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Simple Summary: Neurological melioidosis, caused by Burkholderia pseudomallei, can lead to the
development of severe symptoms associated with the nervous system. However, the pathogenic
mechanism through which this bacterium infects neuronal cells has not been studied. This study
showed that B. pseudomallei can infect human neuronal SH-SY5Y cells in vitro. Cycle-inhibiting
factor (Cif), a type III secreted effector, is one of the virulence factors produced by B. pseudomallei
upon infection. The B. pseudomallei cif -deleted mutant reduced the ability to invade neuronal cells
compared with the parental strain. Our finding indicates that Cif is associated with B. pseudomallei
invasion of human neuronal cells.

Abstract: Burkholderia pseudomallei is a pathogenic bacterium that causes human melioidosis, which
is associated with a high mortality rate. However, the underlying mechanisms of B. pseudomallei
pathogenesis are largely unknown. In this study, we examined the infection of human neuronal SH-
Sy5y cells by several clinically relevant B. pseudomallei strains. We found that all tested B. pseudomallei
strains can invade SH-Sy5y cells, undergo intracellular replication, cause actin-tail formation, and
form multinucleated giant cells. Additionally, a deletion mutant of B. pseudomallei cycle-inhibiting
factor (cif ) was constructed that exhibited reduced invasion in SH-Sy5y cells. Complementation of cif
restored invasion of the B. pseudomallei cif -deleted mutant. Our findings enhance understanding of
B. pseudomallei pathogenicity in terms of the virulence factor Cif and demonstrate the function of Cif
in neurological melioidosis. This may eventually lead to the discovery of novel targets for treatment
and a strategy to control the disease.

Keywords: Burkholderia pseudomallei; cycle inhibiting factor; human neuronal cell

1. Introduction

Melioidosis is an infectious disease caused by B. pseudomallei, a gram-negative faculta-
tive intracellular bacillus. Melioidosis is endemic in Northern Australia and Southeast Asia,
including in Myanmar, Malaysia, Singapore, Vietnam, Cambodia, Laos, and Thailand [1,2].
Furthermore, the predicted global distribution of melioidosis indicates that it is probably
endemic in countries that have never reported the disease [3]. The worldwide incidence
of melioidosis is approximately 165,000 cases per year, whilst the annual death rate is
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estimated to be approximately 89,000 [3]. Melioidosis is acquired by inhalation, inoculation,
or ingestion of B. pseudomallei [4–6]. B. pseudomallei is a natural inhabitant of soil, stagnant
water, and rice paddies where the disease is endemic. This bacterium is a category B
bioterrorism agent due to its infection potential and high virulence [7]. The most common
clinical symptoms are pneumonia (51%), genitourinary symptoms (14%), skin lesion (13%),
and central nervous system (CNS) or neurological melioidosis (5%) [8,9].

Although neurological melioidosis is a rare condition, it is often fatal, with a mortality
rate of approximately 25% [9]. Neurological abnormalities of melioidosis generally present
with brain abscesses and encephalitis [10]. Symptoms of meningoencephalitis involving the
brainstem, cerebellum, and spinal cord are also observed [9]. Although patients can recover
entirely, 13% of patients suffer chronic neurological disability [11]. Most neurological
melioidosis cases have been described in Australia [9]. In Thailand, 3% of melioidosis cases
were neurological melioidosis [12]. Sporadic cases of neurological melioidosis are also
reported in Norway, Taiwan, and Singapore [13–15]. These data show that neurological
melioidosis and CNS damage caused by B. pseudomallei is a serious concern.

Upon infection, an essential feature of pathogenic B. pseudomallei is its ability to invade
several cell types and to stimulate various host-cell responses [16,17]. After internalization,
B. pseudomallei can escape the membrane-bound phagosome to enter the cytoplasm [18].
Once inside cytosol, this pathogen has evolved the ability to exploit host actin, harness
actin-based motility for intra- and inter-cellular movement, and to induce cell-to-cell
fusion, resulting in multinucleated giant cell (MNGC) formation [19]. This phenotype is
critical for evading host defense mechanisms, including antimicrobial agents and immune
response events [20]. This unique ability is also observed in the tissues of patients with
melioidosis [21].

Several virulence factors of B. pseudomallei that contribute to pathogenesis have been
identified, including both cell-associated and secreted products. Many Gram-negative
pathogens, including B. pseudomallei, also deploy type III secretion systems (T3SSs) [22]. The
T3SSs are molecular syringes/needles that inject bacterial virulence proteins directly into
host cells. These injected effectors subvert host cell processes and contribute to disease [23].
In this study, we investigated a T3SS translocated effector molecule that inhibits host cell
cycle progression, which is called the cycle-inhibiting factor (Cif). Enteropathogenic and
enterohaemorrhagic Escherichia coli (EPEC and EHEC) exploit this protein to block cell cycle
G2/M transition, induce stress fiber formation, and provoke a delayed cell death [24,25].

In B. pseudomallei, this virulence factor, which is also known as CHBP (Cif homolog in
B. pseudomallei), is absent from genomes of closely related B. thailandensis, which usually do
not cause human melioidosis [26]. The determination of the crystal structure showed that
B. pseudomallei Cif possess a papain-like fold with a Cys-His-Gln catalytic triad similar to
EPEC Cif [27,28]. An analysis of the T3SSs revealed that the Burkholderia secretion apparatus
(Bsa) T3SS is required for the secretion and delivery of Cif into the host cells [29]. This
effector is expressed only in intra-host cell conditions and is detected in B. pseudomallei-
infected cells [29]. This is consistent with previous reports that B. pseudomallei Cif is injected
into eukaryotic cells by the T3SS of EPEC and EHEC [26–28]. In addition, a study of
the B. pseudomallei protein microarray probed with melioidosis patient sera identified
170 reactive antigens, including Cif, indicating that Cif is expressed in vivo and might be
involved in B. pseudomallei pathogenesis [30].

The modus operandi of Cif is known to deamidate Nedd8, an ubiquitin-like pro-
tein, which causes the inhibition of Cullin E3 ubiquitin ligases (CRL), and consequently
induces cell cycle arrest [31–33]. B. pseudomallei Cif can function as a potent activator
of MAPK/ERK signaling and has CRL independent effects to counter the pro-apoptotic
effects [34]. However, whether Cif employs additional roles on host cells that are crucial
for bacterial pathogenesis is currently poorly understood. One study reported that Cif
exerts a bimodal effect on host NF-κB signaling and bacterial replication [35]. The authors
demonstrated that HEK293T cells transiently transfected with Cif increase B. thailandensis
intracellular bacterial load, compared with the control cells transfected with the empty
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vector [35]. This could be linked to the consequence of disrupting the B. pseudomallei cif
gene, causing a significant reduction in cytotoxicity and plaque formation in HeLa human
epithelial cells infected by B. pseudomallei, as demonstrated in our previous study [29].
Therefore, Cif is likely to be important during B. pseudomallei infection.

To better understand the pathogenesis of B. pseudomallei during neurological infection,
we used a cell-based model. We used the human neuroblastoma SH-SY5Y cell line to
examine the pathogenic ability of three clinical wild-type B. pseudomallei strains, including
the reference strain K96243, isolated from patients presenting with melioidosis in northeast
Thailand. Furthermore, we postulated that Cif facilitates B. pseudomallei pathogenesis of
human neuronal cells; therefore, we compared the parental strain with a cif -deleted mutant
in SH-SY5Y cells, focusing on invasion, intracellular replication, actin-tail formation, and
MNGC formation. As a result, we showed that Cif contributes to B. pseudomallei invasion of
neuronal cells. Our in vitro model can be used to investigate the impact of other bacterial
factors of virulence that contribute to the pathogenesis of neurological melioidosis by
B. pseudomallei.

2. Materials and Methods
2.1. Ethics Statement

All experiments and methods were performed per relevant guidelines and regulations.
This project has been approved by the ethics committee of the Faculty of Tropical Medicine,
Mahidol University, Bangkok, Thailand (Reference No: MUTM 2018–057-01).

2.2. Bacterial Strains, Cell Lines, and Growth Conditions

Three B. pseudomallei clinical isolates (576, 1530, and the reference strain K96243),
which were obtained from three patients presenting with melioidosis to Sappasithiprasong
Hospital, northeastern Thailand, were used as the wild-type strains [36]. Two B. pseudomallei
mutant strains (cif -deletion mutant and complemented strains) were constructed in this
study as described below. Escherichia coli strain DH5α and RHO3 were used for cloning and
generation of B. pseudomallei mutant strains. All B. pseudomallei strains and E. coli DH5α
were grown in Luria-Bertani (LB) medium at 37 ◦C. E. coli RHO3 was grown on LB agar
supplemented with 400 µg/mL 2,6-diaminopimelic acid (DAP).

The human neuronal cell line, SH-SY5Y (ATCC® CRL-2266™), was kindly provided
by Natthanej Luplertlop [37]. SH-SY5Y cells were maintained at 37 ◦C in a humidity-
controlled incubator with 5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM; Gibco
BRL) supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS; Gibco BRL)
and penicillin-streptomycin solution (Gibco BRL). The cell culture medium was replaced
with fresh medium every other day. When the cells reached approximately 90% confluence,
a 0.25% (w/v) trypsin-EDTA solution was added after washing with PBS to harvest the cells
for passaging.

2.3. Construction of B. pseudomallei Cif-Deleted Mutant and the Complemented Strain

The markerless allele replacement method by pEKM5 suicide vector [38] was used
for deletion mutagenesis and complementation of the cif gene. A sequence of B. pseu-
domallei K96243 cif gene from GenBank (locus_tag = “BPSS1385”) was used in primer
design by Primer-BLAST “http://www.ncbi.nlm.nih.gov/tools/primer-blast (accessed on
21 October 2020)”. Primer information is provided in Table 1. To generate the deletion
mutant, the 5′ upstream and 3′ downstream fragments of the cif gene were amplified and
subjected to overlap extension PCR using BPSS1385-F1 and BPSS1385-R2. The length of
PCR amplicon with a deletion in the region on cif was 1053 bp. This overlapped PCR
was ligated into pGEM®-T Easy (Promega, Madison, WI, USA) and then transformed into
E. coli DH5α. The desired plasmid was validated by PCR. Additionally, the amplified PCR
product was gel extracted and the deletion of cif was validated by DNA sequencing. The
scarless knockout cassette containing a deletion in the cif gene was sub-cloned into the
non-replicative plasmid, pEXKm5 [38], and transformed into E. coli RHO3 and delivered to
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the host B. pseudomallei K96243 by conjugation. LB agar containing 1000 µg/mL kanamycin
and supplemented with 5-bromo-4-chloro-3-indolyl-β-D-glucuronide (X-Gluc) at a final
concentration of 50 µg/mL (Promega) were used for selection of the conjugants. The
obtained clones were then confirmed by PCR using primers flanking the mutant allele
(BPSS1385-F1 and BPSS1385-R2).

Table 1. Primers used in this study.

Primer Name Sequence (5′-3′) Purpose Size (bp) Source

BPSS1385 F1 CATGTGCGATCATGCAATTT Upstream BPSS1385
304

This study

BPSS1385 R1 GCGGGCTACTTGGGAGTT Upstream BPSS1385

BPSS1385 F2 AACTCCCAAGTAGCCCGCTAGCGAAACCA
CGAAGAGGT Downstream BPSS1385

283
BPSS1385 R2 CTACGGCCACGACCAAGAT Downstream BPSS1385

BPSS1385 F AGAGGCTGCTAATCCACCC Full length BPSS1385
1053

BPSS1385 R ACATCTGCTGCGGTCTCAC Full length BPSS1385

OriT-F TCCGCTGCATAACCCTGCTTC Validation of the presence of
pEXKm5 plasmid backbone 236 [39]

OriT-R CAGCCTCGCAGAGCAGGATTC

After that, the positive conjugants were streaked onto yeast extract tryptone (YT) agar
(Yeast Extract & Tryptone, BD; Agar, Oxoid) containing 15% (w/v) sucrose and 50 µg/mL
X-Gluc (YT-sucrose-X-Gluc plates), and incubated at 25 ◦C for 72 hrs. The resultant colonies
were purified by re-streaking on YT-sucrose-X-Gluc plates. For complementation, the same
pEXKm5-based allele exchange approach was utilized. The PCR amplicon (1639 bp) contain-
ing wild-type B. pseudomallei cif sequence was generated by BPSS1385-F1 and BPSS1385-R2
primers. Similarly, the full-length of cif was cloned into pEXKm5 and transformed into
E. coli RHO3 for conjugation with the B. pseudomallei cif -deleted mutant. Sucrose selec-
tion was employed for merodiploid resolution, resulting in the generation of wild-type
sequences and strains that maintained the deletion alleles.

The result of deletion and complementation of cif was validated using PCR and
immunoblotting. Amplification was carried out using the mutant deletion allele flanking
primers (BPSS1385-F1 and BPSS1385-R2) and the primers that were designed to target
the oriT region, ensuring that the oriT on pEXKm5 plasmid backbone sequences were
absent [39]. Furthermore, the successful construction of the cif -deleted mutant and the
complemented stains were indicated by immunoblotting using antibodies against Cif
protein [29]. Whole cell lysates prepared from B. pseudomallei strains were extracted and
tested as previously described [29].

2.4. Invasion and Intracellular Replication Assay

Human SH-SY5Y cells were seeded at a density of 5 × 104 cells per well in a 24-well
cell culture plate. The next day, the medium was removed and replaced with 200 µL of
fresh antibiotic-free DMEM. Overnight cultures of B. pseudomallei strains were adjusted
to 1 × 106 cells per ml by OD measurement at 600 nm and used to infect the cells at a
multiplicity of infection (MOI) of 1 to 100. After 2-h co-culturing, the infected cells were
washed twice with PBS, and then 500 µL of fresh DMEM containing 250 µg/mL kanamycin
(Sigma) was added and incubated at 37 ◦C for 1 h to eliminate any extracellular bacteria.
To recover the invading bacteria, B. pseudomallei-infected SH-SY5Y cells were then washed
thrice with PBS before cell lysis with 100 µL of 0.1% (w/v) Triton X-100. The number of
viable bacteria was determined as colony forming units (CFUs) by performing a serial
dilution. Ten microliters of each dilution were dropped onto LB agar plates and incubated
at 37 ◦C for 24–48 h. At 4, 6, 8, and 10 h post-infection, the intracellular bacteria were
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recovered as described above to assess intracellular replication of B. pseudomallei strains in
human SH-SY5Y cells.

2.5. Investigation of Actin-Tail Formation

One day before infection, SH-SY5Y cells were plated on 22 × 22 mm square glass
coverslips (Menzel-Glaser) in a 6-well plate (Costar, Corning, NY, USA) and incubated
at 37 ◦C in a humidified 5% CO2 atmosphere. The overnight B. pseudomallei culture was
subjected to infection by the SH-SY5Y cells at an MOI of 20. After killing the extracellular
bacteria as previously described, actin tail formation was observed at 6 h post-infection. The
infected cells were washed with PBS twice and then fixed with 4% (v/v) paraformaldehyde
in PBS at room temperature overnight. The fixed cells were washed with PBS before
permeabilization with 0.5% (v/v) Triton X-100 in PBS. After 30 min of incubation, 1%
(w/v) bovine serum albumin (Sigma-Aldrich, St. Louis, MO, USA) in PBS was added and
incubated for 30 min at room temperature. Subsequently, bacteria were stained using a
mouse monoclonal anti-B. pseudomallei lipopolysaccharide antibody (Camlab, Cambridge,
United Kingdom) followed by Alexa Fluor488-conjugated anti-mouse Immunoglobulin
(Molecular Probes, Eugene, OR, USA). Actin filaments and DNA were stained using Alexa
Fluor555-conjugated phalloidin (Molecular Probes) and 4′,6′diamidine-2′-phenylindole
dihydrochloride (DAPI; Molecular Probes), respectively. Actin-tail formation was examined
in 100 fields by confocal laser scanning microscopy (LSM 700; Carl Zeiss, Jena, Germany).

2.6. Determination of MNGC Formation

At 10 h post-infection, SH-SY5Y cells infected with B. pseudomallei strains were stained
with Giemsa (Merck, Darmstadt, Germany) as described previously [40]. MNGC formation,
which was defined by at least three nuclei in a cell, was evaluated in 100 fields of view
using an Olympus BX41 microscope. The percentage of MNGC formation was determined
using the following formula: (number of nuclei in a multinucleated giant cell/total number
of nuclei counted) × 100. A minimum of 1000 nuclei were counted per experiment.

2.7. Statistical Analysis

All assays were conducted in triplicate, and an unpaired t-test of three independent
experiments was performed using the GraphPad Prism 8 program (STATCON). Results
were considered significant at a p value ≤ 0.05.

3. Results
3.1. Optimal B. pseudomallei MOI for Human Neuronal Cell Infection

We observed B. pseudomallei in human neuronal SH-SY5Y cells using three clinical
isolates (K96243, 576a, and 1530). We also generated B. pseudomallei K96243 cif -deletion
and complemented mutants using a pEXKm5-based allele replacement system (Figure S1).
The presence of the cif gene and Cif protein were validated by PCR and immunoblotting,
respectively. A cif was confirmed to be absent from the B. pseudomallei K96243 cif -deleted
mutant and the presence of cif in the complemented strain was as expected (Figure S2).
To characterize and compare the B. pseudomallei strains in human neurons, in vitro growth
curves of these strains in culture medium were analyzed. All strains showed the same rate
of growth, indicating that the degree of fitness was similar among these strains (Figure S3).

The understanding of B. pseudomallei pathogenesis in neuronal cells is poor, although
data from patient cases with neurological symptoms have accumulated. Here, we used the
human neuronal SH-SY5Y cell line to investigate the process of B. pseudomallei infection
in vitro. The effect of bacterial concentration on cell invasion was determined by co-
culturing the reference K96243 strain at a multiplicity of infections (MOI) of 0.1, 0.01, 1, 10,
20, 50, and 100. At a very low MOI of 0.1 and 0.01, the number of bacteria that had invaded
cells at 2 h post-infection could not be detected, although internalized bacteria could be
recovered 6–8 h after infection (Figure S4). The number of invading bacteria increased with
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higher MOI, and the number of internalized bacteria significantly increased when using an
MOI of 20 (Figure 1a).
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Figure 1. Effects of MOI on invasion and replication of B. pseudomallei K96243 in SH-SY5Y cells.
SH-SY5Y cells were infected with B. pseudomallei K96243 at an MOI of 1, 10, 20, 50, and 100. The
numbers of intracellular bacteria were determined by lysing the cells and counting viable bacteria
on culture plates. Values are shown as the mean ± SEM of three independent experiments. ns: not
significant, ** p < 0.01. (a) Total numbers of bacteria recovered from SH-SY5Y cells infected with
B. pseudomallei K96243 at 2 h post-infection. (b) Intracellular replication of B. pseudomallei K96243 in
SH-SY5Y cells at different time points.

However, there was no significant difference between MOI of 20 and 50 and 50 and
100. Moreover, the replication rate of B. pseudomallei in SH-SY5Y cells was similar regardless
of the number of bacteria added (Figure 1b). It was notable that the number of intracellular
bacteria decreased 20 h post-infection when using an MOI of 100. A possible reason for
this was that the cells became damaged and released the intracellular bacteria that were
then killed in the cell culture medium containing the antibiotic. Moreover, the infected cells
may detach from the cell culture plate, leading to a lower number of bacteria recovered
from the infected cells. We chose the MOI that gave the maximum number of recovered
intracellular bacteria at 2 h post-infection. As a result, an MOI of 20 was chosen for
subsequent investigations.

3.2. Invasion of Human Neuronal Cells by B. pseudomallei Strains

The ability of B. pseudomallei strains to invade human neuronal cells was examined
at 3 h post-infection by comparing the percentage of intracellular bacteria relative to the
number of bacteria added to the cells. The percentage invasion efficiency of B. pseudomallei
reference strain K96243 was 0.014 ± 0.005%, which was significantly lower than those of
strains 576a and 1530, at 0.291 ± 0.092% and 0.388 ± 0.082%, respectively (Figure 2a). A
contribution of Cif to the invasion of neuronal cells was observed. As shown in Figure 2b,
deletion of the cif gene caused a significant reduction in invasion efficiency (0.027± 0.003%)
compared with the wild-type (0.050 ± 0.006%), and complementation of the cif mutation
fully restored the ability of the cif -deleted mutant to invade neuronal cells (0.067 ± 0.017%).
These results indicate that Cif is an important factor in the B. pseudomallei invasion of
neuronal cells.

3.3. Intracellular Replication of B. pseudomallei in Human Neuronal Cells

After invasion, we tested the ability of B. pseudomallei to multiply in SH-SY5Y cells.
Intracellular bacteria were recovered by plating on culture medium plates at 4, 6, 8, and
10 hours post-infection. This clearly showed that the number of intracellular bacteria of
all the clinical strains increased continuously over time (Figure 3a). We found that the cif -
deleted mutant survived over time but to a lesser extent than the other strains (Figure 3a).
This could result from a lower number of cif-deleted mutants that were initially internalized
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into cells. The growth rates of bacteria were calculated and showed that all B. pseudomallei
strains replicated similarly in SH-SY5Y cells, with an average doubling time of 68 ± 6 min
(Figure 3b). Although the doubling time of the cif mutant was approximately 97 ± 15 min,
there was no significant difference among strains. This indicates that Cif might not be
involved in B. pseudomallei intracellular replication.
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3.4. B. pseudomallei Can Induce Actin-Tail and MNGC Formation in Human Neuronal Cells

B. pseudomallei is recognized by its ability to induce actin rearrangement that is initiated
at one pole of the bacterium tail for intra- and inter-cellular movement. We, therefore,
observed actin-tail formation by B. pseudomallei strains at 6 h post-infection by confocal
analysis. All strains formed actin tails in the neuronal cells with a typical comet-tail
phenotype (Figure 4). B. pseudomallei exploits actin-based motility for intra- and inter-
cellular movement, leading to cell fusion for intracellular survival without exposure to
antimicrobial agents or antibodies outside the cells. We detected MNGC formation induced
by B. pseudomallei at 8 h post-infection (Figure 5a). At 10 h post-infection, we quantified the
number of MNGCs and found that the percentages of MNGCs formed by B. pseudomallei
576a and 1530 were significantly greater than that of the reference K96243 strain (Figure 5b).
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Figure 4. Actin-tails of B. pseudomallei strains in SH-SY5Y cells. SH-SY5Y cells infected with B. pseu-
domallei K96243, 576a, 1530, cif -deletion, and cif complemented strains. At 6 h post-infection, the
infected cells were stained to detect actin-tails. Actin-tails in SH-SY5Y cells were examined by direct
immunofluorescence staining with Alexa Fluor555-conjugated phalloidin (red) and DNA was stained
using Hoechst 33258 (blue). Bacteria were stained using mouse monoclonal anti-B. pseudomallei
lipopolysaccharide antibody and detected with Alexa Fluor488-conjugated phalloidin (green). Scale
bar = 10 µm.

Compared with the wild-type strain, the cif -deleted mutant caused similar defective
MNGC formation in SH-SY5Y cells (Figure 5b). However, this could be the effect of a lower
number of bacteria that survived in the cells at this time (Figure S5). It was possible that
the number of MNGCs induced by bacteria lacking cif corresponded with the number of
intracellular bacteria in SH-SY5Y cells.

3.5. Plaque Formation in Human Neuronal Cells

Following cell fusion, Burkholderia spp. spread to adjacent cells, forming plaques as
clear zones representing MNGC death [41]. We have shown that all B. pseudomallei strains
in this study induced MNGCs in human neuronal cells to varying degrees. To assess the
virulence of the B. pseudomallei strains in SH-SY5Y cells, we determined the number of
plaques formed at 22 h post-infection as the last stage of the in vitro infection. Plaque
formation induced by K96243, 576a, and 1530 strains was indistinguishable from each other
(Figure 6a). Only the cif-deleted mutant of B. pseudomallei K96243 showed a defect in plaque
formation (Figure 6a).

The number of plaques formed by each strain was assessed and is shown in Figure 6B.
There was no significant difference between the number of plaques formed by the wild-type
strains; K96243 was 65 ± 6, 576a was 74 ± 5, and 1530 was 70 ± 8. The number of plaques
formed by the cif -deleted mutant was, however, significantly reduced at 20 ± 6. This
defective phenotype was recovered when complemented with the cif gene; the number
of plaques formed by the complemented strain was 66 ± 7. Similar to the number of
MNGCs formed by the cif-deleted mutant, a decreased number of plaques could reflect
the lower number of cif -deleted mutant bacteria in cells at 10 h post-infection (Figure S5).



Biology 2022, 11, 1439 9 of 15

This indicated that Cif might not play a role in B. pseudomallei dissemination among human
neuronal cells.
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576a, 1530, the cif-deleted mutant (∆cif ), and the complemented cif mutant strain (∆cif::cif ). Cells
were stained with Giemsa. Images were captured by standard light microscopy with a 40× objective
lens. (b) Percentage of MNGC formation induced by B. pseudomallei K96243, 576a, 1530, ∆cif, and
∆cif::cif strains. Values are shown as the mean ± SEM of three independent experiments. * p < 0.05,
** p < 0.01.
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B. pseudomallei strains using an MOI of 20 and incubated for 22 h. (a) Representative image of
plaque formation in SH-SY5Y cells infected by different B. pseudomallei strains (b) Plaque-forming
efficiency in SH-SY5Y monolayers 22 h after infection. Values are shown as the mean ± SEM of three
independent experiments. ** p < 0.01.

4. Discussion

Upon infection of a human host, B. pseudomallei can invade many systems, includ-
ing the central and peripheral nervous systems [9,42]. Previous studies in mice show a
pathway for B. pseudomallei into the CNS, the brain stem, and spinal cord via the olfactory
and trigeminal nerves [43,44]. However, the underlying mechanism of B. pseudomallei
pathogenesis and neuronal infection remains poorly understood. In the present study,
we examined the B. pseudomallei pathogenic process in human neuronal cells. Based on
co-culture assays with different B. pseudomallei strains and the immortalized bone marrow-
derived SH-SY5Y neuroblastoma cell line, the result showed that all tested B. pseudomallei
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wild-type strains harbor the bacterial abilities of invasion, intracellular replication, and
formation of actin-tails, MNGCs, and plaques.

Few studies have used neuronal cells to investigate the pathogenesis of bacterial
pathogens. Borrelia burgdorferi, a bacterium that causes Lyme disease, induces apoptosis
of SH-SY5Y cells when surrounded by microglia, the resident macrophage cells of the
CNS [45]. However, B. burgdorferi is not toxic to neurons; instead, surrounding inflammation
produced by microglia in response to B. burgdorferi causes the SH-SY5Y cells to die [45].
For B. pseudomallei, primary neuron cells have been used in in vitro assays [46], and B.
pseudomallei MSHR520, a clinical isolate from an Australian patient, can infect glial cells
isolated from the olfactory and trigeminal nerves [46].

Several B. pseudomallei virulence factors facilitate successful infection. Here, we focused
on the Bsa T3SS virulence factor, Cif. We used a B. pseudomallei cif-deleted mutant that was
defective in the cif gene to investigate B. pseudomallei infection of human neurons. Although
insertional mutagenesis is a popular approach to mutate or disrupt a target gene, a cassette
or residual scar is left behind that might affect the transcription of downstream genes (polar
effect). Therefore, the cif-deleted mutant was constructed by a gene deletion technique.

Based on invasion efficiency, Cif appears to play an important role in B. pseudomallei
invasion. The cif-deleted mutant had reduced ability to invade SH-SY5Y cells, consistent
with the role of Bsa T3SS in the penetration of B. pseudomallei in other cell types, including
epithelial cells, skin fibroblasts, and macrophages [16,40,47]. A bopE mutant of B. pseudoma-
llei (defective in producing the BopE effector of Bsa T3SS) impairs entry into HeLa cells [48].
Moreover, a B. pseudomallei bsaQ mutant (defective in producing a structural component
of Bsa T3SS) demonstrates reduced ability in invasion into non-phagocytic cells [49]. In
addition to B. pseudomallei, T3SS is required for invasion by many other bacteria, such as
Salmonella spp. and Shigella spp. [50]. Although the role of Cif in bacterial invasion remains
unclear, our finding could be related to Cif interfering with host cell functions. Like other
pathogenic bacteria, B. pseudomallei have developed sophisticated arsenals of virulence
factors that hijack the host ubiquitin to their own benefit during infection [51]. Previous
studies discovered that Cif, specifically deamidated ubiquitin-like protein Nedd8, resulted
in the inhibition of CRL, leading to the induction of cell cycle arrest [31–33], but not only
host cell cycle arrest. Protein ubiquitination also plays crucial roles in controlling eukaryotic
cell homeostasis and pathogenesis of neoplastic, infectious, and neurodegenerative dis-
eases [51]. B. pseudomallei Cif has been shown to modify host central signaling pathways by
activating MAPK/ERK signaling to induce the phosphorylation of the pro-apoptotic pro-
tein Bim (Bcl-2 interacting mediator of cell death), and potentially leading to a proapototic
effect [34]. Additionally, Cif was shown to increase basal NF-κB activity and stimulate the
intracellular replication of the B. thailandensis [35]. Thus, it is possible that B. pseudomallei
Cif is delivered directly into host cells through a Bsa T3SS where it modulates host cell
function that promotes bacterial invasion. On the other hand, Cif expression may function
coordinately with other bacterial effectors to promote its invasion. Further investigation is
needed to clarify these points.

B. pseudomallei is able to replicate and survive inside mammalian host cells [52]. Dur-
ing survival inside the host cell, B. pseudomallei Bsa T3SS is triggered to deliver effector
proteins [53]. B. pseudomallei Bsa T3SS is vital for B. pseudomallei to evade the endocytic
vesicle and survive in the cytoplasm of J774.2 murine macrophage-like cells [54]. We previ-
ously found that a cif mutation did not affect the capability of B. pseudomallei to survive in
skin fibroblasts [40]. Similarly, we found that a B. pseudomallei cif-deleted mutant did not
exhibit defective intracellular replication in human neuronal cells. These results contradict
a previous study that showed the direct involvement of B. pseudomallei Cif in B. thailandensis
intracellular replication in HEK293T cells—although the effect was modest—but not on
invasion [35]. A possible explanation for this could be that Cif is not present in B. thailan-
densis and the level of expression of B. pseudomallei Cif by transfection of Cif plasmid in
HEK293T cells might affect the proliferation of B. thailandensis.
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This study demonstrated that B. pseudomallei induces MNGC formation in a human
neuronal cell line to different degrees depending on the strains. MNGC formation is also
dependent on the cell type infected. For example, MNGC formation by B. pseudomallei
strain MSHR520 in Schwann cells of trigeminal nerves is greater than that in olfactory
ensheathing cells [46]. The B. pseudomallei cif -deleted mutant showed reduced MNGC
formation in neuronal cells, despite demonstrating efficient actin tail formation comparable
to that of the wild-type strain. This phenotype was consistent with the small number of
plaques formed by B. pseudomallei-infected neuron cells. This finding was also consistent
with the lower number of intracellular bacteria in this cell type. It is likely that induction of
MNGC in SH-SY5Y cells is linked to the ability of intracellular bacterial replication and
plaque formation. However, MNGC formation in RAW 264.7 cells, a murine macrophage-
like cell line, by B. pseudomallei MSHR520 is not connected to the capacity for intracellular
replication [55]. Defective plaque formation of T6SS-1 mutants was observed, though these
mutants were able to replicate with a high number of intracellular growth [41]. Thus,
the role of B. pseudomallei Cif in MNGC and plaque formation in neuronal cells requires
further investigation.

To date, only intracellular motility A (BimA) has been shown to play an essential role
in CNS invasion and infection [44]. Additionally, an allele of Burkholderia BimA signifi-
cantly impacts the clinical presentation and outcome of patients with CNS melioidosis [56].
B. pseudomallei MSHR668 is a clinical isolate with documented central nervous system
infection and harbors the B. mallei-like bimA allele that is believed to be associated with
the development and severity of CNS melioidosis [57,58]. However, other virulence fac-
tors that contribute to the complications of CNS melioidosis need to be explored. For
example, lipopolysaccharide is likely to be associated with pathogenicity and clinical pre-
sentation in humans [59]. B. pseudomallei K96243 displays type A lipopolysaccharide, while
B. pseudomallei 576a displays type B [60].

5. Conclusions

We showed that B. pseudomallei can invade human neuronal cells, multiply, form actin
tails, and induce MNGCs. Cif is a virulence factor of B. pseudomallei during the process
of neuronal invasion. These findings provide new insight into B. pseudomallei infection of
neuronal cells that will inform the prevention and treatment of neurological melioidosis.
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