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Simple Summary: This review article aims to compile the information published in the scientific
literature regarding Coxiella burnetii infection in goats and their role in the epidemiology of infection,
namely their association with the occurrence of Q fever in humans. Q fever presents a worldwide
occurrence and the risk that it represents to humans has been recognized since its first description.
The characteristics of C. burnetii justify its classification as a category B biological threat agent.
International public health authorities strongly recommend global monitoring of C. burnetii, especially
after large-scale Q fever epidemics occurred in The Netherlands, which originated from goat infection.
An approach with the characterization of the bacterium, its strategies of infection, and clinical patterns
in goats will help to understand the dynamics of infection in an epidemiological analysis and to
analyze the role of goats in Q fever.

Abstract: Since its first description in the late 1930s, Q fever has raised many questions. Coxiella
burnetii, the causative agent, is a zoonotic pathogen affecting a wide range of hosts. This airborne
organism leads to an obligate, intracellular lifecycle, during which it multiplies in the mononuclear
cells of the immune system and in the trophoblasts of the placenta in pregnant females. Although
some issues about C. burnetii and its pathogenesis in animals remain unclear, over the years, some
experimental studies on Q fever have been conducted in goats given their excretion pattern. Goats
play an important role in the epidemiology and economics of C. burnetii infections, also being the
focus of several epidemiological studies. Additionally, variants of the agent implicated in human
long-term disease have been found circulating in goats. The purpose of this review is to summarize
the latest research on C. burnetii infection and the role played by goats in the transmission of the
infection to humans.

Keywords: zoonosis; C. burnetii; prevalence; outbreaks; genotype

1. Introduction

The history of Q fever, the disease caused by Coxiella burnetii, can be traced back
to 1937, when it was described by Edward Holbrooke Derrick in Australia [1]. Almost
simultaneously, in the United States, an unknown agent isolated from ticks recovered from
Nine Mile Creak region, Montana, was described [2]. Australian and American teams
shared their findings and concluded that they were studying the same agent and the
same disease [3]. The potential risk of Q fever to public health and the large gaps in the
knowledge of this disease were recognized early, namely by the World Health Organization
(WHO) that, in 1950, encouraged the epidemiological research. Consequently, Q fever was
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reported in 51 countries from the five continents [4]. In Europe, Q fever was first reported
in Greece, during the Second World War, in German soldiers who had febrile illness, the
so-called “Balkan flu” [5].

Nowadays, except in New Zealand, C. burnetii is found worldwide, infecting a wide
range of domestic and wildlife animals [6,7]. Q fever is listed in the Terrestrial Animal
Health Code of the World Organization for Animal Health (WOAH) and all Member
Countries are required to report the occurrence of the disease [8].

Since its first report, human Q fever outbreaks have been regularly reported through-
out the world [9]. From 2007 until 2010, The Netherlands faced the largest Q fever outbreak
ever recorded, resulting in over 4000 reported and 40,000 estimated infected people [10].
This occurrence alerted public health authorities regarding C. burnetii and the need for a
harmonized monitoring of infection was highlighted [11–14]. In fact, during the last decade,
the number of relevant publications on this subject increased significantly [15].

Despite the wide host range of C. burnetii, the infection is mostly recognized in domes-
tic ruminants [7,16–19]. However, over time, human Q fever outbreaks have often been
related to spill-over infection from goats to humans, as shown in Table 1.

Table 1. Human Q fever outbreaks associated with goats.

Country (Area) Period Reference

Australia 2012–2014 [20]

Bulgaria
2004 [21]

2007–2011 [22]

China 2018–2019 [23]

France
- [24]

2007 [25]

Newfoundland 1999 [26]

Slovakia 1993 [27]

The Netherlands 2007–2020 [28,29]

United Kingdom 1987 [30]

USA
- [31]

2011 [32]

Recently, it was observed that goats played a major role in infecting humans compared
with sheep in The Netherlands Q fever outbreak, which was previously associated with
small ruminants [18]. Thus, the infection patterns in goats (e.g., dynamics of infection,
clinical outcomes, and shedding patterns) need clarification, and experimental studies using
goats have improved our scientific knowledge on this topic. Furthermore, the effective
strategy of prevention and control of Q fever, in both humans and animals, requires a
One Health perspective [28,30]. This review is not to intend to give a global geographic
epidemiological view of Q fever, but rather focus on the role of goats in the epidemiology
of this zoonotic pathogen. First, the characteristics of the agent and its pathogenesis will be
briefly described, considering its significance in understanding the clinical and excretion
patterns and followed by the specific infection in goats. Then, the focus will be in the
epidemiological role of goats in Q fever dissemination, finally referring to the importance
of molecular tools to unravel the complex epidemiology of C. burnetii.

This review will focus on C. burnetii infection, highlighting the role of goats in the
epidemiology of this zoonotic pathogen. An overview of the pathogenesis, as well as of the
epidemiological characteristics influencing the dissemination of the infection, will be de-
scribed referring to the importance of molecular tools to unravel the complex epidemiology
of C. burnetii.
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2. Coxiella burnetii: The Microorganism and Its Pathogenesis

When Q fever was first described, its causative agent was unknown. In 1948, the
genus Coxiella was created and Coxiella burnetii (Philip, 1948) was listed in the 6th edition of
Bergey’s Manual of Determinative Bacteriology [3,33] as the aetiological agent of Q fever.

Phylogenetic investigations based on 16S rRNA sequence analysis placed C. burnetii
in the gamma group of proteobacteria, belonging to the order Legionellales, family Cox-
iellaceae, and genus Coxiella [34]. The first complete genome sequence of C. burnetii was
published in 2003. It corresponded to the original strain (RSA 493 strain) firstly isolated
from ticks in the United States, also known as the Nine Mile strain. This event led to
significant advances in the knowledge of C. burnetii [35]. The genome of C. burnetii contains
conserved genomic regions as well as polymorphic regions [36]. Furthermore, the insertion
sequence IS1111 plays an important role in the genomic plasticity of C. burnetii. The number
of IS1111 elements is highly variable between strains; many different genetic locations are
described, showing a direct impact on C. burnetii genotypes [37].

C. burnetii is a small pleomorphic Gram-negative rod, presenting 0.2–0.4 µm wide and
0.4–1.0 µm long [38]. All the lipopolysaccharides (LPSs) encoding genes are in a 38 Kb
region in the C. burnetii genome, and it has been observed that mutational variations in
this region result in antigenic and virulence shift, termed “phase variation”. Antigenic
variation results from an irreversible modification from smooth-type (phase I) to rough-type
(phase II) LPS causing a dramatic reduction in virulence [39]. Thus, the avirulent rough LPS
(phase II) results from a point/frameshift mutation, small deletion, or transposon insertion
in a gene in the LPS biosynthetic pathway [40,41]. Therefore, the sugar composition of
phase II LPS is quite different because sugars such as L-virenose dihydrohydroxystreptose
and galactosamine uronyl-(1,6) glucosamine are lacking [39,42]. So, the lack of virulence
is associated with a shorter LPS and not with a defect in the synthesis of other virulence
factors. However, it is interesting to note that avirulent forms of other strains besides Nine
Mile show different patterns of deletions/mutations, suggesting that the biosynthesis of
LPS in C. burnetii is not yet completely understood [40]. The shift from virulent phase I
to avirulent phase II is likely due to repeated passages of the strains in cell cultures or
embryonated eggs [43].

Phase I C. burnetii can be recovered from infected hosts and the smooth-type LPS of
phase I disturbs an effective immune response, giving the phase I bacterium the oppor-
tunity to survive and multiply in the host cells. Therefore, phase I C. burnetii is highly
infectious [39].

C. burnetii exhibits a biphasic developmental cycle in which two main morphological
forms are identified: large cell variant (LCV) and small cell variant (SCV) [44]. LCVs have
a larger size (>0.5 µm), they are metabolically active, and have less electron dense forms.
They have dispersed and filamentous chromatin and possess clearly distinguishable outer
and cytoplasmic membranes with exposed LPS on the surface, sharing features with Gram-
negative bacteria. These LCVs are sensitive to the decrease in osmotic pressure [45–47].
SCVs are small rod-shaped forms ranging typically from 0.2 and 0.5 µm, being filterable
through 0.22 µm filters. They are very compact and present low metabolic activity [44,46].
Some structural characteristics of SCVs are the electron-dense and condensed chromatin and
the unusual cell envelope characterized by a high number of cross-links in peptidoglycans,
which seems to enhance environmental stability [45,48]. Thus, they are very stable in
the environment, showing a high resistance to osmotic, mechanical, chemical, heat, and
desiccation stresses [44,48].

The primary target cells of C. burnetii are blood-circulating monocytes, macrophages
(e.g., lymph nodes, spleen, liver, and lungs) [49], and trophoblasts in pregnant females [50].

The internalisation of phase I SCV of C. burnetii in target cells involves the recognition
of several receptors [51]. It is mediated by the leukocyte response integrin (LRI) (αvβ3)
and an integrin-associated protein (IAP) [39,52]. The entry occurs through a microfilament-
dependent endocytosis [44,51]. Phase I LPS induces a rearrangement of F-actin cytoskeleton,
leading to pronounced membrane protrusions at the site of bacterial adherence. This
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phenomenon, called membrane ruffling, requires contact between C. burnetii and host cells,
and depends on the expression of toll-like receptor type 4 (TLR4) on the host cell surface
(Figure 1) [53–55]. The ability to use αvβ3 integrin for invasion might be exploited by
C. burnetii as a mechanism to avoid the induction of an inflammatory response, as αvβ3
integrin is typically involved in the removal of apoptotic cells via phagocytosis, being
generally associated with an inhibition of inflammation [52]. Thus, C. burnetii enters the
cells without alerting the immune system [56].
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Figure 1. Scheme representing the internalization of phase I SCV of C. burnetii by monocyte-like cells.

After internalization, bacteria localize within the nascent Coxiella-containing vacuole
(CCV), which traffics through the endocytic cascade. It develops into an early phagosome
acquiring the small GTPase RAB5. This GTPase stimulates the fusion with early endo-
somes, resulting in acidification of the lumen to approximately pH 5.4 and acquisition of the
early-endosomal marker protein 1 (EEA1) [57,58]. Early phagosome is converted into late
phagosome acquiring acid hydrolases, which are involved in pronounced degradative activ-
ity, which C. burnetii can resist [59]. This late phagosome lacks RAB5 and EEA1 but acquires
lysosome-associated membrane protein 1, 2, and 3 (LAMP1, LAMP2, and LAMP3) and
vacuolar ATPase, which pumps protons into the maturing phagosome to further decrease
the luminal pH to about 5.0 [58,60,61]. C. burnetii persists and replicates, at a slow rate,
within the large CCV with an acidic environment [39,62,63]. The process of phagosome
maturation continues with its fusion with lysosomal compartments to acquire cathepsins
and hydrolases. The vacuolar ATPase further reduces the pH to around 4.5 [58,64]. Phago-
some maturation depends on the balance between pro-inflammatory (IFN-γ, IL-12, and
IL-6) and anti-inflammatory (IL-10) cytokines [65]. C. burnetii modulates the genesis of
CCV and has several strategies for adaptation to the stressful environment. It encodes
a significant number of basic proteins that are probably involved in buffering the acidic
environment of the CCV. Moreover, four sodium–proton exchangers and transporters for
osmoprotectants are codified in its genome, allowing this bacterium to confront osmotic
and oxidative stresses [35].

During its biogenesis process, CCV becomes large and contains a large number of
bacteria [62]. C. burnetii does not synthesize its own CCV membrane. Multiple fusion
events with autophagosomes along with endolysosomal vacuoles are essential to provide
sufficient membrane to enlarge the CCV [66,67]. C. burnetii continuously directs fusion
with other host cell compartments and inhibits apoptotic cell death, allowing a prolonged
infectious cycle [63,68–71].

The internalised SCV, within the CCV, suffers a differentiation into replicative and
metabolically active LCV (Figure 2). The low intra-phagosomal pH and perhaps enzyme
system and/or nutrient sources present in the vacuole seem to trigger this differentiation.
Lag phase extends to approximately two days post-infection and is composed primarily
of SCV to LCV morphogenesis. The exponential phase occurs over the next four days
with CCV harbouring replicating LCV almost exclusively. The LCV multiplies and persists
within an expanding CCV that contains lysosomal elements, including an acid pH (5.0) and
degradative proteases [44,46,59,72].
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A dramatic expansion of the CCV occurs concomitantly with the appearance of repli-
cating LCV, occupying nearly the entire cytoplasm [44,66]. These metabolically active LCVs
also play an important role in cell-to-cell spread during acute infection. This process is
facilitated by the display of unique LCV antigens such as a porin protein termed P1. The
stationary phase begins six days post-infection, concomitantly with the re-appearance of
SCV. Following the accumulation of large numbers of LCVs, C. burnetii converts back into
SCVs, which are released from heavily infected cells by an undefined mechanism [44].

The resistance properties of these SCVs strongly implicate this form as responsible for
long-term extracellular survival and aerosol transmission of C. burnetii [44,45].

3. Infection and Clinical Outcomes in Goats

It is globally recognized that C. burnetii infection occurs mainly by inhalation of
contaminated aerosols and, because C. burnetii is a highly infective pathogen, low doses
cause a high risk of illness [73,74]. So far, experimental studies on goats were not focused
on estimating the infectious dose. However, in humans, it was estimated that the 50%
infectious dose was around one bacterium [75].

Alveolar macrophages are the first-line defence that confronts C. burnetii [49,76]. The
ability of these cells to rapidly respond recruiting additional immune cells is central for an
effective antibacterial response in early stages of infection [65,77]. In primary infections,
after entry into the organism, a bacteraemia occurs, leading to a systemic infection with the
involvement of organs such as liver, spleen, lungs, and bone marrow [38]. The organism
can subsequently disseminate to colonize and replicate in resident macrophages of different
tissues and organs [78]. In pregnant goats, the main target cells are the trophoblasts in
the allanthocorion, causing a placentitis and necrosis of placental tissues [79,80]. The
amount of C. burnetii DNA detected increases until parturition and decreases drastically
after parturition, probably by the disappearing of trophoblasts, the replication niche of
C. burnetii during pregnancy [79,81]. This strong tropism of C. burnetii towards placenta
does not seem to occur for other tissues of nonpregnant goats and kids, suggesting that
pregnant females are more susceptible to C. burnetii infection [79,82].

Cell-mediated immunity probably plays a critical role in controlling C. burnetii infec-
tion [49,55]. Cells belonging to monocyte-macrophage lineage express polarized functional
properties. This polarization seems to be closely related to the ability to control C. burnetii
infection, explaining the bacterial persistence in chronic infections [83]. Classically, M1
polarized macrophages are induced by LPS, IFN-γ, and TNF-α, and participate in the
resistance against intracellular pathogens involved in Th1 responses. In contrast, M2-
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polarized macrophages are induced by IL-4, IL-13, or IL-10 and promote Th2 responses.
So, it is thought that the course of infection differs according to the macrophage polariza-
tion in response to C. burnetii infection [83]. If M1-associated molecules are expressed by
macrophages, the bacterial replication will be controlled [62,83], while the stimulation of an
M2 response will account for the persistence of C. burnetii in macrophages, which become
highly permissive to C. burnetii replication [83–85].

Beyond cell-mediated response, an antibody-mediated immunity also seems to be
important in C. burnetii infection [49]. Treatment of C. burnetii infection with immune sera
makes the bacterium more susceptible to phagocytosis and destruction by macrophages [86].
Specific immunoglobulins are secreted following infection [38] and the infection of dendritic
cells with antibody-opsonized bacteria results in increased expression of maturation mark-
ers and inflammatory cytokines in mice [49]. It can be concluded from field studies that
C. burnetii antibodies are highly persistent, lasting for several months up to years [87,88].
Thus, both humoral and cellular immunity play a role in C. burnetii infection.

However, the immune control of C. burnetii might not lead to its eradication from the
infected host [55]. It is also hypothesized that the uterus could be a site of latent infection,
hence reactivation during pregnancy can occur [89,90].

In goats, as well as in other domestic ruminants, C. burnetii infection often goes
unnoticed owing to the absence of symptoms, and the term Coxiellosis is usually used
to refer this condition [8]. In the early stages after infection, C. burnetii can be detected
in the blood, lungs, spleen, and liver. However, it is not clear if its presence in organs
other than placenta affects the functions of these organs, as only mild lesions have been
described [79,81,91,92]. Experimental infection of non-pregnant goats showed that, at late
stages of infection, C. burnetii was present in mammary glands, emphasizing the milk as
an important shedding route [82]. Infection of pregnant goats may cause a wide range
of conditions including abortion, delivery of premature offspring, stillbirth, and weak
offspring. Of these, one of the most important outcomes of the C. burnetii infection is the
abortion, which occur at the end of pregnancy without premonitory signs. In dairy goat
herds that experience abortions caused by C. burnetii, an increased incidence of metritis
can be noticed. Notwithstanding, a clinically normal progeny, which may or may not be
congenitally infected, may occur, as described in infection of non-pregnant goats [7,79,82].
However, it seems that apparently healthy kids born from infected mothers may develop
respiratory and digestive tract disorders [7].

In the season that follows an abortion storm, the multiplication of the organism
may be reactivated during pregnancy, leading to reproductive failures [93–95]. Even in
asymptomatic infections, a latent infection may develop and a reactivation late in pregnancy
can occur several days before parturition. Generally, when late-term abortions, stillbirths, or
birth of stunted animals are observed in goat flocks, Q fever should be suspected. Usually,
up to 90% of the reproductive females within the flock are infected. This is why it is
mentioned that C. burnetii may cause epidemic herd outbreaks with significant animal
losses owing to abortion waves and weak offspring during the parturition period [96,97].

4. Epidemiological Highlights

C. burnetii is a category B biological threat agent because of its impressive stability
and resistance, its ability to aerosolize, and its virulence [43–45,98]. These characteristics
allow the survival of this pathogen in the environment for long periods while keeping
its infectivity [45,53]. In fact, viable microorganisms can be recovered after several years
in dust, two years at –20 ◦C, seven to ten months on wool at environment temperature,
150 days in soil, for more than one month on fresh meat, and seven days in water or in milk
at room temperature [17,38].

The transmission of C. burnetii may occur by direct, indirect, or vectorial transmission.
The majority of natural C. burnetii infections occur by airborne transmission, resulting
from the inhalation of aerosolized bacteria [79,93,96]. The resistance of C. burnetii allows
it to be dispersed by wind far away from its original source. This may cause a long-
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distance transmission of infection leading to inter-herd transmission of C. burnetii or even to
dispersion of bacteria to residential locations, causing human outbreaks [99–101]. Several
studies on human outbreaks report this mid- to long-distance transmission [99,102,103].
Moreover, areas with high wind speed, open landscape, and high temperature increase the
risk of infection [104].

Milk is considered a relevant route of bacterial shedding in the infected goats [105]
and several studies evidence the presence of C. burnetii in goat milk (Table 2).

Table 2. C. burnetii DNA detected in milk samples from goat herds.

Country (Area) Study Period Type of Sample Number of Samples Test Prevalence (%) Reference

Belgium 2009–2013 BTM a 1924 Real-time PCR 12.1 [106]

France - BTM a 120 PCR 19.0 [105]

Iran 2008 BTM a 110 Nested PCR 4.5 [107]

Italy 2018–2020
Milk 68 PCR 25.0

[108]
Cheese 15 PCR 6.7

Poland - BTM a 35 Real-time PCR 54.3 [109]

Portugal 2009–2013 BTM a 12 Real-time PCR 0.0 [110]

Switzerland 2006 Milk 39 Nested PCR 0.0 [111]

The Gambia 2012 Milk 33 PCR 2.94 [112]

The
Netherlands 2008 BTM a 292 Real-time PCR 32.9 [113]

Turkey - Milk 50 PCR 4.0 [114]

USA 2012 Milk 387 Real-time PCR 2.5 [115]
a BTM—bulk tank milk.

Despite the knowledge that C. burnetii remains viable in unpasteurized milk, the as-
sumption of the risk of infection by ingestion of C. burnetii milk is controversial [108,116,117].
In France, C. burnetii was detected in commercially available milk products, but, because
its viability was not confirmed, the transmission by consumption of these products was
not considered important [118]. Moreover, in a report concerning the public health risks
related to raw drinking milk, C. burnetii is not mentioned as a biohazard to be transmitted
via milk [119]. Thus, for risk assessment, it is assumed that multiplication of the pathogen
in milk and milk products does not occur. Furthermore, there are insufficient data for a
dose–response model for the oral route in humans [117]. It is known that the pasteurization
procedure by ultra-high temperature treatment of milk (72 ◦C for 15 s) is adequate to elimi-
nate viable C. burnetii from whole raw milk [120,121]. Notwithstanding, the risk of infection
by consuming unpasteurized milk and raw milk dairy products may not be negligible.

Infected goats also shed high concentrations of C. burnetii in placental membranes,
birth fluids, and/or abortion products [79,122]. This is an important excretion route in
peri-partum period contributing to a high contamination of the environment. Furthermore,
C. burnetii can also be excreted through faeces and vaginal mucus [79,113]. The shedding
is normally very high at the first parturition after the infection, but occasionally, it occurs
at subsequent pregnancies accompanied by a considerable number of bacteria excreted
through placenta [79,94]. So, normal deliveries in infected females may contribute to the
environmental contamination and should, therefore, be considered as a major zoonotic
risk [79]. In the environment, bacteria can be easily aerosolized from desiccation of infected
placenta and body fluids or from contaminated manure, reaching new hosts [96,101,103].

The risk of infection has been studied at the herd level and at the individual level in
prevalence studies by detection of antibodies (Tables 3 and 4, respectively).
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Table 3. Prevalence of antibodies anti-C. burnetii at goat herd level.

Country
(Area)

Study
Period

Type of
Sample

Sampling
Method Number Test Cut-Off Value Prevalence (%) Reference

Canada 2010–2012 Serum Multi-stage
random 76 ELISA 0.4 63.2 [123]

Great Britain 2008 Serum Random
stratified 145 ELISA 0.4 3.0 [124]

Ireland
(Republic of) 2005–2007 Serum Random 66 ELISA 0.4 1.5 [125]

Italy 2012 Serum Multi-stage
random 206 ELISA 0.4 19.5 [126]

Lebanon 2014 Serum Random 128 ELISA 0.4 45.3 [127]

Norway 2009 BTM a Random 348 ELISA 0.4 0 [128]

Portugal 2011 Serum Random 52 ELISA 0.30 28.8 [129]

Spain 2007–2008 Serum Random 11 ELISA 0.40 45.0 [130]

Sweden 2010 BTM a Random 58 ELISA 0.4 1.7 [131]

Switzerland 2011 Serum Random
stratified 72 ELISA 0.4 11.1 [132]

The
Netherlands 2008 Serum Random 442 ELISA 0.4 17.9 [133]

USA 2012–2014 Serum Random 89 ELISA 0.4 11.5 [115]
a BTM—bulk tank milk.

At the herd level, the risk factors for C. burnetii infection are as follows: the proximity
of an infected farm, the high animal density in a municipality, the high wind speed, an open
landscape, the high temperature [123,134,135], the increased size of the herd [123,129,134],
the poor hygiene and bio-security measures in the farm, the presence of ticks, the presence
of dogs and cats in the farm [134,135], and the presence of swine on farms [123]. At an
individual level, it was shown that the risk of positivity increases with age [129].

Table 4. Individual seroprevalence of C. burnetii in goats.

Country
(Area)

Study
Period

Type of
Sample

Sampling
Method

Number of
Samples Test Cut-Off Value Prevalence (%) Reference

Albania 1995–1997 Serum - 443 ELISA 0.4 8.8 [136]

Bangladesh 2009–2010 Serum Convenience 529 ELISA 0.4 0.8 [137]

Brazil 2014–2015 Serum Convenience 312 ELISA 0.4 55.1 [138]

Canada 2010–2012 Serum Multi-stage
random 2195 ELISA 0.4 32.5 [123]

Ethiopia - Serum Multi-stage
random 293 ELISA 0.4 35.5 [139]

Great Britain 2008 Serum Random
stratified 522 ELISA 0.4 0.8 [124]

Greece 2014–2015 Serum Convenience 800 ELISA 0.4 14.4 [140]

India - Serum Convenience 53 ELISA 0.4 5.7 [141]

Iran - Serum Multi-stage
random 241 ELISA 0.4 22.4 [142]

Ireland
(Republic of) 2005–2007 Serum Random 590 ELISA 0.4 0.3 [125]
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Table 4. Cont.

Country
(Area)

Study
Period

Type of
Sample

Sampling
Method

Number of
Samples Test Cut-Off Value Prevalence (%) Reference

Italy 2012 Serum Multi-stage
random 3185 ELISA 0.4 25.7 [126]

Ivory Coast 2012–2014 Serum Cluster 622 ELISA 0.4 12.4 [143]

Kenya 2013 Serum Random 280 ELISA 0.4 18.2 [144]

Lebanon 2014 Serum Random 384 ELISA 0.4 17.2 [127]

Reunion
Island 2011–2012 Serum Random 134 ELISA 0.4 13.4 [135]

Portugal 2011 Serum Random - ELISA 0.4 10.4 [129]

Spain 2007–2008 Serum Random 115 ELISA 0.40 8.7 [130]

Spain 2015–2018 Serum Random 135 ELISA 0.4 24.4 [145]

Switzerland 2011 Serum Random
stratified 321 ELISA 0.4 3.4 [132]

The Gambia 2012 Serum Multi-stage
random 484 ELISA 0.4 24.2 [112]

The
Netherlands 2008 Serum Random 3134 ELISA 0.4 7.8 [133]

USA 2012–2014 Serum Random 608 ELISA 0.4 3.8 [115]

Vietnam 2016–2017 Serum Random 1458 ELISA 0.4 4.1 [146]

The number of Q fever cases varies geographically, and a seasonal variation is also
described [100]. In the Northern Hemisphere, acute Q fever cases are more often reported
in spring and early summer, showing a slow rise in reported cases in March and April,
probably associated with the start of lambing/kidding, and the main peak occurs between
May and July [27,147,148]. This occurs probably because of the “outside” lambing/kidding
during spring associated with heavy environmental contamination with C. burnetii. It is
known that the lambing season in October is not related to a higher incidence in humans,
which might be owing to “indoor” lambing [96], which is also consistent with the study
conducted in the South of France, showing that autumn is not a very windy season, which
might explain the lower incidence of human Q fever at this time of the year [99].

In most European countries, Q fever cases in humans and animals are reported
regularly [8,148]. In humans, after the largest ever recorded outbreak in The Netherlands,
the number of notified cases has suffered in general a sustained decrease in Europe and,
nowadays, small outbreaks still occur, as shown on Figure 3, mainly in areas with infected
livestock herds [148–150].

Regarding the report of infection in goats, the WAHIS Interface from the World
Organization for Animal Health (WOAH) indicates the number of outbreaks reported
in each country per year, which is systematized for European countries in the Figure 4.
However, the analysis must be performed carefully because it is based on a notification
procedure, thus it may not indicate the true prevalence as differences in the procedure
of notification may differ between countries. Thus, data from epidemiological studies
(Tables 3 and 4) can be more reliable within the reality in a region/country.

C. burnetii infection in humans is usually considered an occupational threat. Some
professional groups are more prone to exposure with C. burnetii. For instance, the farming
workforce constitutes a relevant occupational risk group because of their contact with
infected livestock, namely during breeding practices [151,152]. Moreover, veterinarians,
laboratory workers, and abattoir workers are also at risk of being infected [8,153–156], as
well as workers in the wool, tanneries, fur, meat, leather, and timber industries [152].
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Figure 3. Rates of confirmed human cases of Q fever in four European Countries from 2010
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Figure 4. Number of Q fever outbreaks in goats reported in European countries from 2005 to 2021
and linear trend line [8].

However, community outbreaks have been described very often. Factors as living on
rural or sub urban areas [133] and in the proximity of positive farms [157] substantially
increase the risk of Q fever.

The danger of C. burnetii being used as a biological weapon is a global concern. The
low infectious dose for humans and its ability to spread over large distances on the wind
would cause an enormous impact on human health. Additionally, wide-scale consequences
would occur because of animal infection (i.e., domesticated, and wild animals) that could
represent secondary sources of infection for humans [98] and even compromise agriculture
and food production.

5. Molecular Epidemiology: An Added Value

Nowadays, molecular epidemiology is crucial in monitoring programs of C. burnetii
and in investigation of Q fever outbreaks. The genetic heterogeneity of C. burnetii can be
assessed by several molecular techniques. Today, the most adopted methods to define
phylogeny are the multi loci variable-number tandem repeat analysis (MLVA) and the
multispacer sequence typing (MST) [96,158,159]. A large number of MLVA data exist for
European countries, even if the lack of consensus between scientists hampers comparison.
Overall, a common pool of MLVA genotypes is present in Europe, together with novel
genotypes sporadically found in specific countries [160–163]. Different MLVA genotypes
could correspond to an identical MST type, indicating the MLVA method as more discrim-
inatory than MST. Furthermore, the availability of a free-access database on the internet



Biology 2022, 11, 1703 11 of 19

increased the interest in these methods to characterize C. burnetii strains circulating in a
region in a normal context or in the case of outbreak [106,164,165].

A systematic genotyping provides a descriptive database, enabling to monitor the tem-
poral and geographical evolution of strains, thus helping to trace the origins of the outbreaks
and to identify interspecies transmission. These data can help to explain different scenarios
of dissemination and contribute to finding efficient control measures [37,159,165,166]. For
instance, in Portugal, the involvement of different genotypes in acute and in long-term
infections of Q fever was found, but only one genotype found in long-term Q fever was
linked to the one identified in goats from the same region [161]. Moreover, in Belgium,
an emerging CbNL01-like genotype was identified in goats and this strain was isolated
from half of the field samples isolated from the Dutch outbreak. However, no impact on
the number of human cases was observed [106]. In Poland, examination of nine C. burnetii
samples from goats revealed the presence of three MLVA genotypes (I, J, and PL1) and one
sequence type (ST61). These MLVA and MST profiles were different to the strains’ profiles
involved in the Q fever outbreak in the Netherlands [109]. Table 5 shows the C. burnettii
genotypes identified by MST in goats and in other hosts (human, ruminants, and vectors),
showing the wide transmission of specific genotypes.

Table 5. Coxiella burnetii genotypes identified in goats and other hosts using multispacer sequence
typing (MST).

MST Species Country Reference

8

Goat Spain

[160,167]Sheep Spain

Human Portugal, France, and USA

13

Goat Portugal, Spain

[160,167]

Sheep Spain

Cattle Spain

Human Portugal

Ticks France

18

Goat Germany, Spain

[160,167]
Sheep Germany

Cattle Poland

Human France, Greece, Italy, Poland, Slovakia, and Romania

30 Goat Namibia [167]

32
Goat Austria

[167]
Human France and Germany

53 Goat France [167]

58 Goat Libano [167]

61
Goat Poland [167]

Cattle Iran [167]

62

Goat

Iran

[167]

Sheep [167]

Cattle [167]

66 to 70 Goat Thailand [167]

74
Goat

Brazil
[167]

Cattle [167]
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An analysis of MLVA and MST genotypes published in international databases showed
that human isolates of C. burnetii frequently belong to the same genomic group of caprine
isolates [168]. Furthermore, a geographical niche for C. burnetii genotypes was demon-
strated. Although some isolates present a worldwide distribution, others show a geographic
localization. Some genomic groups occur predominantly in Northern and Central Asia,
Eastern and Central Europe, and Africa, while others are found mainly in central Europe
or even in other areas [168]. For instance, MST8 reported in goats from Spain (Table 5) was
the most found genotype in goat milk in the United States [169].

Thus, genotyping demonstrates that isolates in human Q fever are frequently geneti-
cally related to isolates circulating in goat populations, which reinforces the role of goats as
important sources of infection for human populations.

6. Conclusions

In conclusion, C. burnetii presents a wide host range; however, it is mostly recognized
in domestic ruminants. Q fever is not very commonly diagnosed in humans, in part
because primary infection is frequently asymptomatic. The development of molecular tools
has allowed to unravel the dynamic of genotypes’ circulation. Genotyping of C. burnetii
indicates that, often, infected goats are the source of infection in human Q fever outbreaks.
The pathogenesis is complex and not entirely understood at the host level, which highlights
the requirement of future research to grasp the dynamics of the infections in specific hosts,
as well as to unravel strain characteristics that may determine its virulence, affect the course
of the disease and the clinical outcome, or influence the affinity to specific hosts. Yet, the
association of genotypes with high virulence or host specificity remains to be demonstrated.
An international genotype database facilitates the identification of emerging genotypes
and their epidemiological features, also relying on a standard molecular method, which
allows interlaboratory comparison. Thus, a worldwide surveillance in goats based on
molecular epidemiology will be an important strategy to effective control of this zoonotic
and highly resistant pathogen that fits in the One Health approach that considers animals,
environment, and humans.
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