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Simple Summary: We review advances in the properties of calcium sensors, microscopy, and data
analysis that have brought about the ability to image large contiguous regions of the mouse brain,
often termed wide-field or mesoscale imaging. We summarize representative wide-field imaging
studies spanning several neuroscience subfields, providing an overview of insights gained into
brain function. Finally, we present new developments in wide-field imaging that allow for more
comprehensive investigation of activity across the brain.

Abstract: A central tenet of neuroscience is that sensory, motor, and cognitive behaviors are generated
by the communications and interactions among neurons, distributed within and across anatomically
and functionally distinct brain regions. Therefore, to decipher how the brain plans, learns, and
executes behaviors requires characterizing neuronal activity at multiple spatial and temporal scales.
This includes simultaneously recording neuronal dynamics at the mesoscale level to understand
the interactions among brain regions during different behavioral and brain states. Wide-field Ca2+

imaging, which uses single photon excitation and improved genetically encoded Ca2+ indicators,
allows for simultaneous recordings of large brain areas and is proving to be a powerful tool to study
neuronal activity at the mesoscopic scale in behaving animals. This review details the techniques
used for wide-field Ca2+ imaging and the various approaches employed for the analyses of the rich
neuronal-behavioral data sets obtained. Also discussed is how wide-field Ca2+ imaging is providing
novel insights into both normal and altered neural processing in disease. Finally, we examine the
limitations of the approach and new developments in wide-field Ca2+ imaging that are bringing new
capabilities to this important technique for investigating large-scale neuronal dynamics.

Keywords: mesoscopic imaging; calcium imaging; neuronal dynamics; functional connectivity;
spatial independent component analysis

1. Introduction

Behavior involves processing and integrating information within and across brain
regions. However, the mechanisms by which neuronal activity is coordinated to produce
a unitary behavioral output are currently not well understood. A prominent view is
that sensory, motor, and cognitive behaviors are the emergent properties arising from the
interactions among neurons [1–4]. It is also widely acknowledged that deciphering how
brain structures, such as the cerebral cortex, basal ganglia and cerebellum, plan, generate,
and acquire behaviors requires descriptions of the neuronal activity at multiple scales [5–8].
Spatially, the scales range from activity across different cortical regions, to neuronal, and
even subcellular levels.

By taking advantage of the modular organization and segregation of brain regions
into anatomically and functionally distinct regions, neuroscientists have made enormous
progress in understanding how computations in different areas are involved in behavior.
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However, the operations of the brain cannot be easily understood by only studying its
various regions in isolation. For example, in the cerebral cortex, which will be the focus
of this review, even simple sensory and motor tasks involve processing of information
in multiple cortical areas. Deflection of a single whisker results in activation distributed
across the sensorimotor cortices [9]. Locomotion activates much of the cerebral cortex,
including extensive modulation of neuronal responsiveness in the primary visual cortex,
even in the dark [10–12]. Arousal and attention exert markedly different effects across the
cerebral cortex, both spatially and temporally [13–15]. Information flow across the cortex is
dependent on the internal brain state, behavioral context, and past experiences [12,14,16,17].
Furthermore, learning a new task produces widespread changes in cortical dynamics [18].

Therefore, understanding cerebral cortical function in behavior and in different brain
states requires a mesoscopic level description of the cortical regions engaged and their
interactions. In the nervous system, mesoscopic refers to structure and function between the
microscopic and macroscopic levels, that is between the levels of single neurons and entire
brain regions, respectively. In physical systems, new properties emerge at the macroscopic
level that are not observable at smaller scales. At the macroscopic level, temperature,
viscosity, and density are the collective properties of the statistical motions of the atoms and
molecules of gases and fluids, not of the individual particles. Magnetism and conductivity
do not exist at the atomic level, instead emerging from the interactions among individual
atoms (technically these are examples of weak emergence). Similarly, in the nervous system,
it is the interactions among populations of neurons that underlies the neural representations
of perception, behavior, and brain states. Therefore, understanding neuronal dynamics at
the mesoscale are of fundamental importance.

Originally, wide-field imaging relied on a blood flow/oxygenation-related intrinsic
optical signal, voltage sensitive dyes, or flavoprotein autofluorescence [19–21]. These
methods were limited by low signal-to-noise ratio and/or slow readouts as well as limited
specificity [22,23]. The development of wide-field Ca2+ imaging with genetically encoded
Ca2+ indicators (GECIs) overcame these limitations and has allowed simultaneous imaging
of neuronal activity over large regions at relatively high spatial and temporal resolution.
Ca2+ imaging has been extensively used in in vitro systems, particularly neuronal cultures,
to study the development and functional organization of de novo network formation
and test the properties of Ca2+ sensors [24,25], and in vivo to study intrinsic network
dynamics. More recently, wide-field Ca2+ imaging is being explored in different species,
including rats [26,27], marmosets [28–30], and macaques [31,32], with an emphasis on
single cell resolution. This review focuses on awake, in vivo mesoscopic imaging in mice
during behaviors as a tool to understand the neuronal dynamics of sensation, action,
and cognition.

2. Visualizing Neural Activity with Ca2+ Sensors

Measurement of intracellular Ca2+ concentration has long been a gold standard for
optical monitoring of neural activity. Ca2+ concentration provides a fast readout of changing
neural activity, although indirect, as it is involved with numerous intracellular signaling
cascades, intracellular Ca2+ storage and release, and synaptic transmission [33–36]. Some
of the earliest Ca2+ sensors were dyes, such as BAPTA, fura-2, and fluo-4 [36]. While these
sensors have fast kinetics with bright fluorescence, the dyes are primarily used for acute
imaging studies as they are not retained inside cells for long time periods.

Based on the Ca2+ binding protein calmodulin, GECIs have been developed that allow
for chronic imaging of neural activity in vivo [35,37–40]. The most common of these is
GCaMP, which is a fusion protein composed of calmodulin as the sensor to monitor changes
in Ca2+ concentration, the M13 sequence of the myosin light-chain kinase, and a circularly
permuted GFP molecule that acts as the fluorescent reporter whose intensity is the readout
of changing Ca2+ concentration [34,38–40]. GECIs have many advantages over chemical
Ca2+ sensors, as the genes for the various proteins can be inserted into the genome or
transfected into cells for stable, uniform, long-term expression and chronic monitoring of
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neural activity in vivo [41,42]. Additionally, dual expression systems in combination with
intersectional genetics and/or promoter specific viruses can be used to express sensors in
specific populations or subpopulations of cells [43–45]. Utilization of an ever-expanding
number of Cre-driver lines has revealed a litany of subtle response properties in visual
cortical neurons [46]. Conversely, strategies for driving sparse expression of Ca2+ indicators
allow for single cell resolution at the mesoscale level [47,48].

Targeted mutations have improved the Ca2+ affinity, kinetics, and fluorescence bright-
ness of GCaMPs with the widely-used GCaMP6f capable of detecting single action poten-
tials [33,38], with further improvements provided by the newer GCaMP7 and 8 families
of GECIs [37,49]. Coupling with other fluorophores, such as mRuby and mApple, have
yielded red-shifted RCaMPs with less phototoxicity, increased imaging depth in tissues,
and which can be used in conjunction with optogenetics and other GFP-based reporter
proteins [50]. To track specific cell populations with high resolution, photoactivatable
versions of both red and green Ca2+ sensors are now available, in which colored light
induces a state switch from low/no fluorescence to high fluorescence [51,52]. Another
important development has been in viral vectors that cross the blood–brain barrier for
widespread expression of genetically encoded sensors in the CNS via systemic delivery
routes [53,54]. These advances in biosensor properties, expression, and delivery methods
allow for improved and targeted imaging to investigate neural circuitry and activity.

3. Monitoring Wide-Field Ca2+ Imaging Dynamics In Vivo

The improvements in GECIs have made mesoscopic imaging of neural circuits in
awake behaving animals possible. Imaging is typically performed with the animal head-
fixed after the implantation of a cranial window, in either a closed- or open-skull format [55].
Closed-skull imaging often involves thinning of the overlaying bone and/or the use of
optical clearing solutions to achieve optical clarity and refractive index matching [56,57].
Partial transparency can be achieved through full-thickness skull with the use of glass
coverslips [58,59]. Most open-skull window techniques involve either a large or small cran-
iotomy and replacing the bone flap with either glass or biocompatible polymers [55,60–62].
Thinned or intact-skull preparations offer the advantage of visualizing skull landmarks for
easier comparisons between subjects and between recording sessions, and are minimally in-
vasive. However, imaging through the skull decreases spatial resolution and imaging depth.
Open-skull preparations with windows, while invasive, offer high resolution imaging and
better tissue penetration.

The technical aspects of wide-field Ca2+ imaging are relatively straight-forward, as
they are based on single photon fluorescence imaging. Whether using a custom built
or commercial system, most use low magnification optics and lenses. Excitation light is
typically provided by LEDs and emission fluorescence is captured with a scientific CMOS
camera (e.g., Orca from Hamamatsu, Hamamatsu-shi, Japan or Andor Zyla from Oxford
Instruments, Belfast, UK). Newer scientific CMOS cameras have excellent sensitivity, high
quantum efficiency, low noise, and fast frame rates, even with large sensor formats. Due
to the kinetics of GCaMP6f, typical acquisition frame rates have been between 20–40 Hz.
Wide-field Ca2+ imaging often requires animal restraint due to the size of the microscope
and objective as well as need to stabilize the field-of-view. For this reason, a head fixation
post, such as a titanium head plate is implanted with the cranial window [60,63]. Imaging
can then be performed at rest using a restraint tube or in behavioral paradigm setups
modified for head-fixation, for example a spherical or disk treadmill to accommodate
locomotion (Figure 1A,D) [61,63,64].
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Figure 1. Wide-field Ca2+ imaging allows for investigation of neural processing during multiple be-
havioral paradigms. (A) Schematic showing an example of a wide-field imaging setup allowing for 
head-fixed behavior on a disk treadmill. (B) Example image showing the extent of the imaging field 
with non-brain regions masked in white. Scale bar 1 mm. (C) Example Ca2+ traces from ROIs (red 
and grey circles) in (B) during an imaging session on the disk treadmill setup in (A). Ca2+ traces 
shown are raw Ca2+-dependent GCaMP6f signals (470 nm; top), Ca2+-independent GCaMP6f signals 
(405 nm; middle), and hemodynamic corrected GCaMP6f signals (bottom). (D) Schematic showing 
an example of a wide-field imaging setup used for a cued reaching task. (E) Pseudo-colored images 
showing the change in hemodynamic corrected GCaMP6f fluorescence across the cortex during var-
ious stages of a cued reaching task. Scale bar: 1 mm. (F) Hemodynamic corrected Ca2+ traces for the 
ROIs (red and grey circles) shown in (E). Traces are centered with the auditory tone cue at time = 0. 
Blue lines denote the different stages of the reaching task matching the images in (E). B = baseline; 
T = tone; W = water delivery; R = reach. 

Imaging of GCaMP Ca2+ fluorescence with blue light (~470 nm) yields fluorescence 
in the green spectrum (~510 nm). Blood flow increases with neuronal activation, and oxy-
genated blood absorbs light with peak absorption at ~530 nm, resulting in a darkening 
that decreases the GCaMP fluorescence [8,65]. Therefore, the effects of blood flow and 
other Ca2+-independent fluorescence changes, such as flavoprotein autofluorescence, 
should ideally be removed. Multiple methods have been employed to correct for changes 
in blood flow, with interleaved dual wavelength imaging becoming the preferred ap-
proach (Figure 1B,C) [8,22,61,66,67]. For epifluorescence dual wavelength imaging, a 

Figure 1. Wide-field Ca2+ imaging allows for investigation of neural processing during multiple
behavioral paradigms. (A) Schematic showing an example of a wide-field imaging setup allowing
for head-fixed behavior on a disk treadmill. (B) Example image showing the extent of the imaging
field with non-brain regions masked in white. Scale bar 1 mm. (C) Example Ca2+ traces from ROIs
(red and grey circles) in (B) during an imaging session on the disk treadmill setup in (A). Ca2+ traces
shown are raw Ca2+-dependent GCaMP6f signals (470 nm; top), Ca2+-independent GCaMP6f signals
(405 nm; middle), and hemodynamic corrected GCaMP6f signals (bottom). (D) Schematic showing
an example of a wide-field imaging setup used for a cued reaching task. (E) Pseudo-colored images
showing the change in hemodynamic corrected GCaMP6f fluorescence across the cortex during
various stages of a cued reaching task. Scale bar: 1 mm. (F) Hemodynamic corrected Ca2+ traces for
the ROIs (red and grey circles) shown in (E). Traces are centered with the auditory tone cue at time = 0.
Blue lines denote the different stages of the reaching task matching the images in (E). B = baseline;
T = tone; W = water delivery; R = reach.

Imaging of GCaMP Ca2+ fluorescence with blue light (~470 nm) yields fluorescence
in the green spectrum (~510 nm). Blood flow increases with neuronal activation, and
oxygenated blood absorbs light with peak absorption at ~530 nm, resulting in a darkening
that decreases the GCaMP fluorescence [8,65]. Therefore, the effects of blood flow and other
Ca2+-independent fluorescence changes, such as flavoprotein autofluorescence, should
ideally be removed. Multiple methods have been employed to correct for changes in
blood flow, with interleaved dual wavelength imaging becoming the preferred approach



Biology 2022, 11, 1601 5 of 21

(Figure 1B,C) [8,22,61,66,67]. For epifluorescence dual wavelength imaging, a wavelength
at the isosbestic point for GCaMP that is Ca2+-independent (~405 nm) is interleaved
with the excitation wavelength, correcting the Ca2+-dependent GCaMP signal by scaling
and subtracting the blood flow signal. Dual wavelength reflection imaging based at
the isosbestic point for hemoglobin has also been used [65,67,68]. Other methods for
hemodynamic correction include filtering of the GCaMP signal [69], using independent
component analysis (ICA) [18], and masking of the vasculature [70].

4. Limitations of Wide-Field Imaging

As with any technique, mesoscopic imaging has limitations. Based on single photon
(1P) epifluorescence imaging, the mesoscale approach is restricted to recording activity near
and below the surface of brain. For example, in the cerebral cortex, the Ca2+ fluorescence
signals are primarily from neuronal activity in layers II/III [65,71]. The depth of recording
for 1P imaging in dense tissues can be improved, to some degree, with red-shifted sen-
sors [50,72], as longer wavelengths penetrate tissue better and are prone to less scatter. In
some small systems with unimpeded optical access, such as larval zebrafish, imaging the
entire brain using light sheet microscopy can allow for volumetric functional wide-field
single-cell Ca2+ imaging [73,74]. This is extremely challenging to perform in systems other
than zebrafish or fixed tissue.

Due to light scatter produced by imaging through dense tissue and the low numerical
aperture of mesoscopic lenses, mesoscopic imaging cannot provide high lateral or axial
resolution as with other forms of microscopy [75]. Instead, the observed neural signal
is a population summation of the activity within essentially a 3-dimensional voxel (not
just 2 dimensional) that includes the dendrites, somata, and axons within that volume.
While typical wide-field Ca2+ imaging does not report the activity of single cells, there are
strategies, such as sparse expression of indicators and/or restriction to the soma, that can
provide single cell resolution [76,77].

In addition, the temporal resolution of mesoscale imaging is limited by the kinetics of
the GCaMP protein. While the sensitivity and speed of GECIs have been vastly improved
in recent years with targeted mutations, their decay time for single action potentials is still
greater than 100 ms and their ability resolve high frequency firing with concurrent increases
in fluorescence amplitude is also limited by both saturation and kinetics [38,50,75]. The
timescale of GCaMPs are considerably slower than those of action potentials, which are on
the order of 2–5 ms [78]. This difference in timescale between action potentials and Ca2+ flu-
orescence, especially in cases where single cells can be isolated, has led to the development
of algorithms to reconstruct underlying spike trains from recorded Ca2+ signals [79–81] and
methods of simultaneous electrophysiological and Ca2+ recordings [38,40]. The accuracy
of inferred spike trains from Ca2+ data and construction of neural networks is dependent
upon the method of reconstruction used and the experimental noise level [82,83]. These
confounds can influence network connectivity and spike inference results and need to be
considered during interpretation of results.

As discussed above, the primary family of Ca2+ indicator used, GCaMP, can be contam-
inated by both hemodynamics [8,65,67] and other Ca2+-independent fluorescence changes
such as flavoprotein autofluorescence [58,66] requiring a correction strategy such as dual
wavelength imaging. Additional contamination can arise from brain motion, baseline
signal fluctuations, rhythmic physiological processes, and photonic noise (i.e., variability in
the emission/detection of photons) [79]. Noise sources are a significant confounding factor
in spike estimation, but newer algorithms are being improved to accommodate additional
noise sources [84]. While the limitations of wide-field Ca2+ are not to be underestimated,
its utility in revealing signaling relationships between brain areas remains invaluable.
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5. Analysis of Wide-Field Ca2+ Imaging Data
5.1. Functional Segmentation of the Imaging Field

One challenging aspect of wide-field Ca2+ imaging is how to analyze and interpret
the complex data sets collected. Numerous approaches have been utilized and developed
over the years to investigate neuronal dynamics based on Ca2+ signals, and how those
Ca2+ signals change over time, relate to behavior, or interact with signals from other brain
regions [18,22,85]. An important step in wide-field imaging analysis is defining the regions.
One of the main challenges is the multidimensional nature of the optical recordings. Each
pixel is a mixture of multisource signals from dendrites, axons, and somata from different
neurons as well as different cortical layers [22,71], and identifying meaningful, separable
functional regions or cells requires decomposing the signal into its component parts.

Segmentation approaches range from manual parcellation of the brain to automated
algorithms that aid in denoising, demixing, and segmenting the Ca2+ data in an unbiased
manner. Many wide-field Ca2+ imaging studies have analyzed the change in fluorescence
(∆F/F) from regions of interest (ROIs) placed over the imaging field [86–88]. Placing
multiple ROIs allows the interactions of several brain regions to be studied. The ROIs can
be drawn manually (Figure 1B,C) or can be placed in an unbiased approach, such as using
the borders of the Allen Brain Atlas Common Cortical Framework (CCF) [48,58,89]. Spatial
maps of activity can also be obtained using seed-based correlation methods with or without
co-localized tract-tracing [90–92] or spike-triggered mapping [58,69]. Clustering algorithms
have also been used in segmenting both fMRI and Ca2+ imaging data by identifying
common features of signals across recorded pixels [93–95].

Another approach to functional segmentation is blind source separation (BSS). Unsu-
pervised and data-driven, BSS methods operate by decomposing the signal into sources that
are statistically independent. Separation methods, such as principal component analysis
(PCA) and singular value decomposition (SVD), have been applied to wide-field Ca2+ imag-
ing data [17,96,97]. However, PCA/SVD require that the vector outputs are orthogonal,
which may not be physiologically relevant. Furthermore, PCA/SVD analysis can result
in de-localization of a spatial component, where the component encompasses multiple
brain regions. This can make it difficult to interpret the spatial and temporal components,
both within and between animals, without additional thresholds or restrictions of the
spatial component.

Some BSS methods do not require orthogonality, such as independent component
analysis (ICA), which separates the data into maximally statistically independent com-
ponents (ICs) [98–100]. Several ICA algorithms, like JADE and FastICA, are based on
high-order statistics [101], while others are based on second-order statistics using signal
coherence [102] or intra-source decorrelation [103]. For data expressed in both the spatial
and temporal dimensions, such as wide-field Ca2+ imaging, ICA can be applied in the
spatial domain to reveal independent spatial components (spatial ICs) and the associated
activity time-courses (Figure 2A). Alternatively, ICA can be applied to the temporal domain
to reveal independent temporal patterns and their associated locations [98,104,105].
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Spatial independent components (ICs; colored regions) and time-courses (colored-traces) after in-
dependent component analysis of wide-field Ca2+ imaging data using the JADE algorithm superim-
posed on the cerebral cortical surface. Image scale bar = 1 mm. Time-courses z-scored with scale in 
standard deviations (SD). (B) Decomposition of a wide-field Ca2+ imaging video shown as a pseudo-
color heat map into spatial components a (colored heat maps with atlas overlay), and temporal com-
ponents c, with the spatial components soft-aligned to an atlas, here the Allen Institute Common 
Coordinate Framework (CCF) atlas. Panel (B) adapted with permission from [106]. 

Another non-orthogonal BSS method is non-negative matrix factorization (NMF), 
which restricts the spatial and/or temporal components to be non-negative [107]. Different 
NMF algorithms have been used for Ca2+ imaging [106,108,109]. However, due to the com-
plex nature of the Ca2+ temporal signal, a common approach is to normalize the raw fluo-
rescence by mean-subtracting the signal (ΔF/F), which yields negative values. As such, 
NMF does not handle mixed-sign source signals well and can produce delocalized spatial 
components like some BSS methods. To address these issues, the non-negative restriction 
can be relaxed and the spatial component restricted to a common anatomical atlas, such 
as the Allen Brain Atlas Common Cortical Framework (CCF) or any other reference atlas 
of choice, to aide in anatomical segmentation of the spatial components [106]. This version 
of NMF, localized semi-NMF (LocaNMF), increases the interpretability and reproducibil-
ity of results, and the use of a reference atlas facilitates comparisons within and between 
subjects (Figure 2B). As for all BSS methods, once defined, the spatial components can be 
used to investigate region-based neuronal Ca2+ activity in a hypothesis-driven manner. 

Figure 2. Overview of decomposition methods used to analyze wide-field Ca2+ imaging data.
(A) Spatial independent components (ICs; colored regions) and time-courses (colored-traces) after
independent component analysis of wide-field Ca2+ imaging data using the JADE algorithm su-
perimposed on the cerebral cortical surface. Image scale bar = 1 mm. Time-courses z-scored with
scale in standard deviations (SD). (B) Decomposition of a wide-field Ca2+ imaging video shown
as a pseudo-color heat map into spatial components a (colored heat maps with atlas overlay), and
temporal components c, with the spatial components soft-aligned to an atlas, here the Allen Institute
Common Coordinate Framework (CCF) atlas. Panel (B) adapted with permission from [106].

Another non-orthogonal BSS method is non-negative matrix factorization (NMF),
which restricts the spatial and/or temporal components to be non-negative [107]. Different
NMF algorithms have been used for Ca2+ imaging [106,108,109]. However, due to the
complex nature of the Ca2+ temporal signal, a common approach is to normalize the raw
fluorescence by mean-subtracting the signal (∆F/F), which yields negative values. As such,
NMF does not handle mixed-sign source signals well and can produce delocalized spatial
components like some BSS methods. To address these issues, the non-negative restriction
can be relaxed and the spatial component restricted to a common anatomical atlas, such as
the Allen Brain Atlas Common Cortical Framework (CCF) or any other reference atlas of
choice, to aide in anatomical segmentation of the spatial components [106]. This version of
NMF, localized semi-NMF (LocaNMF), increases the interpretability and reproducibility of
results, and the use of a reference atlas facilitates comparisons within and between subjects
(Figure 2B). As for all BSS methods, once defined, the spatial components can be used to
investigate region-based neuronal Ca2+ activity in a hypothesis-driven manner.



Biology 2022, 11, 1601 8 of 21

5.2. Ca2+ Imaging-Based Functional Connectivity

Once segmented, the relationship between Ca2+ fluorescence in different functional
regions can be used to generate functional connectivity (FC) maps. This is typically done by
summarizing Ca2+ activity relationships in a connectivity matrix, in which each entry is a
pair-wise measure of the correlation between regions. The matrix is populated with a mea-
sure of correlation, with the Pearson correlation coefficient commonly used [61,90,110,111].
From here, graph theory analysis can be used to quantify the FC properties between brain
regions and how they change in different conditions [112]. In this method, brain regions are
nodes in the graph with functional connections represented by lines or edges (see Figure 3).
The resulting graph reveals the functional topology and architecture of the network. A
multitude of network properties and statistical comparisons can be calculated, at both a
local and global scale, using available toolboxes [113–115].
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magnitude of significant increases or decreases, respectively. (B) Significant change in eigenvector 
centrality across the sequential behavior periods as in (A). Size of circles denote the magnitude of 
the change, while circle color is the direction of significant change (red = increase, blue = decrease, 
black = not significant; α < 0.05, with false discovery rate). Modified from [61] with permission. 

  

Figure 3. Cerebral cortical functional connectivity and centrality undergo large shifts from rest to
locomotion and return to rest. (A) Significant changes in correlations between nodes during treadmill
locomotion across sequential behavior periods (α < 0.05, with false discovery rate correction). The
nodes and changes in functional connectivity are superimposed on the cortical surface. Significant
increases shown in red (top) and decreases in blue (bottom). Directly above, the grey bracket indicates
the adjacent behavior periods being compared (i–vi). The size of each node reflects the magnitude
of significant increases or decreases, respectively. (B) Significant change in eigenvector centrality
across the sequential behavior periods as in (A). Size of circles denote the magnitude of the change,
while circle color is the direction of significant change (red = increase, blue = decrease, black = not
significant; α < 0.05, with false discovery rate). Modified from [61] with permission.

5.3. Analyzing the Relationship between Ca2+ and Behavior

Of special interest are analytical methods that relate the neural activity to behavioral
parameters, including movement kinematics, task performance, and/or decision-making.
The simplest analysis compares the activation of the cortex in a specific behavioral context
to a baseline. Commonly employed methods are based on linear models, such as multiple
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linear regression or general linear models (GLM), that correlate the Ca2+ fluorescence time
courses of pixels or ROIs against the parameters of interest. These approaches can quantify
the concurrent influences of multiple behavioral parameters and the temporal relationship
between behavior and neural activity [8,17,95,116]. Linear models can also be used to relate
cortical Ca2+ activity to electrophysiological recordings [97].

6. Insights Gained from Wide-Field Ca2+ Imaging

Over the last 15 years, an increasing number of publications have used wide-field Ca2+

imaging, primarily in the cerebral cortex, addressing multiple questions concerning action,
sensory perception, and executive function. Here, we review select studies to illustrate the
use of, and intriguing results in motor control, learning, decision-making, and neurological
disorders gained from, mesoscopic Ca2+ imaging in the cerebral cortex.

6.1. Elucidating Motor Control Using Wide-Field Ca2+ Imaging

A major advantage of wide-field Ca2+ imaging is that it has allowed the characteriza-
tion of widespread changes in cortical activity and interactions during behaviors that were
once thought to be mediated largely by a few key brain regions. In fact, a hallmark of wide-
field imaging studies has been that behaviors engage the entire cerebral cortex [8,17,109].
One example is in reach to grasp (RtG) behavior, which has largely been examined in the
context of motor areas of the neocortex [109,117]. A recent study examined the wide-field
dynamics of excitatory neocortical neurons during a task in which mice performed a reach
for a food pellet reward [109]. Despite this RtG task requiring a unilateral limb movement,
widespread, bilateral increases in activity were observed during RtG, beginning just prior to
reaching onset. Large alterations in FC were also observed, with an increase in correlations
across the neocortex around the time of movement onset that subsequently decreased
during the actual RtG movement. Together, these results demonstrate that even discrete
motor tasks like unilateral RtG involve coordinated, bilateral alterations in cortical activity
and functional interactions throughout the cerebral cortex.

As noted in the Introduction, locomotion results in widespread changes in cerebral
cortical neuronal activity. For example, during locomotion neural firing increases in the
somatosensory cortex [118–120], and in the primary visual cortex [121,122], while neuronal
firing decreases in the primary auditory cortex [123]. These firing modulations are internally
driven by the locomotor state, as they do not depend on the arousal level, and can occur
without changes in sensory input [124]. These global changes in activity are thought to
optimize the behavior by updating brain regions on the ongoing locomotion and tune
circuits accordingly [122,123].

We investigated the changes in cortical activity during spontaneous locomotion using
Ca2+ imaging through transparent polymer skulls in GCaMP6f mice [61]. Functional
connectivity (FC) was based on the correlations between time series of the changes in Ca2+

fluorescence from 28 regions (nodes) obtained using spatial ICA. The changes in FC were
determined through a series of six behavior periods, spanning from rest, rest to locomotion,
continued locomotion, and locomotion to rest. Compared to rest, the cerebral cortex enters
a new state with a distinct pattern of interregional FC (Figure 3A). The correlations and
centrality of nodes in the primary motor and somatosensory cortices decrease, while the
correlations and centrality of the retrosplenial cortex increase (Figure 3A,B). The locomotion
state is preceded and followed by transition states characterized by dramatic increases in FC
across the cortex (Figure 3A(i,v)) and large shifts in centrality (Figure 3B(i,v)). Importantly,
the correlations, centrality, and the outward causality of nodes in the anterior premotor
M2 region increase at the onset of locomotion. The changes in FC are independent of the
changes in fluorescence that occur during locomotion. These results highlight the transient
changes in FC in the cerebral cortex, from rest to locomotion and on return to rest, and
suggest a key role for the anterior premotor regions in this self-initiated movement.
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6.2. Cortical Dynamics during Learning, Executive Functions, and Decision-Making

A predominant theory is that learning is mediated by changes in emergent properties
of neuronal networks in the brain. However, most previous learning studies have been
limited to individual brain regions. In addition to monitoring widespread network dy-
namics during behavior, wide-field imaging allows for the characterization of how these
mesoscale-level dynamics are transformed over time. During a motor learning task in
which mice learn to press a lever to a specific threshold after an auditory cue [18], a coor-
dinated sequence of cortical activation emerges, beginning around the time of movement
onset. After repeated trials over days, the reaching kinematics stabilized, indicative of
a learning process. In this study, motor learning was associated with a compression of
the cortical activation sequence, characterized by a decreased latency to activation of each
region and a decrease in the time for that activation to spread throughout cortical regions.
Intriguingly, as learning progressed, premotor cortical area M2 emerged as a directing
node in the reach network as illustrated by an increase in Granger Causality (Figure 4A).
This suggests that the execution of skilled tasks involves widespread, sequential activation
of cortical regions, and that refinement of this process via learning is mediated by the
stabilization and compression of these sequences, potentially directed by premotor regions.
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causality values from M2 (left most column) to other brain regions (left to right, anterior to posterior)
during four stages of learning of a motor task, in which mice are trained to press a lever beyond a
specific threshold. Bottom row: spatial causality maps showing directionality from M2 to various
regions are increased with learning. Modified with permission from [18]. (B) Correlation matrices
showing differences in brain functional connectivity during different behavioral tasks requiring
different levels of complexity. Panels (B,C) adapted with permission from [95]. (C) Line plot showing
the average correlation coefficient per brain region between different behavioral paradigms (RM
One-Way ANOVA p = 3.1 × 10−23 with post hoc Tukey’s multiple comparisons; p < 0.001; circles).
(D) Cortical activation relative to baseline during a closed loop visual task. At Day 1 in task learning
mice, cortical activation is limited to the primary visual cortex. In Day 9, task proficient mice, cortical
activation extends to high visual areas. In task proficient mice, during passive task playback, there is
no relative activation of the visual areas. (E) Activation of high visual areas relative to primary visual
cortex increases in task proficient mice performing the task and is reduced during task playback.
Panels (D,E) reused with permission from [125].

Researchers are taking advantage of the ability to examine neural activity and in-
teractions over large regions to probe cortical activity during decision-making, planning,
and higher processing, using behavioral tasks modified for use with head fixation [117].
Virtual reality tools make implementing decision-making and other behavioral paradigms
significantly easier by allowing the animal’s range of motion to remain limited as the ani-
mal navigates a simulated environment [66]. A common observation is task-engagement
involves global activity changes across the neocortex [8,126]. Both virtual and real visual
discrimination (go/no-go), odor-discrimination, and evidence-based tasks reveal that Ca2+

fluorescence ramps up across the cortex [8,95,126]. Several groups have shown that cortical
regions enter a desynchronized state in response to task involvement and low-frequency
brain oscillations are suppressed during these times (Figure 4B,C) [66,95]. The desynchro-
nization appears to be related to the probability of movement. These global signal increases
are not due to specific task-related events, but rather to task-performance in general.

Wide-field Ca2+ imaging has been combined with optogenetics or pharmacological
manipulations to investigate which cortical areas are required for task-performance and
decision-making [8,95]. In visual discrimination and decision-making tasks, flow of cortical
activation is modulated by training in the task such that visual stimuli increases activity
in higher visual areas which subsequently recruits activity in the secondary and primary
motor cortices [127]. Incorporation of intersectional genetics during an odor discrimination
task has additionally shown that specific subtypes of neurons contribute differentially to
global task-related cortical activity [8]. Regional silencing using optogenetics or muscimol
has shown that specific regions are critical in some tasks. For example, silencing of the
anterolateral motor cortex abolishes licking behavior in an odor discrimination task [8],
and visual cortex silencing impairs choice in a visual discrimination task [95]. The effects
of regional silencing are task and region dependent with specific regions producing deficits
in tasks with less cognitive demand, whereas tasks with high cognitive demand show
deficits with inactivation across many cortical regions [95]. These studies highlight how
mesoscopic Ca2+ imaging is providing new insights into higher cortical processing.

6.3. Cortical Activity during Visual Processing

Wide-field mesoscopic imaging has facilitated advances in our understanding of visual
processing in the mouse cerebral cortex. As for other behaviors, the processing of visual
information engages large regions of the cerebral cortex. Imaging Ca2+ responses to moving
visual stimuli reveal increased activity extending beyond primary visual cortex (V1) and
established high visual areas, into postrhinal cortex (POR) and ectorhinal and temporal
association cortices (ETC). However, the POR and ETC responses differ from V1 responses
by lacking a retinotopic organization and reduced sensitivity to stimuli size, suggesting that
POR and ETC are higher visual areas extending the putative ventral stream [128]. Although
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all visual areas respond to the coherence of visual stimuli movement, irrespective of the
stimuli content, cortical regions in the putative dorsal stream have the highest activation,
including the anterolateral (AL), posterior medial (PM), rostrolateral (RL), and mediolateral
areas [129].

In a recent study, mesoscopic Ca2+ imaging of the dorsal cerebral cortex was used not
only to monitor the cortical response to visual stimuli but to also provide real-time control
in a closed feedback loop [125]. To reach a visual target using a cursor, mice were trained to
de-correlate Ca2+ activity in two arbitrary cortical regions that would be highly correlated
in naïve mice. In early training, V1 was activated during task execution compared to
baseline (Figure 4D). During late training, higher visual areas including anteromedial
cortex (AM), PM and RL are also recruited during task execution. Interestingly, when
well-trained mice were presented with playback of the task execution, V1, AM, PM, and RL
showed no activation (Figure 4D,E), arguing that subject agency differentiates how similar
visual stimuli are processed.

6.4. Wide-Field Ca2+ Imaging in Neurological Disorders

New research avenues utilizing wide-field imaging are rapidly emerging, includ-
ing investigations into neural dynamics in disease models as demonstrated in a mouse
model of episodic ataxia type 2 with flavoprotein autofluorescence [130]. This includes
advances using wide-field Ca2+ imaging and FC analyses. Recently, both local and global
changes in mouse cortical networks were shown with Ca2+ imaging following an acute
stroke induced by photothrombosis [131]. In the hemisphere contralateral to the stroke, FC
increased between motor and sensory areas. In contrast, interhemispheric connectivity be-
tween synonymous cortical regions was reduced. Chronic post-stroke monitoring showed
recovery of these changes in FC over time. A second study reproduced these changes
in interhemispheric FC after a photothrombic stroke [132]. Intriguingly, micro-infarcts
were insufficient to produce significant changes in cerebral cortical FC, while significantly
impairing behavioral task performance.

Wide-field Ca2+ imaging is also being used to understand neuronal network dynamics
in neurodegenerative disorders and epilepsy. Using the small molecule Ca2+ indicator OGB-
1, long-range, slow wave activity was found to be de-correlated across the cerebral cortex
in a murine model of Alzheimer’s disease [87,133]. Both cortical and subcortical regions
exhibited hyperactivity, suggestive of a common excitatory/inhibitory imbalance [87,134].
The altered cortical connectivity, regional/cellular hyperactivity, as well as behavioral
deficits, were rescued by systemic administration or direct cortical perfusion of benzodi-
azepines. In a mouse model of focal epilepsy, seizures propagated from the focus in V1
to both contiguous and homotopic regions prior to spreading to the rest of the cerebral
cortex [135]. The seizure propagation appears to follow the established connectivity of
the visual system, suggesting a hijacking of existing brain networks. These examples
demonstrate the utility and promise of wide-field optical imaging to investigate a spectrum
of preclinical disease/disorder models.

7. New Developments
7.1. Voltage Sensors

While Ca2+ imaging is a powerful approach to monitor neuronal activity, it does not
measure changes in transmembrane potential, including action and synaptic potentials.
As noted in the Introduction, voltage sensitive dyes suffered from low signal-to-noise
and found limited use in in vivo preparations. Genetically encoded voltage indicators
(GEVIs) should be ideal for this this type of neural imaging, with their direct voltage
sensing properties and fast kinetics and a number of new and improved GEVIs emerg-
ing recently [136–140]. However, most of these GEVIs do not provide the sensitivity
required to record neural activity in vivo during behaviors [141]. Use of an automated,
high-throughput voltage screening platform changed the search strategy and identified
GEVIs with improved sensor characteristics in the green (ArcLight and Marina) and red
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(FlicR2 and VARNAM) spectral wavelengths [142], including Ace-mNeon2, VARNAM2,
and their respective reverse response polarity variants pAce and pAceR [143]. Using com-
binations of these GEVIs led to a novel, dual polarity multiplexing technique that exploits
the multiphoton and orthogonal response polarities of the green and red indicator pairs
(Ace-mNeon2 & pAce or VARNAM2 & pAceR). These 4 indicators have been targeted to
distinct cell classes to record the concurrent voltage dynamics from as many as 4 neuron-
types, as has been demonstrated in both cortical (V1) and sub-cortical (CA1) brain regions
in mice using a custom dual-color microscope [143].

7.2. Combined Recording Techniques and Multimodal Sensing

Shortcomings of wide-field Ca2+ imaging sensors include a limited temporal res-
olution, and they are therefore, unable to capture the full range of frequency-specific
information essential for many sensorimotor and cognitive behaviors. In addition, wide-
field, single photon imaging, captures activity primarily from layers II and III of the cerebral
cortex and the signal represents the combined neuropil activity in a region [71]. Combin-
ing simultaneous Ca2+ imaging with electrophysiological recordings from multiple brain
regions would be a major advance, as would extending the spatial resolution to monitor
single cell activity. A number of approaches have emerged to address these limitations and
add to the functionality.

Several studies have combined two-photon (2P) imaging with wide-field imaging
to provide single cell resolution [85,144]. As these techniques are still being developed,
specialized equipment is required to perform wide-field 2P imaging. Wide-field 2P mi-
croscopy offers advantages over traditional wide-field imaging as thousands of neurons
can be imaged simultaneously with cellular or subcellular resolution [145–147]. 2P imaging
also allows increased depth of the imaging field and the potential for volumetric recordings.
Newer wide-field 2P microscopes also offer rotation capabilities and long working distance,
air immersion lenses that enable more imaging flexibility for different types of cranial
windows, and the ability to image curved surfaces. Mesoscale 2P imaging is being used to
confirm hypotheses tested in smaller neural populations, such as small-world structure and
behavioral correlates of neural activity [146,148]. The high resolution and wide imaging
field provided by mesoscale 2P imaging will provide significant insight into how microscale
neural dynamics give rise to mesoscale and macroscale neural dynamics.

Wide-field imaging has also been combined with electrophysiological recordings,
including in deeper structures [69,126]. These combined studies allow investigations
into the relation between either local or distant single cell activity and mesoscopic Ca2+

dynamics. Simultaneous fMRI with wide-field Ca2+ imaging has also been accomplished,
adding large scale cortical and subcortical BOLD activity [149]. Optogenetics have been
combined with wide-field imaging to manipulate specific regions and circuits [95,126,150].
Systems have been developed for automated, self-initiated mesoscopic imaging in the
animal’s home cage [151].

Advances have been made in transparent electrode arrays [152–155] that provide
for simultaneous, multimodal recordings of Ca2+ fluorescence, and electrocorticography
(ECoG). However, chronic studies with transparent ECoG electrodes have been restricted to
a single brain region and a small fields of view (~2–5 mm2). To address this limited field of
view, transparent, inkjet-printed electrode arrays have been integrated into morphologically
conformant transparent polymer skulls (eSee-Shells) [77]. The electrodes and interconnects
are composed of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), a
transparent, printable conductor with excellent electrical properties. When implanted on
GCaMP6f transgenic mice, eSee-Shells enable long duration, simultaneous mesoscale Ca2+

imaging and ECoG recordings over 45 mm2 of the dorsal cerebral cortex. When combined
with sparse expression of GCaMP6s, single-cell Ca2+ fluorescence recordings are possible
beneath the electrodes and interconnects while monitoring ECoG signals across the cortex.
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7.3. Free Range Mesoscopic Ca2+ Imaging

Prior to the last decade, head-restraint of mice undergoing imaging was an experimen-
tal necessity. However, head-fixation is often problematic as animals can experience stress
due to the condition, which alters neuronal physiology. Recent work looking at sensory
processing in free and naturally behaving rodents, shows significant differences in neural
activity as compared to similar experiments in head-fixed behaving mice. Additionally,
many natural behaviors are impossible to perform during head-restraint such as social
interaction, rearing, mating, foraging, and navigation. A key complementary development
is the advent of machine learning-based marker-less tracking techniques for precisely track-
ing and quantifying complex behaviors seen in freely moving animals. Thus, technologies
for cellular level recordings from microcircuits using miniaturized microscopes [156], and
miniaturized tetrode devices [157] have become increasingly popular.

More recently, similar miniaturized devices have been developed that allow wide-field
mesoscale imaging of much of the dorsal cortex of mice [158]. Using relatively simple
imaging optics, these devices have integrated electronic hardware allowing multi-color
excitation for fluorescence imaging and reflectance imaging for hemodynamic correction,
and are designed to be docked quickly to transparent polymer skull implants [60,159]. The
overall weight of these ‘mini-mScope’ devices is ~4 g and they can image an 88 mm2 field-
of-view at resolutions ranging from 40 to 60 µm. These devices have enabled mesoscale
imaging of cortical dynamics in mice freely exploring open fields, and socially interacting
with companion mice. Further, this study demonstrated the ability to perform mesoscale
imaging of glutamate dynamics in mice naturally transitioning from wakefulness to sleep.
Such brain state changes, which are accompanied by large scale changes in brain activity,
are hard to study in head-fixed conditions.

Future iterations of such mini-mScopes could potentially include faster image sen-
sors [160] to perform voltage imaging across the cortex in mice expressing GEVIs specifically
optimized for mesoscale single-photon imaging [140]. Such devices may reveal new in-
sights into how mesoscale activity at temporal scales higher than those that can be captured
using Ca2+ imaging mediate complex behaviors.

8. Conclusions

Recording neural dynamics at multiple spatial and temporal scales is required for
a complete understanding of how the nervous system functions. The mesoscale level is
particularly critical, as it is focused on the interactions occurring across different regions and
bridges the expansive gap between micro and macroscale neural processing and network
dynamics. Mesoscopic Ca2+ imaging has rapidly developed into one of the primary tools
for monitoring the activity of neural networks in awake mice. As reviewed, mesoscopic
Ca2+ imaging is being used to address a spectrum of questions about cerebral cortical
processing in a variety of behaviors. Technological advancements in wide-field optical
imaging are occurring at a rapid pace, including in genetically encoded Ca2+, and now
voltage sensors, added functionalities such as optogenetics and multimodality recordings,
targeting of specific neuronal populations, data analysis tools, and imaging in freely moving
animals. These advances will ensure that mesoscopic optical imaging will continue to
provide new insights and that the best is still to come.
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