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Simple Summary: Lumpfish (Cyclopterus lumpus) is an emergent aquaculture species, and its miRNA
repertoire is still unknown. miRNAs are critical post-transcriptional modulators of teleost gene
expression. Therefore, a lumpfish reference miRNAome was characterized by small RNA sequencing
and miRDeep analysis of samples from different organs and developmental stages. The resulting
miRNAome, an essential reference for future expression analyses, consists of 443 unique mature
miRNAs from 391 conserved and eight novel miRNA genes. Enrichment of specific miRNAs in
particular organs and developmental stages indicates that some conserved lumpfish miRNAs regulate
organ and developmental stage-specific functions reported in other teleosts.

Abstract: MicroRNAs (miRNAs) are endogenous small RNA molecules involved in the post-
transcriptional regulation of protein expression by binding to the mRNA of target genes. They
are key regulators in teleost development, maintenance of tissue-specific functions, and immune
responses. Lumpfish (Cyclopterus lumpus) is becoming an emergent aquaculture species as it has been
utilized as a cleaner fish to biocontrol sea lice (e.g., Lepeophtheirus salmonis) infestation in the Atlantic
Salmon (Salmo salar) aquaculture. The lumpfish miRNAs repertoire is unknown. This study identi-
fied and characterized miRNA encoding genes in lumpfish from three developmental stages (adult,
embryos, and larvae). A total of 16 samples from six different adult lumpfish organs (spleen, liver,
head kidney, brain, muscle, and gill), embryos, and larvae were individually small RNA sequenced.
Altogether, 391 conserved miRNA precursor sequences (discovered in the majority of teleost fish
species reported in miRbase), eight novel miRNA precursor sequences (so far only discovered in
lumpfish), and 443 unique mature miRNAs were identified. Transcriptomics analysis suggested
organ-specific and age-specific expression of miRNAs (e.g., miR-122-1-5p specific of the liver). Most
of the miRNAs found in lumpfish are conserved in teleost and higher vertebrates, suggesting an
essential and common role across teleost and higher vertebrates. This study is the first miRNA
characterization of lumpfish that provides the reference miRNAome for future functional studies.
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1. Introduction

The discovery of microRNAs (miRNAs) in 1993 in Caenorhabditis elegans and further
identification in humans and many other animals significantly alters the longstanding dog-
mas that defined gene regulation [1]. These studies revealed that miRNAs were a class of
small noncoding RNAs that function as guide molecules in RNA silencing machinery, often
termed the RNA-induced silencing complex (RISC). RISC regulates gene expression at the
messenger RNA level either by degrading mRNAs targeted by the miRNAs or preventing
their translation [1–3]. miRNA constitute a large family of post-transcriptional regulators
with ~22 nucleotides in length and present in animals, plants, and some viruses [3,4]. Func-
tional studies indicate that miRNAs have diverse expression patterns and regulate almost
every cellular process, including developmental, physiological, and pathophysiological
processes [3,5,6].

miRNA biogenesis involves multiple steps; first, miRNAs are processed from primary
molecules (pri-miRNAs), which are transcribed by RNA-specific endoribonuclease (Drosha)
and processed into an ~70-nucleotide pre-miRNA in the nucleus [2,3,6–9]. Pre-miRNAs
are then transported to the cytoplasm for further processing by the enzyme Dicer to an
~22-bp miRNA/miRNA duplex [2,3,6–9]. The miRNA duplex is loaded into the RISC.
Only one of the mature miRNAs (guide miRNA) is incorporated in RISC, and the other
is degraded (passenger miRNA). The guide miRNA directs the RISC to target mRNAs,
where the mature miRNA usually binds in the 3′ untranslated region (UTR) of the target
mRNAs [2,3,6–9].

Teleosts are an essential component of aquatic ecosystems and a primary source of
proteins for human and animal consumption worldwide. Teleosts are one of the most
diverse vertebrates on the earth [10]. The exploration of the role of miRNA in teleost
development, organogenesis, tissue differentiation, growth, regeneration, reproduction,
endocrine system, and responses to environmental stimuli, as well as their role in the
maturation of the immune system and response to infectious diseases, is still under in-
vestigation [11–17]. miRNA characterization is the first step in any investigation of their
regulatory roles. Such characterizations have been carried out in some economically impor-
tant fish species such as Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua), rainbow
trout (Oncorhynchus mykiss), Atlantic halibut (Hippoglossus hippoglossus), channel catfish
(Ictalurus punctatus), turbot (Scophthalmus maximus), Asian seabass (Lates calcarifer), olive
flounder (Paralichthys olivaceus) [18–26], and fish models like zebrafish (Danio rerio) and
three-spined stickleback (Gasterosteus aculeatus) [27,28].

Global production of farmed Atlantic salmon is estimated at just over 2.6 million
tonnes in 2019. This growth was mainly driven by Norway and Chile, the two leading pro-
ducing countries. The Norwegian salmon industry alone earned some NOK 19–20 billion
(USD 2.1–2.2 billion) in profits before tax in 2019 (The Food and Agriculture Organization of
United Nations (FAO), 2021) (https://www.fao.org/in-action/globefish/market-reports/
resource-detail/en/c/1268636/) (Last accesed: 21 January 2021). Farmed salmon is the
main species of the Atlantic Canadian aquaculture industry, which represents approxi-
mately 80% of Atlantic Canada’s total aquaculture value [29].

Infectious diseases are a challenge for the aquaculture industry. Globally losses due to
diseases in the aquaculture industry exceed US$6 billion annually [30,31]. One of the most
prominent disease challenges currently restraining Atlantic salmon aquaculture is the infes-
tation by the parasite sea lice, specifically Lepeophtheirus salmonis and Caligus spp. [32–36].
Sea lice are a group of visible host-dependent ectoparasite copepods with vast reproductive
potential [32–36]. The attached sea lice feed on salmon mucus, blood, and skin, which
leads to significant physical damage and immunosuppression [32,36–39]. In addition, these
effects on fish health lead to substantial economic impacts due to production losses and
treatment costs [32,37,40]. The salmon industry in the North Atlantic region has adopted
cleaner fish, e.g., Lumpfish (Cyclopterus lumpus), for biological control of sea-lice infesta-
tions [32,41–44]. However, several aspects of lumpfish biology remain unknown, including
their miRNA repertoire.

https://www.fao.org/in-action/globefish/market-reports/resource-detail/en/c/1268636/
https://www.fao.org/in-action/globefish/market-reports/resource-detail/en/c/1268636/
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This study aimed to identify and characterize miRNA encoding genes in lumpfish by
small RNAs high-throughput sequencing (HTS) followed by miRDeep2 analysis. The iden-
tification was carried out in two early developmental stages, embryos and larvae, and six
organs of adult lumpfish—brain, muscle, gill, liver, spleen, and head kidney. A combina-
tion of HTS and computational analytical approaches (e.g., miRNA precursor prediction)
has been successfully used for miRNA characterization in particular two early develop-
mental stages and adult lumpfish organs. Therefore, here we provide the first reference
miRNAome for lumpfish.

2. Materials and Methods
2.1. Fish Holding

Five adult lumpfish (1100 g ± 99.5, male = 4, female = 1) were obtained from the Joe
Brown Aquatic Research Building (JBARB) at the Department of Ocean Sciences (DOS),
Memorial University of Newfoundland (MUN), Canada. The animals were kept in a
23,000 L tank, with flow-through (140 L min−1) of UV-treated seawater (6 ◦C), ambient
photoperiod (winter–spring), and 95–110% air saturation. Biomass density was maintained
at 20 kg m−3. The fish were fed daily using a commercial diet (Skretting—Europa 18
(6.0–9.0 mm pellet), Vancouver, BC, Canada) with a ratio of 0.25% of their body weight
per day. Additionally, lumpfish embryos (300 degree days) and lumpfish larvae (one
week posthatch) were obtained from the JBARB. Lumpfish egg masses were fertilized and
maintained with flow-through in 5 L upwelling black nontranslucent incubators at 8–10 ◦C
supplied with 95–110% air saturated and 5 µm UV-treated filtered flow-through seawater
(spring–summer) [45]. After completing the development of the embryo, the larvae hatch
are maintained at 10 ◦C [46].

2.2. Ethics Statement

The fish dissection and tissue sample collection were performed following the Cana-
dian Council on Animal Care guidelines (https://ccac.ca/en/standards/guidelines/) (Last
accessed: 10 January 2022) and approved by Memorial University of Newfoundland’s
Institutional Animal Care Committee (https://www.mun.ca/research/about/acs/) (Last
accessed: 10 January 2022) under the protocols #18-1-JS and #18-03-JS.

2.3. Sample Collection

Fish were euthanized with 400 mg of MS222 (Syndel Laboratories, Vancouver, BC,
Canada) per litre of seawater and dissected immediately after death confirmation. Tis-
sue samples were collected from adult lumpfish brain, gill, skeletal muscle, liver, spleen,
and head kidney. Tissue samples from five adult lumpfish, two pools of lumpfish embryos,
and two pools of lumpfish larvae were immediately flash-frozen in liquid nitrogen (Air Liq-
uide Canada Atlantic, St. John’s, NL, Canada) and stored at −80 ◦C until further processing.

2.4. RNA Extraction

Total RNA was extracted using the mirVana RNA isolation kit (Invitrogen, Carlsbad,
CA, USA) following the manufacturer’s protocol. RNA concentration and integrity were
quantified using spectrophotometry (Genova-nano, Jenway, Stone, Staffordshire, England)
and 1% agarose gel electrophoresis. The total RNA concentrations of 32 samples (four
adult individuals with brain and muscle samples, five adult individuals with gill, liver,
spleen, and head kidney samples, and four samples from two early life stages) ranged
from 100–3250 ng µL−1 (total volume 100 µL) (Table S1). Sixteen samples from two adult
lumpfish, two embryos, and two larvae were used for high-throughput sequencing (HTS)
by independent library preparation and sequencing of each sample (Table S2), whereas all
the 32 samples were used for qPCR analysis.

https://ccac.ca/en/standards/guidelines/
https://www.mun.ca/research/about/acs/
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2.5. High-Throughput Sequencing (HTS)

The library construction and small RNA sequencing were performed by the Genomics
Core Facility Oslo (Oslo University Hospital, Oslo, Norway). The NEBNext Small RNA
Library Prep Set for Illumina (New England Biolabs, Inc., Ipswich, MA, USA) was used
to prepare the libraries according to the manufacturer’s protocol. One µg of total RNA
from each sample was used as input to prepare the libraries, and a final size selection
of 140–150 bp fragments using 6% polyacrylamide gel was used to enrich small RNAs.
The adapter sequences (5′ AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC 3′) were
used in the library preparation process. Following library preparation, next-generation
RNA sequencing was carried out using the Illumina Genome Analyzer IIx sequencing
platform described in Woldemariam et al. [19], generating single-end reads of length 75 bp.

2.6. Analysis of Sequencing Data

The sequencing of raw and processed data quality was checked before miRNA dis-
covery analysis. FastQC v0.11.9 (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) (Last accessed: 20 November 2021) was used to check the quality of both the raw
sequencing data and the data obtained after adapter removal and size filtering. The adapter
removal and size filtering were carried out using cutadapt v1.8.3 [47]. Reads shorter than
18 bp and longer than 25 bp after the adapter removal were discarded. The reads passing
the filtering step were converted to fasta format with fastq_to_fasta from FASTX toolkit
v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/) (Last accessed: 20 November 2021).

Each of the 16 samples were analyzed independently to detect miRNAs highly ex-
pressed in particular adult organs/tissues and early developmental stages. The lumpfish
reference genome [48] and bowtie v1.0.0 [49] were used for mapping the reads to the
reference genome. The workflow applied to identify novel lumpfish miRNA sequences is
illustrated in Figure 1.

Figure 1. Experimental workflow used for characterization of lumpfish miRNAome.

High-quality trimmed reads were used to discover lumpfish miRNA using the miRD-
eep2 software package v0.0.7 (mapper and miRDeep2 analysis modules) applying default

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
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commands [50,51]. The miRDeep2 tools assign a log-odds score (the miRDeep2 score)
based on an algorithm that integrates the statistics of the read positions, the frequencies
of reads within hairpins, and the posterior probability that the hairpin was derived from
a true miRNA gene [50]. A miRDeep2 score of ≥2 was used as a cutoff to prevent false
positive detection of miRNA precursors. In addition, they were inspected regarding the
following criteria: (i) reads between 5′ and 3′ end of a precursor should be aligned per-
fectly in a discrete manner; (ii) miRNA precursors should be detected in at least two
independent deep sequencing samples, and (iii) at least ten sequence reads of mature
and miRNAs mapped to the hairpin precursor [52]. We further analyzed these putative
precursor sequences by BLAST searches against known precursor sequences deposited in
miRBase, (http://www.mirbase.org/index.shtml) (last accessed on 22 November 2021).
Any putative miRNA precursor sequence having a significant hit (E-value < 1 × 10−6) in
the BLAST analyses was regarded as a true evolutionarily conserved lumpfish ortholog of
the miRNA gene in miRBase that retrieved the best hit and annotated as the evolutionarily
conserved lumpfish ortholog of the miRNA gene according to the miRbase nomenclature
guidelines (clu-prefix and same number as in other teleosts) [53,54]. The putative miRNA
precursor sequences that were identified by miRDeep2 and passed the additional crite-
ria but did not show any significant match to the existing precursors in miRBase were
considered putative novel miRNAs. All those sequences were further analyzed by blastn
searches against RNA databases in GenBank (http://blast.ncbi.nlm.nih.gov/Blast) (Last
accessed: 20 November 2021), the small RNA databases Rfam (https://rfam.xfam.org/
search) (Last accessed: 20 November 2021), and the functional RNA database fRNAdb
(https://dbarchive.biosciencedbc.jp/en/frnadb/desc.html) (Last accessed: 20 November
2021). Sequences that had a significant hit against these databases were considered other
kinds of small RNA and discarded from the analysis. The remaining precursors were used
as queries in blastn analysis against the lumpfish genome sequence. Sequences with a sig-
nificant BLAST hit (E value < 1 × 10−6) against multiple loci (>10) in the lumpfish genome
reference sequence were considered to be interspersed repeats or tandem repeats and dis-
carded from the analysis. Sequences that passed all these filtering steps were regarded as
true novel lumpfish miRNAs. A reference miRNAome of unique mature miRNA sequences
(5p or 3p) for expression analysis of HTS data were generated by aligning all mature
miRNAs using Sequencher software 5.3 (Gene Codes Corporation, Ann Arbor, MI, USA).
The identical mature miRNAs from the same families were aligned applying strict settings,
and the final reference, thus, consisted of only the unique, different mature miRNAs.

2.7. Disclosing Putative Differentially Expressed and Organ and Developmental Stage
Enriched miRNAs

The HTS data from 16 tissue samples were used to estimate the expression of in-
dividual miRNAs across the different organs and developmental stages. The adapters
were trimmed from the raw reads, and the resulting reads were filtered based on size.
The filtered reads from all 16 samples were mapped to the reference applying STAR aligner
software (v.2.5.2b) [47]. The index for mapping was generated from the unique mature
lumpfish miRNAs (see 2.6) with parameters genomeSAindexNbases 6. STAR aligner
software (v.2.5.2b) with alignIntronMax1 and default parameters was then used for the
mapping. Next, the output files of STAR mapping (BAM format) were processed further
in R-Studio by using the feature Counts function from the Rsubread package (v.1.34.2) to
produce count matrices [47]. The count tables were used as input in the DESeq2 R package
(v.1.24.0) for differential expression analysis. Samples from an organ or developmental
stage (n = 2) were compared to all other tissues sampled (n = 14). Putative differentially
expressed miRNAs were defined as those with Benjamini-Hochberg adjusted p ≤ 0.05,
log2 fold change threshold value of at least ≤−3.0 or ≥3.0. The miRNA abundance of the
different miRNAs within a particular organ or developmental stage was estimated as the
percentage of a specific miRNA out of the total based on the average of normalized read

http://www.mirbase.org/index.shtml
http://blast.ncbi.nlm.nih.gov/Blast
https://rfam.xfam.org/search
https://rfam.xfam.org/search
https://dbarchive.biosciencedbc.jp/en/frnadb/desc.html
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counts from duplicated samples (reads less than 20 were filtered out). Enriched miRNAs
were analyzed for each organ and developmental stage.

2.8. RT-qPCR

We selected eight different miRNAs that were suggested as differentially expressed
in literature and enriched in one of the organs by the DESeq2 analysis for further expres-
sion analysis with qPCR. These miRNAs had previously shown similar organ-specific
enrichment in other teleosts [19,20]. The RNA-seq read numbers of these eight miRNAs are
provided in Table S8. Those eight miRNAs (clu-miR-135c-5p, clu-miR-9b-3p, clu-miR-133ab-
3p, clu-miR-205-1-5b, clu-miR-203-3p, clu-miR-203a-5p, clu-miR-192a-5p, clu-miR-122-1-5p)
were analysed by RT-qPCR to verify the DESeq2 results. All forward primer sequences
used for qPCR were retrieved from the mature sequences of these miRNAs in the char-
acterization step (methods 2.6). The primer sequences are listed in Table 1. The cDNA
synthesis and qPCR were carried out applying the miScript (miScript II RT Kit and miScript
SYBR Green PCR Kit) assays following the manufacturer’s instructions (Qiagen, Hilden,
Germany). The qPCR reaction mixture contained 12.5 µL 2 × QuantiTect SYBR Green Mas-
ter Mix, 2.5 µL 10×miScript Universal Primer, 2.5 µL of 10 µM forward miRNA-specific
primer, 5 µL RNase free water, and 2.5 µL cDNA. The qPCR analysis was carried out by
Mx3000p (Stratagene, Agilent Technologies, LA Jolla, CA, USA) using the following cycle,
95 ◦C for 15 min followed by 40 cycles of 94 ◦C for 15 s, 55 ◦C for 30 s and 70 ◦C for 30 s
as described in Andreassen et al., 2016 [20]. The mature sequences of clu-mir-25-3p and
clu-mir-17-5p were used as reference genes [20,55]. The instrument-provided ct values were
applied to the LinRegPCR (v2021.1) software to calculate efficiency in all assays, and then
the efficiency-adjusted Ct-values were provided [56]. The efficiency adjusted values were
also used in the normalization (geomean from the two reference genes) to provide the
dCt-values. The relative change in expression in each miRNA’s target organ was calculated
using the comparative Ct method (∆∆Ct-method) [57]. All the comparisons were relative
to the lowest expressed organ/tissue for the particular miRNA. All relative quantity (RQ)
data are presented as mean ± standard error (SE). The RQ values for each target gene were
subjected to a one-way ANOVA with Tukey post-tests to compare gene expression across
tissues. All statistical tests were performed using GraphPad Prism 7.04 (San Diego, CA,
USA) with the p-value threshold set at ≤0.05. The number of organ samples was four or
five for each group, while the early developmental stages had two biological replicates in
each group (Table S1).

Table 1. Primers used in qPCR analysis of mature miRNAs.

miRNAs Primer Sequences (5′ to 3′)

clu-miR-25-3p CATTGCACTTGTCTCGGTCTGA
clu-miR-17-1-5p CAAAGTGCTTACAGTGCAGGTA
clu-miR-122-1-5p TGGAGTGTGACAATGGTGTTTG
clu-miR-133ab-3p TTTGGTCCCCTTCAACCAGCTGT
clu-miR-205-1-5p TCCTTCATTCCACCGGAGTCTG
clu-miR-135c-5p TATGGCTTTTTATTCCTATGTG
clu-miR-203-3p GTGAAATGTTTAGGACCACTTG
clu-miR-203a-5p AGTGGTTCTCAACAGTTCAACA
clu-miR-192a-5p ATGACCTATGAATTGACAGCCA
clu-miR-9b-3p TAAAGCTAGAGAACCGAATGTA

3. Results
3.1. Total RNA Extraction, Library Preparation, and Small RNA Sequencing

Total RNA extracted from 32 samples (brain, muscle, gill, liver, spleen, and head
kidney from five adult fish and two samples each from larvae and embryos) showed
concentrations ranging from 100 to 3250 ng/µL (Table S1) and intact 28S and 18S bands
in 1% agarose gel indicated that they were of high quality. All these samples qualified for
further analysis by HTS and qPCR. Small RNA libraries were successfully generated for
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16 samples (twelve tissue samples from two adult fish and two samples from each early
developmental stage). The HTS resulted in a total of 147,972,041 raw reads, ranging from
6.6 to 13.3 million reads per sample. After adapter trimming, there were a total of 86,054,423
reads ranging from 4.5 to 6.9 million reads per sample (Table S2). All raw HTS results were
submitted to NCBI with BioProject accession number PRJNA679415. The individual SRA
accession numbers are given in Table S2.

3.2. Characterization of Lumpfish miRNA

The processed reads from each sample were analyzed with miRDeep2 software for
miRNA gene discovery (Figure 1). Subsequent BLAST homology searches of all putative
miRNA precursor sequences against miRbase revealed a total of 391 miRNA genes from 104
different families that were lumpfish orthologs to evolutionarily conserved miRNAs. They
were subsequently annotated as the lumpfish orthologs of these miRNAs. The miRDeep2
analysis also revealed 5p or 3p arm domination (most abundant mature miRNA from
a given precursor) and the genome location of each miRNA gene. An overview of all
precursor sequences along with their corresponding 5p and 3p mature sequences is given
for all evolutionarily conserved miRNA genes in Table S3.

A total of 98 precursors identified by miRDeep2 did not show significant matches
in the homology analyses against miRBase. These were considered as putative novel
miRNA precursor sequences. They were further analyzed by blastn searches against RNA
databases in GenBank, small RNA databases Rfam, functional RNA database fRNAdb,
and lumpfish genome sequence (GenBank Accession: PRJNA625538). Sequences that had a
significant hit against these databases were discarded from the analysis, as described in
the methods section. Following this filtering process, eight precursor and corresponding
mature sequences showed characteristics expected from true miRNAs. These eight miRNA
precursor sequences are likely to represent novel lumpfish miRNAs, and all these novel
miRNA genes along with their corresponding 5p and 3p mature sequences, the observed
arm dominance of mature sequences, and the genome location of each miRNA gene
are given in the last part of Table S3. Finally, the mature miRNAs were aligned using
Sequencher software to identify all unique mature miRNAs (many mature miRNAs from
the same families were identical). There were 443 unique mature miRNAs. These unique
miRNAs representing the lumpfish miRNAome are given in Supplementary File S4.

3.3. Abundance of miRNAs within Organs and Developmental Stages

We determined the diversity of miRNAs within the lumpfish tissues/organs and
developmental stages based on the normalized read counts. The normalized read counts
for all samples are shown in Table S5, while the average normalized read counts for each
tissue/organ or developmental stage are shown in Table S6.

Our results show the presence of 340 unique mature miRNAs in the lumpfish brain,
328 in muscle, 289 in gill, 288 in the liver, 268 in the spleen, 289 in the head kidney,
328 in embryos, and 327 in larvae (Figure 2). Two hundred forty-one mature miRNAs
were expressed in all six organs of adult lumpfish, 324 mature miRNAs were expressed
commonly in embryos and larvae, and 223 mature miRNAs were expressed across all
three developmental stages. All the miRNAs expressed in the early life stages, such as
embryos and larvae, were also expressed in at least one organ of adult fish. The exceptions
were clu-miR-19a-2-5p, which was only expressed in embryos, and clu-miR-137-1-5p, only
in larvae.
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Figure 2. miRNA diversity in lumpfish tissue/organs and early developmental stages.

The abundance of most common mature miRNAs within each organ and develop-
mental stage is shown in Figures 3 and 4, respectively. These figures show the distribution
of the top 20 enriched mature miRNAs within each of the six organs and in the two early
developmental stages. The abundances for all miRNAs within each of the organs and
early developmental stages are shown in Table S6. Five of the top 20 enriched mature
miRNAs, clu-miR-21a-5p, clu-miR-22ab-3p, clu-miR-26-1-5p, clu-miR-100-2-5p, and clu-
let-7g-5p were highly abundant within all organ and early developmental stages. While
the five mature miRNAs clu-miR-146a-5p, clu-let-7a-3-5p, clu-miR-126-3p, clu-let-7e-5p,
and clu-miR-143-3p were highly abundant miRNAs within all six organs of adult lump-
fish, but not among the highly expressed miRNAs within lumpfish embryos and larvae
(Figures 3 and 4). Additionally, several miRNAs were highly abundant within one of
the tissue/organs from adult fish compared to others. For example, Clu-miR-122-1-5p,
clu-miR-192a-5p, clu-miR-152ab-3p, and one novel miRNA (clu-miR-nov-5-5p) were also
among the top 20 most abundant miRNAs in the liver, but with much lower abundance
when comparing expression of miRNAs within other organs. Likewise, clu-miR-1-1-3p, clu-
miR-206-3p, and clu-miR-133ab-3p were abundant only in muscle, clu-miR-451a-5p only in
spleen, clu-miR-142-2-3p only in head kidney, and clu-miR-9-2-5p and clu-miR-7-3-5p only
in brain (Figure 3, Table S6). Two miRNAs, clu-miR-217b-5p and clu-miR-181b-3-5p, were
common in the two early developmental stages while having relatively low expression
within adult organs. In addition, there were some miRNAs common in one organ and
early developmental stage. These were clu-miR-9-2-5p and clu-miR-7-3-5p (brain and early
developmental stages), clu-miR-1-1-3p and clu-miR-206-3p (brain and early developmental
stages) and clu-miR-192a-5p (liver and early developmental stages).
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Figure 3. Twenty most abundant miRNAs in lumpfish brain, muscle, gill, liver, spleen, and head kidney.

Figure 4. Twenty most abundant miRNAs in lumpfish embryos and larvae.

3.4. Comparison of Mature miRNA Expression between Organs and Early Developmental Stages

To further explore whether some miRNAs (any of the miRNAs, not only top common
ones) were differentially expressed between adult organs or early developmental stages,
we carried out expression analysis of the HTS data and additional RT-qPCR of selected
miRNAs. DESeq2 analysis of the HTS data was conducted by comparing one organ or early
developmental stage (n = 2) to all other samples (n = 14). The results (Table S7) suggested
that several miRNAs have higher or lower expression in one organ or early developmental
stages compared to all other samples. The suggested miRNAs with an increased expression
(log2 fold change > 3.0) in a particular organ or early developmental stage compared to
expression in all others are given in Tables 2 and 3, respectively. The numbers of such
miRNAs were 9 in the brain, 5 in muscle, 8 in gill, 15 in the liver, 3 in the spleen, 13 in
embryos, and 22 in larvae. However, our DESeq2 analysis did not suggest any enrichment
of miRNAs in the lumpfish head kidney.
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Table 2. Mature miRNAs suggested as highly expressed in one organ compared to others.

Organ 1 miRNAs 2 Log2FC 3

Brain clu-miR-31-3p 6.14
Brain clu-miR-153c-3p 5.96
Brain clu-miR-153a-3p 5.33
Brain clu-miR-1788-5p 4.91
Brain clu-miR-212b-1-5p 4.10
Brain clu-miR-212b-1-3p 3.14
Brain clu-miR-128-2-3p 3.49
Brain clu-miR-338-1-3p 3.40
Brain clu-miR-132-1-5p 3.08

Muscle clu-miR-133b-3p 6.08
Muscle clu-miR-133ab-3p 5.45
Muscle clu-miR-1-1-3p 5.23
Muscle clu-miR-1-3-5p 3.56

Gill clu-miR-31-5p 6.91
Gill clu-miR-1788-3p 6.21
Gill clu-miR-203-3p 5.13
Gill clu-miR-203a-5p 4.61
Gill clu-miR-375-1-3p 4.82
Gill clu-miR-205-1-3p 4.16
Gill clu-miR-200b-3p 3.8
Gill clu-miR-200b-5p 3.36

Liver clu-miR-122-1-5p 8.23
Liver clu-miR-122-1-3p 7.65
Liver clu-miR-nov3-3p 6.78
Liver clu-miR-nov3-5p 4.68
Liver clu-miR-nov1-5p 5.58
Liver clu-miR-101b-3p 4.83
Liver clu-miR-101b-5p 4.41
Liver clu-miR-722-3p 4.71
Liver clu-miR-722-5p 4.38
Liver clu-miR-92b-3p 4.04
Liver clu-miR-92b-5p 3.91
Liver clu-miR-192a-5p 3.75
Liver clu-miR-94a-5p 3.43
Liver clu-miR-152ab-3p 3.37
Liver clu-miR-nov5-5p 3.36

Spleen clu-miR-2187b-5p 5.10
Spleen clu-miR-2187b-3p 3.47
Spleen clu-miR-460-5p 3.27

1 Organ samples were obtained from adult lumpfish. 2 The names are in a few cases with different let-
tered/numbered suffixes than in miRBase as several mature family members are identical. The miRNAs in
the table are grouped in families, and the family member with the highest FC is used to list families in descending
order. 3 Log2-transformed fold-change (FC) as determined by DESeq2 analysis.

RT-qPCR was applied to verify the findings from the DESeq2 analysis in a few selected
miRNAs. The two conserved mature miRNAs clu-mir-25-3p and clu-mir-17-5p, shown
as suitable reference genes in other teleosts [20,55], revealed stable expression across all
samples in this study (mean Ct values were 22.8 ± 0.9 (SD), 22.4 ± 1.1 (SD), respectively)
and were, consequently, used as reference genes in the RT-qPCR analysis. Eight miRNAs
known to be highly expressed in certain organs [19,20] were selected for RT-qPCR (Table 1).
These selected miRNAs showed significantly increased expression levels in the expected
tissue/organs (Figure 5) that align with the literature [19,20]. For instance, clu-miR-135c-5p
and clu-miR-9b-3p expression was significantly higher in brain, clu-miR-205b-5b, clu-miR-
203a-3p, and clu-miR-203b expression was significantly higher in gill, clu-miR-133-3p
expression was significantly higher in muscle, and clu-miR-122-5p and clu-miR-192a-5p
expression was significantly higher in liver compared with other tissue/organs. These
qPCR results agreed with the DESeq2 results for six organ samples, while the increases
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observed for clu-miR-135c-5p and clu-miR-9b-3p in the brain were similar in the DESeq2
analysis but not significant. However, we utilized four or five biological replicates for
the RT-qPCR analysis, whereas two were used in the DESeq2 analysis. Additionally,
the significance levels were adjusted according to a large number of tests in the DESeq2
analysis. This could explain why the increases did not reach the significant thresholds in
the DESeq2 analysis for these two miRNAs.

Table 3. Mature miRNAs suggested as highly expressed in embryos or larvae.

Embryos/Larvae 1 miRNAs 2 Log2FC 3

Embryos clu-miR-430b-5-5p 5.61
Embryos clu-miR-430b-4-3p 4.51
Embryos clu-miR-430b-1-3p 4.37
Embryos clu-miR-190b-5p 5.45
Embryos clu-miR-726-5p 4.91
Embryos clu-miR-184ab-2-3p 4.77
Embryos clu-miR-184ab-3p 4.77
Embryos clu-miR-301b-5p 4.73
Embryos clu-miR-301b-1-5p 4.40
Embryos clu-miR-124-1-5p 4.40
Embryos clu-miR-217b-5p 4.23
Embryos clu-miR-217a-5p 4.13
Embryos clu-miR-216a-1-5p 4.20
Larvae clu-miR-124-1-5p 4.41
Larvae clu-miR-130-1-5p 3.15
Larvae clu-miR-130-6-5p 3.62
Larvae clu-miR-183-5p 4.09
Larvae clu-miR-184ab-2-3p 4.71
Larvae clu-miR-184ab-3p 4.71
Larvae clu-miR-190b-5p 5.44
Larvae clu-miR-194b-3p 3.46
Larvae clu-miR-196a-1-5p 3.95
Larvae clu-miR-216a-1-5p 4.00
Larvae clu-miR-217a-5p 4.11
Larvae clu-miR-217b-5p 4.11
Larvae clu-miR-301b-1-5p 4.38
Larvae clu-miR-301b-3p 3.44
Larvae clu-miR-301b-5p 4.70
Larvae clu-miR-430a-12-3p 3.97
Larvae clu-miR-430a-3-3p 3.97
Larvae clu-miR-430b-1-3p 4.28
Larvae clu-miR-430b-4-3p 4.40
Larvae clu-miR-430b-5-5p 5.41
Larvae clu-miR-459-3p 4.01
Larvae clu-miR-726-5p 4.64

1 Lumpfish embryos were obtained at 300 degree days, and lumpfish larvae were obtained after one-week post-
hatch. 2 The names are in a few cases with different lettered/numbered suffixes than in miRBase as several mature
family members are identical. The miRNAs in the table are grouped in families, and the family member with the
highest FC is used to list families in descending order. 3 Log2-transformed fold-change (FC) as determined by
DESeq2 analysis.



Biology 2022, 11, 130 12 of 19

Figure 5. Verification of tissue-specific expression of conserved miRNAs. RT-qPCR results show the
relative expression of eight miRNAs (clu-miR-135c-5p, clu-miR-9b-3p, clu-miR-133ab-3p, clu-miR-205-
1-5b, clu-miR-203-3p, clu-miR-203a-5p, clu-miR-192a-5p, clu-miR-122-1-5p ) across lumpfish organs
(brain, muscle, gill, liver, spleen, and head kidney). Number of replicates for tissue samples were five
(n = 5) except brain (n = 4) and muscle (n = 4). RQ: relative quantity normalized to clu-miR-25-3p
and clu-miR-17-1-5p and calibrated to the individual sample with the lowest miRNA of interest
expression. *** on the top of a particular sample indicates that the expression of the particular miRNA
is significantly higher when compared to others by one-way ANOVA (p < 0.001).

4. Discussion

miRNAs play a significant role in embryonic development, determination of cell fate,
and control of cell proliferation, differentiation, and death. Their dysregulation has a signif-
icant impact on critical cellular pathways and is linked to a variety of diseases [11,13,16,48].
A species-specific and well-characterized miRNAome generated from small RNA sequenc-
ing of different developmental stages is required to study miRNA expression by analysis of
HTS data. Characterization of miRNAs in multiple organs and developmental stages in a
new aquaculture species like lumpfish will also facilitate further studies to determine their
role in development, whether they regulate organ developmental stage-specific functions,
immune responses to infectious diseases, and disease progression. Therefore, this study
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was undertaken to define and characterize miRNAs expressed in the brain, muscle, gill,
liver, spleen, and head kidney of adult lumpfish, as well as the two developmental stages,
embryos and larvae. Together this resulted in a miRNAome consisting of 443 unique
mature miRNAs that were used as lumpfish miRNA reference for analysis of HTS data and
primer design (RT-qPCR analysis) of single miRNAs.

The expression of different miRNAs within an organ or developmental stage would
reveal which ones were highly abundant and likely to have essential regulatory functions.
Comparisons between adult organs and early developmental stages could further reveal the
highly expressed ones in a few or single organs. We applied DESeq2 analysis to demonstrate
that the miRNAome worked well as a reference in such HTS analysis. However, as there
were two biological replicates of each adult organ (or early developmental stages) compared
to all other HTS samples (n = 14) in these analyses, we report them as suggestive expression
differences. Ideally, there should be three or more biological replicates in each group
compared in such analysis. However, we did choose a rather conservative log2FC (3 or
more) to suggest them as differently expressed between organs (Table S7), and some of the
miRNAs increased in particular organs were also supported in the additional RT-qPCR
analysis (Figure 5).

Our analysis identified that 10 mature miRNAs were highly abundant and among the
top 20 enriched miRNAs within all six organs (five were also among the top 20 enriched
in the early developmental stages). These 10 mature miRNAs (clu-let-7a-3-5p, clu-let-7e-
5p, clu-let-7g-5p, clu-miR-21a-5p, clu-miR-22ab-3p, clu-miR-26-1-5p, clu-miR-100-2-5p,
clu-miR-126-3p, clu-miR-143-3p, and clu-miR-146a-5p) are conserved miRNA families
discovered in the majority of vertebrates in miRBase [19,20,58]. Their high expression
within all adult organs could suggest that these miRNAs play a critical role in lumpfish
cellular homeostasis. Still, as they are highly abundant in all adult organs, they are not
likely to regulate organ-specific functions.

The brain receives information from sense organs that monitor conditions both within
and around the fish. In the brain, the immune cells and the central nervous system interac-
tions allow the immune system to fight against infection and enable the nervous system to
regulate immune functioning [59,60]. Any change in these interaction pathways can cause
many pathological conditions attributed to organ dysfunction [59,60]. However, miRNAs
are critical brain development and function regulators, such as neuronal activity [11,61].
Our miRDeep2 analysis identified 340 conserved mature miRNAs in the lumpfish brain.
Among highly enriched in the brain are clu-miR-9-2-5p and clu-miR-7-3-5p. These two
miRNAs do not have similar high relative expression levels within any other adult organs
but are similarly enriched in the two early developmental stages, indicating they could be
important in developing neural tissue in lumpfish (Table S6). A similar enrichment pattern
of miR-9-5p is seen in Atlantic salmon, cod, halibut, three-spined stickleback, and zebrafish
brain [19,20,22,28]. Enrichment of miR-7 in the brain is also observed across vertebrates [62].
Several studies have shown that these two miRNAs are crucial for brain development in
zebrafish and other vertebrates [63–65], and it is likely that clu-miR-9-2-5p and clu-miR-
7-3-5p may have similar functions in lumpfish. The DESeq2 analysis also suggested that
clu-miR-128-2-3p, clu-miR-153c-3p, clu-miR-212b-1-5p, and clu-miR-338-1-3p were more
than 10-times higher expressed in the brain than other organs (Table S7a). Similar findings
were observed in Atlantic cod, three-spined stickleback, and zebrafish [19,66]. In higher
vertebrates, miR-128 controls neural motor behaviours by regulating the expression of
various ion channels [67]. The three other miRNAs have also all been reported as having
important brain functions in higher vertebrates [68–70].

Fish muscles are the major edible parts worldwide, determining the nutritional and
the market value. The teleost muscle is also an immunologically active organ, playing an
important role against pathogens [71]. MicroRNAs are established modulators of muscle
cell proliferation, differentiation, regeneration, and diseases [72]. Our miRDeep2 analysis
identified 328 conserved mature miRNAs in lumpfish muscle. The muscle-specific top
enriched miRNAs were clu-miR-1-1-3p and clu-miR-133ab-3p (present in other organs
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but much less abundant). Similar to our study, miR-133 and miR-1 were enriched in
zebrafish, Atlantic salmon, and cod, suggesting the maintenance of muscle-specific miRNAs
expression and function [18–20,73]. For example, miR-133 is one of the foremost studied
and best-characterized miRNAs in vertebrates. It is required for proper skeletal and cardiac
muscle development and function in mammals and fish [74,75]. On the other hand, miR-1
is a conserved miRNA in the muscle tissue that plays a crucial role in maintaining muscle
integrity [76].

Because of direct exposure to the water, teleost gills are the main mucosal surfaces for
the entrance of pathogens, which trigger an immune response [77]. miRNAs are important
regulators of immune response to those infections in the gills of fish [20,78,79]. However,
our DESEq2 analysis was on apparently healthy organs and suggested the enrichment
of clu-miR-200 and clu-miR-203 family members and clu-miR-205-1-3p, clu-miR-375-1-
3p, clu-miR-31-5p, and clu-miR-1788-3p in lumpfish gill. RT-qPCR results confirmed the
enrichment of clu-miR-203-3p, clu-miR-203a-5p, and clu-miR-205-1-5p. Some of these
miRNAs, such as miR-200, miR-205, and miR-375, were enriched in cod gill as well [20],
while miR-200, miR-203, and miR-205 were enriched in gills of tilapia [80]. One of these
miRNAs, miR-200, has been shown as important to gill function in cell studies of fish [81].
However, no study has been conducted to decipher the gill-associated role of the remaining
five lumpfish miRNAs suggested as differentially expressed in teleost gill.

The liver is involved in various vital functions in controlling biochemical processes,
including detoxification and metabolism [82]. miRNAs are essential for regulating liver
development and functions, and alterations in intrahepatic miRNA networks have been
associated with liver disease in humans [83]. They are also associated with hepatic lipid
metabolism in Atlantic salmon [84]. Our miRDeep analysis identified 288 conserved mature
miRNAs in the lumpfish liver (Table S6).

Four of the top 20 enriched miRNAs in liver—clu-miR-122-1-5p, clu-miR-152ab-3p,
clu-miR-192a-5p and clu-miR-nov5-5p—did not show similar enrichment in any other adult
organs (Figure 3). DESEq2 analysis also suggested these as having significantly increased
expression in the liver, and this was confirmed by RT-qPCR for clu-miR-122-1-5p and
clu-miR-192a-5p (Figure 5). This finding is similar to other teleosts and mammals [20,85,86].
miR-122 is the most abundant miRNA in the liver of many species. In mammals, miR-122
is studied extensively and is known to be involved in lipid metabolism [85]. Furthermore,
miR-192 is involved in cell growth, lipid synthesis, and apoptosis [87] and having such
roles also aligns with this miRNA being among the top 20 miRNAs expressed in the early
developmental stage samples (Figure 4). Dysregulation of miR-152 is associated with liver
disease in higher vertebrates indicating they are important hepatic miRNAs [84,88]. Based
on the high conservation of these miRNAs among vertebrates (miRBase 22.1) [58] and
with a similar enrichment pattern observed in lumpfish, we could assume they also play a
similar liver-specific role in lumpfish.

As the body’s primary blood filter, the spleen plays a major role in detecting cell dam-
age during infection [89]. The spleen is the home of different types of immune cells that
trigger different immune responses [89–91]. Splenic miRNAs have been identified to modu-
late immune responses during diseases in humans, mice, chickens, dogs, and fishes [92–99].
Our miRDeep analysis identified 268 conserved mature miRNAs in the lumpfish spleen.
One mature miRNA, clu-miR-451a-5p, was only among the top 20 enriched miRNAs in
the spleen, and this particular miRNA has been shown to regulate erythroid maturation in
zebrafish [100]. Furthermore, our DESeq2 analysis suggested the enrichment of clu-miR-
2187b-5p and clu-miR-460-5p in the lumpfish spleen. These two miRNAs are also enriched
in Atlantic salmon and cod spleen [19,20], but their particular function in the spleen has
not yet been investigated.

The anteriormost part of the kidney in the teleost is referred to as the head kidney. It is
predominantly a lymphoid compartment. The head kidney is an essential hematopoietic
organ and serves as a secondary lymphoid organ, a lymph node analog, vital in inducing
and elaborating immune responses [90,91]. Assessing changes in the expression of miRNAs
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in the head kidney could provide more comprehensive insight into the immune response
to infection. Our miRDeep2 analysis identified 289 conserved mature miRNAs in the
lumpfish head kidney. Our DESeq2 analysis did not suggest any enrichment of miRNA in
the head kidney.

The embryos and larvae samples did reveal several miRNAs suggested as early
developmental stage enriched. Notably, the miR-430 family was suggested as enriched
by the DESeq2 analysis. These are known as highly expressed in early development,
and among suggested functions is maternal RNA clearance during early embryogenesis in
zebrafish [101,102]. Another miRNA that was highly enriched and expressed only in the
early developmental stages was clu-miR-217b-5p. This miRNA, as well as mature miRNAs
from miR-124, miR-184, and miR-216 families that were also enriched in the lumpfish early
developmental stages, have all been shown as important in zebrafish development [73].

5. Conclusions

In conclusion, this study represents the first characterization of a lumpfish miRNA
transcriptome produced by independent analysis of small RNA sequences from several
adult organs and early developmental stages. We identified 391 conserved and eight novel
miRNA precursor sequences, which account for 443 unique mature miRNAs. Our results
demonstrate that most of the lumpfish miRNAs are highly conserved with highly similar
precursor sequences to those observed in other teleosts. Many miRNAs also appear to have
similar tissue-specific expression patterns as in other vertebrates. Thus the miRNAs profile
of lumpfish suggested a similar organ-specific expression pattern as other vertebrates. It is
possible that these conserved miRNAs are regulating essential and conserved genes in
vertebrates. Furthermore, the identification and characterization of lumpfish-specific novel
miRNAs repertoire in this study will be crucial for further functional studies of the novel
miRNAs in this species.
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