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Simple Summary: Classically, 17β-estradiol, the most potent estrogen produced in the body, is
considered to be an endocrine hormone, which is produced primarily in the ovaries in females and
circulates in the blood to regulate target tissues throughout the body. However, a large body of
research has revealed that both astrocytes and neurons create substantial levels of 17β-estradiol in
the brains of both males and females. The roles and functions of brain-derived 17β-estradiol have
been an area of intense study, and due to advances in techniques and animal models much progress
has been made in understanding its actions and importance in the normal and injured/diseased
brain. In this review, we examine evidence that brain-derived 17β-estradiol has primarily a beneficial
neuroprotective and anti-inflammatory role in various neurological insults and disorders that affect
the brain, including stroke, brain injury, Alzheimer’s disease and Parkinson’s disease. We also discuss
evidence that brain-derived 17β-estradiol may have detrimental effects in certain situations, especially
when over-produced, such as in epilepsy. Finally, we also explore potential future directions for the
area and review the distinct functions and mechanisms of action of 17β-estradiol generated from
neurons versus astrocytes.

Abstract: Astrocytes and neurons in the male and female brains produce the neurosteroid brain-
derived 17β-estradiol (BDE2) from androgen precursors. In this review, we discuss evidence that
suggest BDE2 has a role in a number of neurological conditions, such as focal and global cerebral
ischemia, traumatic brain injury, excitotoxicity, epilepsy, Alzheimer’s disease, and Parkinson’s disease.
Much of what we have learned about BDE2 in neurological disorders has come from use of aromatase
inhibitors and global aromatase knockout mice. Recently, our group developed astrocyte- and
neuron-specific aromatase knockout mice, which have helped to clarify the precise functions of
astrocyte-derived 17β-estradiol (ADE2) and neuron-derived 17β-estradiol (NDE2) in the brain. The
available evidence to date suggests a primarily beneficial role of BDE2 in facilitating neuroprotection,
synaptic and cognitive preservation, regulation of reactive astrocyte and microglia activation, and
anti-inflammatory effects. Most of these beneficial effects appear to be due to ADE2, which is induced
in most neurological disorders, but there is also recent evidence that NDE2 exerts similar beneficial
effects. Furthermore, in certain situations, BDE2 may also have deleterious effects, as recent evidence
suggests its overproduction in epilepsy contributes to seizure induction. In this review, we examine
the current state of this quickly developing topic, as well as possible future studies that may be
required to provide continuing growth in the field.

Keywords: estradiol; neuroestrogen; neurosteroid; aromatase; cerebral ischemia; Alzheimer’s disease;
Parkinson’s disease; epilepsy; traumatic brain injury; neurodegeneration

1. Introduction

17β-Estradiol (E2) is a steroid hormone generated from androgen precursors via
the action of the aromatase enzyme [1,2] (Figure 1). E2 is traditionally thought of as an
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endocrine hormone and is secreted into the bloodstream primarily by the ovaries in females.
However, E2 is also a neurosteroid synthesized in the brain of many species examined to
date, including birds, rats, mice, amphibians, reptiles, monkeys, and humans [3–8].
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Figure 1. Simplified Biosynthetic Pathway for Estrogens. Estrogen synthesis begins with conversion
of cholesterol to pregnenolone, which through a series of steps is converted into androstenedione,
testosterone and estrone (E1). Testosterone is then converted into 17β-estradiol (E2) through the action
of aromatase (CYP19A1). As also shown, aromatase can be inhibited by various aromatase inhibitors.

Basally, aromatase is predominantly localized in neurons, but it can be induced in astro-
cytes following ischemic, excitotoxic, or traumatic brain injury [7,9,10]. The highest levels of
aromatase and brain-derived estrogen (BDE2) production is in the amygdala, hypothalamus,
hippocampus, thalamus, and cortex of most species [3–8]. Functionally, BDE2 has important
roles in both physiological and pathological processes [3,11–13]. Neuron-derived E2 (NDE2),
for instance, has been linked to the control of important physiological processes such synaptic
plasticity, neurotransmission, reproduction, sociosexual behavior, and memory. [3,13–16]. As
a proposed driver of neural activity, BDE2 has also been suggested to play a role in the
pathological process of seizure induction in status epilepticus [17]. Furthermore, both
NDE2 and ADE2 have been implicated in numerous studies to exert neuroprotective and
anti-inflammatory effects in the brain [3,12,18–20]. Studies utilizing global aromatase
knockout mice or aromatase inhibitors to restrict BDE2 production and analyze the con-
sequences on physiological and pathological processes have contributed significantly to
our understanding of the many roles of BDE2. Recently, our group developed a forebrain
neuron-specific aromatase knockout (FBN-ARO-KO) mouse model that has aromatase
depleted specifically in forebrain neurons, and a GFAP-ARO-KO mouse model, which has
aromatase deleted specifically in astrocytes to help further elucidate the specific roles of
NDE2 versus ADE2 in the brain [20]. In the sections below, we discuss the role of aromatase
and BDE2 in various neurological insults and disorders that affect the brain, as well as
potential future directions for the field. Since comparatively much more work has been
performed in cerebral ischemia than the other neurological disorders, the primary focus
of this review is on cerebral ischemia, followed by review of what is known in the other
neurological disorders.

2. Ischemic Brain Injury

When a blood clot restricts blood supply to a particular area of the brain by blocking
a cerebral vessel, it results in focal cerebral ischemia (FCI), often known as stroke [19,21].
In contrary, blood flow is interrupted in the entire brain in global cerebral ischemia (GCI),
which can be caused by cardiac arrest, asphyxiation, or hypotensive shock [22,23]. Several
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studies have shown that both FCI and GCI induce a significant elevation of aromatase
expression in the rodent forebrain. For instance, aromatase expression is increased in the
penumbra/peri-infarct area of the cerebral cortex and hippocampus at 1 and 8 days after FCI
in the rat, but not at 2 h or at 30 d after FCI [24]. Another study showed aromatase elevation in
the peri-infarct area at 2 weeks after FCI in the rat, which suggests the elevation of aromatase
may extend out to 2 weeks after FCI, but returns to normal levels by 4 weeks [24,25]. Similarly,
aromatase and local E2 levels are elevated in the hippocampus from 2–7 days following
GCI in both sexes of rats and mice [7,19,20,26,27]. In both the FCI and GCI studies, the
increase in aromatase expression was shown by double immunohistochemistry to occur in
astrocytes [7,19,20,24,25]. Aromatase elevation in the brain after FCI has been suggested to
serve a neuroprotective function based on studies using global aromatase knockout mice
and aromatase inhibitors [28,29]. These studies revealed that global aromatase knockout
or aromatase inhibition results in increased neuronal damage, apoptosis, infarct volume
and worse neurological outcome after FCI [28,29]. Interestingly, a recent study found
that transplantation of immortalized neural stem cells engineered to over-produce E2 in
a FCI animal model accelerated and enhanced recovery of sensorimotor function and
reduced lesion volume [30]. This finding further supports a neuroprotective role for
enhanced local E2 levels in the brain. Furthermore, our group identified that central
aromatase antisense knockdown in the female rat enhanced neuron damage/loss and
increased cognitive dysfunction after GCI, which further supports a neuroprotective role
of BDE2 in ischemic brain injury [7]. Microglial activation was also increased after GCI in
the aromatase antisense knockdown rats, indicating that BDE2 may also act to suppress
inflammation [7]. Unfortunately, there are no comparative post-mortem studies in humans
examining aromatase changes in the brain after FCI or GCI. There is one report that
aromatase levels are increased in the serum 24 h after stroke in women, but it is unclear
whether serum changes in aromatase reflect changes in brain aromatase expression [31].
Thus, further work is needed to examine aromatase expression in the post-mortem human
brain to determine if BDE2 could be similarly elevated in humans following ischemic
brain injury.

Role of Astrocyte-Derived E2 (ADE2). Since expression of aromatase is increased in
astrocytes following cerebral ischemia it seems likely that this astrocyte-specific elevation
of E2 plays a major role in the neuroprotective effects observed in the global aromatase
knockout mice and aromatase inhibitor/knockdown studies discussed above. Indeed, our
group showed that both the intact male and female, and ovariectomized GFAP-ARO-KO
mice, which have E2 and aromatase depletion in astrocytes, lacked the normal elevation of
aromatase and E2 in hippocampal astrocytes following GCI, and had increased ischemia-
induced neuronal damage and cognitive deficits after GCI [19]. These findings confirm
a key role for ADE2 in neuroprotection of the hippocampus following ischemic brain
injury. Interestingly, our group further showed that hippocampal reactive astrogliosis
was significantly decreased after GCI in GFAP-ARO-KO mice, while reactive microgliosis
was significantly increased [19]. It has been proposed that astrocytes display different
phenotypes including a neuroprotective phenotype (termed “A2” astrocytes) and a neuro-
toxic phenotype (termed “A1” astrocytes) [32]. A similar classification has been proposed
for microglia in which “M1” microglia represent “classically activated microglia” that
typically exert proinflammatory actions, while “M2” microglia represent alternative acti-
vated microglia that typically exert anti-inflammatory actions”. The A1/A2 and M1/M2
classifications are probably an over-simplification, with multiple subtypes likely to ex-
ist [33]. Nevertheless, in our study, we found that hippocampal A2 reactive astrocyte
genes were not induced in GFAP-ARO-KO mice following GCI [19]. This finding suggests
that ADE2 may be necessary for inducing the “neuroprotective” A2 reactive astrocyte
phenotype after GCI. Further work revealed that ADE2 modulates reactive astrogliosis by
regulating pathways known to be critical for induction of reactive astrocytes. For instance,
RNA-Sequencing analysis showed attenuation of the IL-6/JAK/ STAT3 signaling pathway
in the hippocampus of GFAP-ARO-KO mice after GCI [19], a signaling pathway implicated
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to play a key role in mediating both ischemic- and injury-induced reactive astrogliosis in the
brain [33,34]. It should be noted that reinstating E2 levels in the forebrain of GFAP-ARO-KO
mice attenuated the enhanced microglial activation and neuronal damage after GCI and
reversed the defects in JAK/STAT3 signaling and reactive astrogliosis [19]. These findings
support a neuroprotective role for ADE2 in the ischemic brain, most likely by facilitating
reactive astrogliosis, promoting the neuroprotective A2 reactive astrocyte phenotype, and
attenuating microglial activation (Figure 2).
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Neuron-Derived Estrogen (NDE2) Neuroprotection in Global Cerebral Ischemia. See text for de-
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Role of Neuron-Derived E2 (NDE2). In contrast to astrocytes, to our knowledge, there
are no reports showing that aromatase is increased in neurons after stroke. Nevertheless,
new findings support that NDE2 has neuroprotective activity similar to ADE2. For in-
stance, early work using aromatase inhibitors or aromatase knockdown in cultured neurons
in vitro revealed enhanced neuronal cell death from oxidative stress [35]. In addition, mor-
phine was shown to enhance NDE2 release from neurons, and morphine’s neuroprotective
effect against Aβ neurotoxicity was lost when aromatase was knocked down in cultured
neurons [36]. More recent studies from our group using FBN-ARO-KO mice, in which
aromatase and NDE2 are specifically depleted in forebrain neurons, has provided important
in vivo confirmation of the role of NDE2 as a neuroprotectant in the ischemic brain [20].
Both male and female FBN-ARO-KO mice exhibited reduced reactive astrogliosis in the
hippocampus after GCI, as well as reduced A2 astrocyte polarization, greater neuronal
damage, and significantly enhanced cognitive defects, as compared to controls that lack
conditional knockout of aromatase [20]. Interestingly, hippocampal genes involved in
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reactive astrogliosis, neuroprotection, and neuroinflammation were shown by transcrip-
tome analysis to be significantly down-regulated in FBN-ARO-KO mice as compared to
control mice after GCI [20]. This may explain the greater neuronal damage, attenuated
reactive astrogliosis, and enhanced cognitive defects in ischemic FBN-ARO-KO mice. Fur-
thermore, hippocampal astrocytes in FBN-ARO-KO mice have attenuated expression of
neuroprotective factors after GCI, including BDNF, IGF-1 and aromatase/ADE2, as well
as the glutamate uptake transporter, GLT-1, which can protect neurons by clearing excess
glutamate [20]. This finding indicates that NDE2 depletion impairs the neuroprotective
function of reactive astrocytes after global ischemic brain injury. Reinstatement of forebrain
E2 levels reversed the decreased expression of neuroprotective astrocyte factors, as well
as the other molecular and functional defects in FBN-ARO-KO mice after GCI [20]. Addi-
tional studies using RNAseq and immunohistochemistry revealed that fibroblast growth
factor-2 (FGF2) is upregulated in hippocampal neurons in FBN-ARO-KO mice after GCI,
while its receptor, FGFR3 is upregulated in hippocampal astrocytes [20]. This is intriguing,
as FGF2 is a neuronal factor that acts to suppress reactive astrogliosis [37,38]. Further work
revealed that blocking FGF2 in FBN-ARO-KO mice attenuated GCI-induced neuronal
damage and rescued reactive astrogliosis and expression of the neuroprotective factors,
BDNF, aromatase and GLT-1 in astrocytes [20]. As illustrated in Figure 2, it is proposed
that NDE2 acts to suppress neuronal FGF2 signaling in the hippocampus following GCI,
thereby releasing a brake on reactive astrogliosis. The enhanced reactive astrogliosis fa-
cilitates release of astrocytic neuroprotective factors, which helps protect hippocampal
neurons from ischemic damage. It is also possible that NDE2, being a neuroprotective
factor itself, may act directly on neighboring neurons to further facilitate neuroprotection in
ischemic conditions.

3. Traumatic Brain Injury

A blow to the head can induce traumatic brain injury (TBI), which is a leading cause of
mortality and disability in the US. TBI can be due to a penetrating injury such as a gunshot
wound or stab wound, or a non-penetrating injury, such as being struck in the head from an
assault, fall or car accident. Several groups have examined whether TBI affects aromatase
expression in the brain. One of the first studies used a rodent animal model of TBI,
which revealed that aromatase is strongly upregulated in astrocytes 8–10 days following
a penetrating brain injury [9]. In the study, enhanced aromatase expression in astrocytes
was found in all brain regions of rats and mice where a penetrating brain injury was
induced in, including the hippocampus, hypothalamus, corpus callosum, cortex, striatum
and thalamus [9]. Morphologically, the astrocytes that expressed aromatase exhibited a
hypertrophic appearance typical of reactive astrocytes. Local E2 was not examined in this
study, but subsequent work in zebra finches confirmed upregulation of both aromatase
expression in astrocytes and local E2 levels beginning as early as 4–6 h after a penetrating
brain injury [39–41]. At least one study reported that the increased aromatase expression
in astrocytes could be maintained out to 6 weeks after brain injury [42]. Furthermore,
a study in humans reported that higher cerebrospinal fluid E2/testosterone ratio was
associated with better outcome [43]. The rapid increase in aromatase expression and local
E2 after a penetrating brain injury in zebra finch was preceded by an even earlier increase
in inflammatory mediators such as interleukin-1beta (IL-1β), interleukin-6 (IL-6) [44] and
prostaglandin E2 (PGE2) [45,46], which are suggested to help induce the enhanced astrocyte
aromatase expression and local E2 levels after TBI. In support of this contention, induction of
inflammation in the brain by administration of lipopolysaccharide or phytohemagglutinin
led to strong induction of aromatase in the uninjured zebra finch brain [47,48]. Furthermore,
central administration of indomethacin attenuated the increase of aromatase and BDE2 in
the injured zebra finch brain [45]. Interestingly, elevated pressure has also been shown to
elevate aromatase expression and activity in glioma cells in vitro, which could suggest that
astrocytes detect increased pressure after TBI to facilitate increased aromatase and ADE2
levels [49]. Additional work in mice showed that systemic treatment with an aromatase
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inhibitor exacerbated neurological deficits in mice at 24 and 72 h after TBI, but due to
the systemic nature of the aromatase administration it is unclear whether this effect is
due to inhibition of BDE2 or gonadal estrogen [50]. However, central aromatase inhibitor
treatment in zebra finches with a penetrating head injury was associated with a significant
increase in both the lesion size and number of apoptotic nuclei [42,51], effects that could
be rescued by E2 replacement [52], which suggests that ADE2 does exert neuroprotection
in the TBI brain. Currently, it is not clear if NDE2 has a similar neuroprotective role in
TBI as observed after GCI. It would thus be illuminating to utilize the FBN-ARO-KO and
GFAP-ARO-KO mice to further delineate the specific roles of ADE2 and NDE2 in TBI.

4. Excitotoxic Brain Injury and Epileptic Seizures

Excitotoxicity is a term for damage to cells caused by over-activation of glutamate
receptors due to over-abundant release of glutamate [53]. Excitotoxicity plays a key role in
seizure-induced and ischemic-induced neuronal damage as well as other neurodegener-
ative disorders such as Parkinson’s disease (PD), Huntington’s disease and Alzheimer’s
disease (AD) [53,54]. The excitotoxic glutamate receptor agonist, kainic acid is commonly
used in animal models to induce excitotoxicity and seizures. Studies in these animal mod-
els have shown that kainic acid induces significant neuronal loss in the hippocampus in
rodents which is associated with a robust increase of aromatase expression in astrocytes but
not in neurons (1). Administration of kainic acid also enhanced the synthesis of E2 in the rat
hippocampus [17]. Global aromatase knockout mice have been shown to exhibit significant
neuron loss in the hippocampus after low dose treatment with another neurotoxic gluta-
mate receptor agonist, domoic acid, while wild type mice displayed no neuron loss [55].
This result implies that the loss of BDE2 and aromatase increases the susceptibility of
hippocampal neurons to excitotoxic/neurotoxic damage. In further support of a neuropro-
tective role of aromatase and BDE2 in neurotoxicity, methyl-mercury-induced neurotoxicity
in male rat hippocampal slices was enhanced by administration of the aromatase inhibitor
letrozole, and this effect could be rescued by E2 replacement [56]. Kainic acid administra-
tion also is a well-known model of status epilepticus. Interestingly, synthesis of BDE2 in the
rat hippocampus is robustly increased during status epilepticus [17]. Furthermore, a role
for BDE2 in inducing seizure activity is supported by the finding that intra-hippocampal
aromatase inhibition suppresses kainic acid-induced electrophysiological and behavioral
seizures [17]. Clinical case reports also suggest that adding an aromatase inhibitor enhances
seizure control in humans [55,57,58]. Thus, targeting over-production of BDE2 via adminis-
tration of aromatase inhibitors may have therapeutic efficacy in epilepsy. Further work is
needed in this interesting area.

5. Alzheimer’s Disease (AD)

Numerous studies have shown that single nucleotide polymorphisms in the aromatase
gene are linked to increased susceptibility to AD, either alone or in combination with
other risk factor genes [59–63]. Furthermore, post-mortem studies have found aromatase
expression to be altered in the AD brain. For instance, reduced aromatase expression and
E2 levels were reported in the frontal cortex and cerebellum of AD subjects, which correlated
with enhanced amyloid plaque density in the AD cortex [64]. In contrast, other studies
found that aromatase immunoreactivity is increased in the hippocampal CA4 region [65] of
AD patients, and in prefrontal cortical astrocytes of the late-stage human AD brain [66]. It
is not clear why some reports show a decrease while others find an increase in aromatase
expression in the AD brain. It could be due to different areas examined and/or different
stages of AD progression being assessed. Nevertheless, in support of a potential role for
BDE2 in regulating plaque formation, global aromatase knockout mice that overexpress
amyloid precursor protein (APP) had increased expression of β-site amyloid precursor
protein cleaving enzyme 1 (BACE1), the enzyme responsible for beta-amyloid expression,
as well as temporally accelerated and increased beta-amyloid deposition, and decreased
beta-amyloid clearance by microglia [64]. Furthermore, some evidence suggests that BDE2
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may protect neuronal connectivity and mitochondrial function from beta-amyloid-induced
defects as aromatase inhibition led to enhanced defects in hippocampal mitochondrial
and dendritic spines impairments induced by beta-amyloid [67]. Furthermore, exogenous
treatment with an estrogen receptor-β agonist was able to rescue defects in mitochondria
induced by beta-amyloid in rat hippocampal neurons in vitro [68]. To provide further
insights into the cell-specific roles of ADE2 and NDE2 in AD, future studies are needed
using neuron- and astrocyte-specific aromatase knockout mouse models.

6. Parkinson’s Disease (PD)

Few studies have looked into how aromatase and BDE2 are involved in PD. Exami-
nation of global aromatase knockout mice revealed that there was decreased integrity of
tyrosine hydroxylase-positive neurons in the substantia nigra and dopamine transporter
innervation of the caudate putamen, as well as an enhanced vulnerability to MPTP-induced
nigrostriatal damage in the aromatase knockout mice [69]. Furthermore, central aromatase
inhibitor administration in a 6-hydroxydopamine-lesioned rat model of PD was found to en-
hance striatal lesions induced by 6-hydroxydopamine [70]. This finding indicates that BDE2
is neuroprotective in the striatum and thus may help protect against neurodegeneration in
PD. Further studies are needed to fully address this possibility.

7. Summary and Future Directions

There is mounting evidence that BDE2 contributes to a number of neurological insults
and disorders. Beneficial roles include neuroprotection, synapse and cognitive preservation,
regulation of glial activation and function, as well as anti-inflammatory actions. In contrast,
a deleterious role for BDE2 has recently been suggested in epilepsy, where it appears to
help facilitate induction of seizure activity. Since BDE2 is increased in astrocytes in most
neurological disorders, it is suggested that ADE2 plays an important role in mediating the
beneficial effects. However, work using FBN-ARO-KO mice also supports a role for NDE2,
at least in global cerebral ischemia to mediate these important beneficial effects. While much
work has been completed on the role of BDE2 in cerebral ischemia and TBI, comparatively
much less work has been performed in other neurological disorders such as AD, PD
and epilepsy. Therefore, future studies are needed to address this deficit. In addition,
utilizing the FBN-ARO-KO and GFAP-ARO-KO mice in disorders other than global cerebral
ischemia could also help to further delineate the role of ADE2 and NDE2 in various aspects
of these other neurological disorders. Finally, studies to enhance understanding of how
brain aromatase is regulated in astrocytes and neurons are needed, as these could lead to
new therapies which could enhance BDE2 beneficial effects in neurological disorders.
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Abbreviations

E1 estrone
E2 17β-estradiol
BDE2 brain-derived 17β-estradiol
ADE2 astrocyte-derived 17β-estradiol
NDE2 neuron-derived 17β-estradiol
FBN-ARO-KO forebrain neuron-specific aromatase knockout
FCI Focal cerebral ischemia
GCI global cerebral ischemia
JAK Janus kinase
STAT3 signal transducer and activator of transcription 3
FGF2 fibroblast growth factor-2
TBI traumatic brain injury
IL-1β interleukin-1beta
IL-6 interleukin-6
PGE2 prostaglandin E2
AD Alzheimer’s disease
APP Amyloid precursor protein
BACE1 β-site amyloid precursor protein cleaving enzyme 1
PD Parkinson’s disease
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