucoside
and 3-O-rutinoside glycosylated cyanidin, including delphinidin, malvidin, pelargonidin,
and peonidin, are higher than other derivatives in HXK flowers (Table 1). Therefore, we
next focused on glucosyltransferase, the key enzyme for the glycosylation of cyanidin,
delphinidin, malvidin, pelargonidin, and peonidin.
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KEGG analysis of DEGs between in BXK and HXK showed that two UFGTs were
up-regulated (Figure 3). The expression of g8206_i0 in HXK, encoding a potential UFGT
responsible for glycosylating cyanidin, delphinidin, and pelargonidin and producing
cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, and pelargonidin-3-O-glucoside, is
more than 2.5 orders of magnitude more than that in BXK (Figure 4). Similarly, the
expression of g5626_i0 in the flower of HXK is more than 4 orders of magnitude more than
that in BXK (Figure 4). Moreover, the expression of g8206_i0 is prominent higher than
g5626_i0 in flower of HXK. Thus, we reasoned that g8206_i0 is a key UFGT responsible for
glycosylating cyanidin, delphinidin, and pelargonidin to produce cyanidin-3-O-glucoside,
delphinidin-3-O-glucoside, and pelargonidin-3-O-glucoside, which play an important role
in accumulating glycosylated anthocyanins in flowers of HXK.
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3.6. Excavating Differentially Expressed Transcription Factors (TFs) in BXK-vs-HXK

The anthocyanin biosynthesis and modification are complex biological processes and
strictly regulated by TFs, especially the MYB-bHLH-WD40 (MYB, basic helix-loop-helix
(bHLH), WD40 proteins) complex [8,14]. Based on iTAK, PlnTFDB, and PlantTFDB, differ-
entially expressed TFs were identified. As shown in Figure 5 and Supplementary Table S2,
there were 73 differentially expressed TFs (40 up- and 33 down-regulated TFs) composed
of SRF, MYB, MBD, Homeobox, CSD, HMG, zf-C2H2, E2F, HSF family TFs, and other TFs.
Interestingly, 14 MYB family TFs (g25403_i0, g6939_i0, g21772_i0, g10657_i0, g27153_i0,
g6484_i0, g20876_i0, g32204_i0, g29503_i0, g25712_i0, g30397_i0, g18595_i0, g18251_i0,
g21878_i0) were up-regulated in BXK (Figure 5). Moreover, 10 MYB family TFs (g2206_i0,
g33866_i0, g8716_i0, g5782_i0, g27919_i0, g19104_i0, g34207_i0, g30143_i0, g17765_i0,
g36054_i0) were down-regulated in BXK (Figure 5).
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4. Discussion

Flavonoids are further divided into anthocyanins, flavonoids, flavonols, and fla-
vanones. Anthocyanins are anthocyanins that control the pink, red, blue, purple, and
red-purple colors of flowers. Anthocyanins can be divided into three types: pelargonin,
delphinidin, and cyanidin, which usually exist alone in different flowers. There are also
three methoxyl substitution products of anthocyanins in plants, namely paeoniflorin,
morning glory pigment, and mallow pigment. Geranium pigments are brick red, corn-
flower pigments and peony pigments are purple-red, and delphinium pigments, morning
glory pigments, and mallow pigments are blue-violet [32]. Flavonoids and flavonols are
yellow or colorless; orangeone and chalcone often appear in the same petal together and
appear dark yellow [33].

Cyclamen flowers’ color diversity are largely due to the differential accumulation of
two categories of metabolites-carotenoids (yellow or deep orange pigments) and flavonoids
(red, blue, or purple pigments). In general, the flower color can be affected by several
factors. The first is pH as anthocyanins show different colors at different pH [34]. Second,
anthocyanins can form metalloanthocyanin complex with Al3+ and Mg2+, which can give
distinct flower colors [35]. Third, anthocyanins can also interact with other colorless
molecules, such as copigments [35] or other anthocyanins [36], to enhance the color. Such
a theory is also supported by the later intermolecular stacking theory [37]. For instance,
polyacylated anthocyanins can form stable hydrophobic interactions that give blue color
even without copigment or metal ions in a wide pH range. While these theories can explain
the flower color to different extent, the molecular identifies underlying the color variation
remain elusive. In this study, metabolic profiling of anthocyanin was performed to explore
the dominating pigments endowing the cyclamen petal with red using white flowers as a
control. In addition, we performed comparative transcriptome analysis to delineate key
genes controlling the anthocyanin biosynthetic pathways.

Malvidin, peonidin and cyanidin derivatives are the predominant coloring pigment
in cyclamen flowers. A total of seven anthocyanins, including peonidin 3-O-glucoside,
cyanidin 3,5-di-O-glucoside, malvidin 3-O-glucoside, peonidin-rutinoside, peonidin 3,5-
di-O-glucoside, malvidin 3,5-di-O-glucoside, and malvidin-rutinoside, were identified in
flowers of ten cyclamen varieties [38]. Moreover, 108 anthocyanin metabolites were identi-
fied and quantified in cyclamen flower. Cyanidin-3-O-rutinoside, cyanidin-3-O-glucoside,
delphinidin-3-O-glucoside, malvidin-3-O-glucoside, peonidin-3-O-rutinoside, quercetin-3-
O-glucoside, and rutin were the main compounds in cyclamen flower. The content of these
3-O-glucoside or 3-O-rutinoside glycosylated cyanidin, delphinidin, malvidin, pelargoni-
din, and peonidin is prominent higher than the derivatives of them. Moreover, the content
of most anthocyanin metabolites in flowers of “HXK” is higher than that in “BXK”.

The biosynthesis pathway of anthocyanins has been divided into two stages: an-
thocyanidin formation and anthocyanin modification such as glycosylation, methylation,
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and acylation [39]. Key enzymes for anthocyanidin biosynthesis include ANS, CHI, CHS,
DFR, F3H, F3′H, and F3′5′H [6,8,9]. In our data, we found eight potentially key genes for
anthocyanin synthesis, including four CHSs (g13809_i0, g12097_i0, g18851_i0, g36714_i0),
one CHI (g26337_i0), two F3′Hs (g14710_i0 and g15005_i0), and one ANS (g18981_i0). Not
surprisingly, our data showed that the expression of these eight genes are higher in the
flower of HXK than that of BXK.

Anthocyanin modifications facilitate the formation of more anthocyanin subtypes.
Glycosylation promotes the solubility, chemical stability, storage, and transportation of
anthocyanins [40]. 3GT/UFGT (flavonoid 3-O-glucosyltransferase) is commonly considered
as the first enzyme that catalyzes the glycosylation with several genes characterized in
diverse plant species such as Vitis vinifera, Petunia hybrida, and Freesia hybrida [41,42].
Recently, an anthocyanin 5-O-glucosyltransferase (Cpur5GT) catalyzing the glycosylation
of 3-glucoside-type anthocyanidins at the 5-O-position was identified from cyclamen [27].
Here, our transcriptomics data identified a potential UFGT (g8206_i0) that may execute the
glycosylation of cyanidin (to give cyanidin-3-O-glucoside), delphinidin (to give delphinidin-
3-O-glucoside), and pelargonidin (to give pelargonidin-3-O-glucoside). The mRNA of
g8206_i0 in HXK flower is more than 2.5 orders more than that in BXK. The exact role of
this gene needs further validation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11121721/s1, Figure S1: HPLC chromatogram of an-
thocyanin identified from C. purpurascens flower (BXK1); Figure S2: HPLC chromatogram of
anthocyanin identified from C. purpurascens flower (BXK2); Figure S3: HPLC chromatogram of
anthocyanin identified from C. purpurascens flower (BXK3); Figure S4: HPLC chromatogram of
anthocyanin identified from C. purpurascens flower (HXK1); Figure S5: HPLC chromatogram of
anthocyanin identified from C. purpurascens flower (HXK2); Figure S6: HPLC chromatogram of
anthocyanin identified from C. purpurascens flower (HXK3); Table S1: Primers used in quantitative
RT-PCR analysis; Table S2: The candidate TFs involved in anthocyanin accumulation; Table S3: The
classification and quantification results of all detected metabolites.
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