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Simple Summary: This study investigated the gaseous elemental mercury exchange fluxes over
Artemisia anethifolia coverage and removal and bare soil using a dynamic flux chamber attached to
the LumexR RA915+ Hg analyzer during the growing season from May to September of 2018, in
which the interactive effects of plant coverage and meteorological conditions were highlighted. The
results showed that the net emissions from the soil to the atmosphere, which varied diurnally, with
releases occurring during the daytime hours and depositions occurring during the nighttime hours.
Significant differences were observed in the fluxes between the vegetation coverage and removal
during the growing months. In addition, it was determined that the mercury fluxes were positively
correlated with the solar radiation and air/soil temperature levels and negatively correlated with the
air humidity and soil moisture. The grassland soil served as both a source and a sink for atmospheric
mercury, depending on the season and meteorological factors. The plants played an important
inhibiting role in the mercury exchanges between the soil and the atmosphere. This research will
potentially assist in the development of more accurate local and regional estimates of mercury
emissions from degraded grassland areas and the terrestrial environment as a whole.

Abstract: Mercury (Hg) is a global pollutant that may potentially have serious impacts on human
health and ecologies. The gaseous elemental mercury (GEM) exchanges between terrestrial surfaces
and the atmosphere play important roles in the global Hg cycle. This study investigated GEM
exchange fluxes over two land cover types (including Artemisia anethifolia coverage and removal and
bare soil) using a dynamic flux chamber attached to the LumexR RA915+ Hg analyzer during the
growing season from May to September of 2018, in which the interactive effects of plant coverage
and meteorological conditions were highlighted. The daily mean ambient levels of GEM and the
total mercury concentrations of the soil (TSM) were determined to be 12.4 ± 3.6 to 16.4 ± 5.6 ng·m−3

and 32.8 to 36.2 ng·g−1, respectively, for all the measurements from May to September. The GEM
exchange fluxes (ng·m−2·h−1) during the five-month period for the three treatments included the
net emissions from the soil to the atmosphere (mean 5.4 to 7.1; range of −27.0 to 47.3), which varied
diurnally, with releases occurring during the daytime hours and depositions occurring during the
nighttime hours. Significant differences were observed in the fluxes between the vegetation coverage
and removal during the growing months (p < 0.05). In addition, it was determined that the Hg fluxes
were positively correlated with the solar radiation and air/soil temperature levels and negatively
correlated with the air relative humidity and soil moisture under all the conditions (p < 0.05). Overall,
the results obtained in this study demonstrated that the grassland soil served as both a source and
a sink for atmospheric Hg, depending on the season and meteorological factors. Furthermore, the
plants played an important inhibiting role in the Hg exchanges between the soil and the atmosphere.
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1. Introduction

Mercury (Hg) is considered to be a significant global pollutant due to its biochemical
properties [1]. The main concerns at present regarding Hg are related to its mobility
and persistence [2], as well as its bioaccumulation through the trophic web [3]. Gaseous
mercury, which comprises over 95% of the total Hg in the air [4], has the ability to exist
in the atmosphere for more than one year. In addition, it can travel long distances along
with the atmospheric circulation, resulting in global Hg contamination [1,5]. Therefore,
research investigations regarding the sources of Hg are essential in order to deepen the
understanding of the biogeochemical cycle of Hg on a global scale [6]. Early studies have
estimated that as much as 80% of the Hg deposited on terrestrial surfaces will be re-emitted
to the atmosphere through surface emissions [7]. Those results have further indicated
the importance of terrestrial environments as significant Hg sources in the global Hg
cycle. The gaseous mercury exchange fluxes between atmospheric and terrestrial sources
serve as important examples. However, those fluxes have been poorly characterized, and
the routes by which Hg enters and exits the Earth’s different ecosystems require further
clarification [8]. It is expected that by improving the current quantification of fundamental
ecosystems, accurate predictions can be made regarding the impacts that climate change
will have on the global Hg cycle [9].

Many of the previous research attempts to quantify or mechanistically understand
gaseous mercury fluxes were focused on forests [10,11], wetlands [12], and croplands [13].
Unfortunately, at the present time, relatively little attention has been given to grasslands,
which are the largest terrestrial ecosystem type. Grasslands directly contribute to such
livestock production industries as dairy, wool, and leather, which support almost a billion
people worldwide [14]. Howard et al. [15] made a short-term measurement of the Hg
fluxes from Australian alpine grassland soil. However, available data from long-term
measurements and different types of grassland areas remain scarce.

The Hg fluxes between soil surfaces and the atmosphere have been extensively studied
in terrestrial ecosystems during the past thirty years and have been estimated to contribute
256 to 1400 Mg·y−1 worldwide [16,17]. Different terrestrial ecosystems have their specific
functions as sink pools or net sources of mercury. For example, forests are generally
regarded as active pools of Hg. Canopy foliage uptake the majority of the Hg from
atmospheric sources through stoma rather than root uptake [18,19]. These fixed Hg can
be stored in live biomass (for example, stems) and then transported to the forest floor
through litterfall and throughfall. The mercury will then be sequestrated in the soil [20].
The vegetation canopies, which absorb up to 99% of solar radiation, are expected to reduce
Hg0 emissions by limiting the warming of the underlying soil. An earlier estimate of
net Hg0 evasion from forest soils was approximately 340 Mg·y−1 [21]. Unlike the forests,
wetlands are both particularly important sinks of atmospherically deposited Hg and
emission sources [6]. Atmospheric Hg deposited into wetlands via wet and dry mechanisms
may easily be trapped. This is due to the fact that wet sediment tends to host more dissolved
organic carbon, which can solubilize Hg [22]. The majority of wetlands in the background
sites are relatively small pools of the environmental Hg. Meanwhile, in Hg-enriched regions,
they tend to be more significant emission sources to the atmosphere when compared with
forest soils due to adequate solar radiation levels, which enhance the Hg2+ reduction to
Hg0. The few studies which have been completed which involved grassland regions only
focused on the Hg exchange fluxes between frozen layer soil and the atmosphere in alpine
or high-elevation regions [15,23–25]. The results of those investigations revealed that the
alpine grassland soil serves as a weak source of Hg released into the atmosphere but has
become gradually stronger with recent climate warming trends. Meanwhile, the Hg0 fluxes
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presented obvious diurnal and seasonal variabilities, with emissions generally occurring
during daytime hours and warmer seasons. In addition, depositions were observed to
occur during nighttime hours and colder seasons. However, no clear agreement has been
reached on the aforementioned characteristics [26]. In summary, the large uncertainties
caused by different measurement methods, along with a lack of knowledge of soil-air
Hg exchanges in grassland regions (particularly whole ecosystem soil-plus-vegetation
flux data), have resulted in substantial controversy regarding the roles played by global
grassland surfaces. Therefore, a definite gap in understanding currently exists in regard to
the specific roles of grasslands in regional and global Hg biochemical cycles [6].

China’s temperate steppe areas are considered to be the third-largest distribution area
of grasslands in the world and one of the most widely distributed vegetation types on
Earth [27]. Under the influencing effects of human activities, the land usage and coverage
of the temperate steppe areas in China have undergone significant changes in recent
decades. For example, large areas of grassland have been reclaimed for farmland usages,
and overgrazing and expansion of residential land have resulted in serious degradation
of grassland regions [28]. Grassland degradation is mainly manifested by the thinning of
low grassland vegetation and the reduction in surface exposure due to litter coverage. The
results of this research will potentially assist in the development of more accurate local
and regional estimates of Hg emissions from degraded grassland areas and the terrestrial
environment as a whole.

2. Materials and Methods
2.1. Study Area

The study area was located in Changling County, southwestern section of the Songnen
Plains, within the eastern region of the Eurasian steppes (44◦40′–44◦44′ N, 123◦44′–123◦47′ E)
at an altitude range of 110 to 180 m (Figure 1). The site was characterized by a semi-arid
continental monsoon climate, with cold, dry winters and warm, rainy summers. The annual
mean temperature ranged from 4.6 to 6.4 ◦C. The annual precipitation ranged between
280 and 400 mm, with 70% of the precipitation falling between the months of June and
August [29]. The main soil type was characterized by high salinity and alkalization (pH
8.3 to 10.0). Artemisia anethifolia, Kochia scoparia, and Artemisia scoparia were deter-
mined to be the common species at the alkaline sites. Artemisia anethifolia is the most
salinity-tolerant Artemisia plant, which forms small communities on meadow grassland
and dry grassland. The increase in this artemisia is often a sign of overgrazing or grass-
land degradation. In addition, the growing season is from May to September each year,
which is the golden period for field experiments in Northeast China. So, we selected
Artemisia anethifolia as our experimental species. Two types of land cover were selected
within the study area: A. anethifolia and bare soil. The treatments included the original and
mowing of the above-ground plants.

2.2. Sampling Site and Experimental Design

This study’s experiments were carried out in a 25 × 25 m2 flat and enclosed meadow
steppe. Good vegetation uniformity was observed, with A. anethifolia, K. scoparia, and A.
scoparia determined to be the common species at the alkaline sites. Two 0.25 × 0.40 m2

random plots were defined during each monthly period on the basis of species composition
as A. anethifolia and bare soil.

The experimental design included randomized blocks which were established monthly
during the growing season (May to September) in 2018. This study’s sampling sites were
located within two blocks (A. anethifolia and bare soil), with two levels of vegetation
treatments (coverage and removal) for the purpose of exploring the effects of vegetation
on the Hg fluxes between the soil and the atmosphere. The soil GEM emissions were
continuously measured for a 24-h duration at the center of each plot. Due to the fact that
only a single instrument and a one-chamber system was available, the measurements were
conducted sequentially from plot to plot during the spring (9 May to 11 May); summer
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(26 to 28 June; 21 to 23 July; and 22 to 24 August); and fall (27 to 29 September) in 2018.
The measurements were obtained using a dynamic flux chamber connected to a RA-915M
mercury vapor analyzer.
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Figure 1. Map of the locations of the sampling sites.

Surface soil samples (0–5 cm) were collected and sealed in clean, lucifugal plastic
bags for every condition. After being transported to the lab, the samples were air-dried,
milled, and sieved to pass through 80 mesh-screen. The Hg concentrations of soil samples
were analyzed by UMA (universal mercury attachment) of the Lumex RA-915+, based on
the pyrolysis technology to release gaseous Hg0 from the sample to the test pool with the
detection limit of 0.1 ng·g−1.

The gaseous elemental mercury (GEM) was monitored using an automated Hg vapor
detector produced by LUMEX RA-915+ (Russia). To be more specific, as a real-time
Hg detector, the RA-915+ is based on the Zeeman cold vapor absorption spectrometry
technique, with a time resolution of one second. It is calibrated with an internal Hg
vapor source. Its real-time detection limit and dynamic detection extents are 2 ng/m3 and
5 ng/m3 to 2 × 104 ng/m3, respectively. The average GEM concentrations were recorded
every five minutes in each sampling group, and all of the measurement processes were
carried out for a duration of 24 h.

The chamber was placed over the soil surface with the vegetation coverage in order
to measure the Hg fluxes, as detailed in Figure 2a,c. Then, the above-ground plants
were mowed and removed from the chamber, as shown in Figure 2b. The mowing of
the vegetation simulated grassland utilization, such as livestock grazing, particularly
those occupied by pastoralists. All the measurements were performed on sunny days
only, with leaf-litter present in order to mimic the original environmental conditions. In
addition, for the purpose of exploring the relationships between meteorological variables
and the soil Hg0 evasion, a linear regression analysis method was adopted using the hourly
data from each plot across each season. In addition, using the dynamic flux chamber
(DFC), the approximate 24-h Hg flux measurements under each treatment were partitioned
into four periods as follows: morning (6:00 to 12:00); afternoon (12:00 to 18:00); before
midnight (18:00 to 24:00); and after midnight (0:00 to 6:00), respectively. Six distinct sets of
measurements were taken per day for each period.
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2.3. Soil-Air Hg0 Flux Measurements

In the present investigation, the Hg0 flux values were continuously sampled for
24 h using a cuboid dynamic flux chamber (DFC, 25 cm (length) × 40 cm (width) × 50 cm
(height)) [30] coupled to a LUMEXR RA-915+ portable Hg vapor analyzer for each condition.
Organic glass was chosen for the chamber because of its transparency and light and low
chamber blanks. The chamber was linked through the outlet with the mercury analyzer
by a Teflon™ tube (internal diameter of 0.635 cm). The diameter of the chamber inlet was
slightly larger than the outer diameter of the Teflon™ tube (outer diameter of 0.8 cm) so as
to ensure good airtightness. During measurement, the flux chamber was put on the surface
of the area to be measured, the bottom plate of the chamber was extracted, the edge of the
chamber penetrated the soil for 2 cm, and a layer of soil around the flux covered chamber to
improve the airtightness of the device. Ambient air was pumped throughout the chamber
at a constant rate of 0.9 m3·h−1. The instrument was calibrated using an internal test cell
prior to each sampling period [31]. The air intake was positioned at approximately 5 cm
above the ground on the middle side (25 cm × 50 cm). The DFC inlet and outlet gases
were sequentially sampled by the Hg vapor analyzer at 10-min intervals (two × 5 min
samples). The inlet Hg concentrations were analyzed as the ambient Hg0 concentrations.
The Hg0 exchange fluxes of the soil surfaces and the air were calculated according to the
following formula:

F = (Q·(Cout − Cin))/A (1)

where F represents the flux of the gaseous Hg, consisting mainly of Hg0 (ng·m−2·h−1);
A refers to the bottom surface area of the chamber, which was equal to 0.1 m2; Q is the
flushing flow rate through the chamber, equal to 0.9 m3·h−1; and Cout and Cin represent
the Hg0 concentrations of the DFC outlet and inlet gas samples, respectively (ng·m−3).
In the present study, in order to prevent the possibility of underestimating the Hg fluxes
at low flushing flow rates, and to avoid the underestimation of Hg fluxes due to long
DFC turnover times (TOT) [32,33], a constant and relatively high flow rate (0.9 m3·h−1;
TOT = 0.32 min) was applied, which was consistent with the methods applied in previous
related studies [13,34,35]. The mean values of two Cout and four Cin (before and after
the Cout) were used to calculate the Hg fluxes between the soil and air sequentially. One
Hg flux datum was obtained every 10 min. The positive and negative results calculated
using Equation (1) represented the Hg emissions from the soil and air Hg dry deposition,
respectively [36]. A quartz tube filled with dry soda-lime was assembled in front of the
instrument gas inlet for the purpose of removing particles and acidic gases. In the field, the
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instrument was manually calibrated using an internal Hg0 permeation source before and
after the sampling at each site. In addition, prior to the field campaign, the DFC was cleaned
using 10% nitric acid followed by ultrapure water. The DFC blank (0.5 ± 0.3 ng m−2·h−1;
n = 20) was found to be low and not corrected for in the reported flux (Equation (1)). Then,
following the Hg0 flux sampling, the surface soil layers (approximately 5 cm) were covered
in, and the DFC footprint was collected for subsequent total soil mercury (TSM) content
analysis in this study’s laboratory facilities.

In addition, parallel to Hg0 flux measurements, synchronized 5-min averaged me-
teorological data were recorded at each sampling site using a portable weather station
(ZX-SCQ4, China), including solar radiation, air temperature (inside the chamber), and
relative humidity (RH). Furthermore, we used a soil hygrometer to measure the average
temperature of 0-5 cm soil and soil moisture (refers to mass of moisture in 100 g dried soil).

2.4. Statistical Analysis Results

This study’s statistical analysis was performed using SPSS 26.0 and Origin 9.5. In
addition, since the data followed normal distribution patterns, independent-samples t-tests
were applied in order to analyze the differences in GEM and TSM. In addition, one-way
analysis of variance (ANOVA) was used to analyze the variations in the Hg fluxes between
the different examined conditions. Pearson’s correlation analysis was applied to analyze the
correlations between the Hg fluxes and measured parameters (for example, solar radiation,
air temperature, and soil temperature). In the current study, the statistical analysis results
were considered significant at a confidence level of 0.95.

3. Results
3.1. Gaseous Elemental Mercury (GEM) Concentrations in the Ambient Air

The monthly mean daily GEM concentrations in the ambient air above the vegetation
coverage/removal and bare soil were 14.9 ± 6.3 to 16.3 ± 6.5; 12.4 ± 3.6 to 16.4 ± 5.6; and
12.4 ± 3.6 to 16.4 ± 5.6 ng·m−3, respectively (Table 1), and had ranged between 4.0 and
30.0 ng·m−3. The peak value of 16.4± 5.6 ng·m−3 in and valley value of 12.4 ± 3.6 ng·m−3,
respectively, occurred during the months of July and August, under the vegetation removal
and bare soil conditions, respectively. Significant differences in the GEM concentrations in
the ambient air between vegetation coverage and the removal were observed (p < 0.05).
For example, when the vegetation was removed, the GEM concentrations showed substan-
tial seasonal variations (p < 0.05). The GEM concentrations were generally higher than
background levels for the northern hemisphere, which is considered to be approximately
1.5 ng·m−3.

Table 1. Summary of gaseous elemental mercury concentrations (ng·m−3) for the diel in 2018 (n = 288).

Treatments Date Range Diel Mean ± SD

A. anethifolia cover 9 May 4.0~27.0 16.3 ± 6.5
A. anethifolia removal 10 May 5.0~26.0 15.4 ± 6.3

Bare soil 11 May 4.0~26.0 15.4 ± 6.3
A. anethifolia cover 26 June 5.0~25.0 16.0 ± 6.0

A. anethifolia removal 27 June 7.0~26.0 16.1 ± 6.3
Bare soil 28 June 7.0~25.0 16.0 ± 6.2

A. anethifolia cover 21 July 7.0~26.0 14.9 ± 6.3
A. anethifolia removal 22 July 6.0~19.0 12.4 ± 3.6

Bare soil 23 July 6.0~19.0 12.4 ± 3.6
A. anethifolia cover 22 August 8.0~26.0 16.2 ± 5.8

A. anethifolia removal 23 August 6.0~26.0 16.4 ± 5.6
Bare soil 24 August 6.0~26.0 16.4 ± 5.6

A. anethifolia cover 27 September 7.0~30.0 16.0 ± 6.8
A. anethifolia removal 28 September 6.0~27.0 14.0 ± 6.5

Bare soil 29 September 6.0~28.0 14.1 ± 6.6
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3.2. Total Mercury Concentrations in the Soil

The concentration levels of total Hg in the soil of the study area ranged between
32.8 and 36.2 ng·g−1 at a depth range of 0 to 5 cm (Table 2). The total Hg concentrations
of the soil ranged between 32.8 ± 1.0 and 36.2 ± 0.4 ng·g−1 and peaked in the bare soil in
July. On the ground where the vegetation was removed, the total Hg concentrations in
soil were observed to have slightly declined when compared with the Hg concentrations
with vegetation coverage. Moreover, they were not statistically different (p > 0.05). All of
the soil Hg concentrations were lower than those previously reported (those observed in
urban grasslands between 718 ± 1517 ng·m−2·h−1 and 4115 ± 1512 ng·m−2·h−1 [36] and
Hg mining areas 33 to 3638 ng·m−2·h−1) [37]) in soil impacted by human activities and
naturally enriched terrestrial landscapes in China.

Table 2. Total mercury concentrations (mean± SD) of the soil (ng·g−1) for the three treatments in 2018.

Treatments
Month

5 6 7 8 9

A. anethifolia cover 34.8 ± 1.5 33.2 ± 1.0 35.4 ± 1.8 33.8 ± 0.7 33.2 ± 0.7
A. anethifolia removal 32.8 ± 0.8 32.8 ± 0.7 35.4 ± 0.5 33.8 ± 1.0 32.8 ± 1.0

Bare soil 35.2 ± 1.0 35.6 ± 0.5 36.2 ± 0.4 34.4 ± 0.8 33.4 ± 0.4

3.3. General Characteristics s of the GEM Fluxes over the Soil-Air Interfaces

As detailed in Table 3, the results revealed that the Hg fluxes ranged between
−27.0 and 47.3 ng·m−2·h−1, with means of 5.4 ± 14.7 to 6.7 ± 14.8; 5.9 ± 14.2 to 7.1 ± 13.6;
and 5.9 ± 11.9 to 7.1 ± 13.6 ng·m−2·h−1 for the A. anethifolia coverage, removal, and bare
soil, respectively, during the 15-day measurement period (May to September). The lowest
and highest Hg fluxes were observed for the A. anethifolia coverage in June and without
vegetation in July, respectively. The GEM exchange fluxes with vegetation coverage were
found to be significantly lower than those in the cases of vegetation removal (p < 0.05).
Therefore, it is suggested that the vegetation covering the soil played an important role in
the Hg exchanges. In total, 2558 of 4320 data points (59%) were net emissions. The ratios of
emissions and depositions were found to change seasonally, with increases observed from
May to July and decreases from July to September.

Table 3. Soil-air Hg exchange fluxes (ng·m−2·h−1) for diel and the separate released and deposited periods based on
measurements during the three treatments (n = 288, n = n1 + n2).

Treatments Date Mean Hg Flux
(Range) SD Emission SD n1 Deposition SD n2

A. anethifolia cover 9 May 6.7 (−18~40.5) 13.8 17.0 10.4 157 −6.0 3.7 131
A. anethifolia removal 10 May 6.7 (−24.8~45) 15.6 18.1 11.0 162 −8.6 4.9 126

Bare soil 11 May 6.2 (−24.8~36) 14.7 17.2 9.7 162 −8.6 4.9 126
A. anethifolia cover 26 June 5.4 (−27~36) 14.7 14.5 10.2 188 −10.3 7.1 100

A. anethifolia removal 27 June 5.9 (−20.0~36.0) 14.2 13.4 12.1 184 −7.5 4.7. 104
Bare soil 28 June 6.9 (−18.0~36.0) 14.3 14.2 12.8 184 −6.1 3.3 104

A. anethifolia cover 21 July 6.5 (−18~47.3) 14.5 15.5 10.8 176 −9.2 4.5 112
A. anethifolia removal 22 July 7.1(−18.0-36.0) 13.6 17.2 7.2 170 −8.5 3.6 118

Bare soil 23 July 7.1 (−18.0~36) 13.6 17.2 7.2 170 −8.5 3.6 118
A. anethifolia cover 22 August 6.0 (−18.0~29.0) 11.0 13.7 6.0 177 −7.3 3.0 111

A. anethifolia removal 23 August 6.6 (−24.8~36) 13.1 14.8 9..8 176 −7.1 4.3 112
Bare soil 24 August 6.6 (−24.8~36.0) 13.1 14.8 9.8 176 −7.1 4.3 112

A. anethifolia cover 27 September 5.7 (−18.0~36.0) 12.7 15.9 9.5 148 −6.3 3.5 140
A. anethifolia removal 28 September 6.5 (−13.5~33.8) 12.8 16.1 8.4 164 −7.2 2.7 124

Bare soil 29 September 5.9 (−13.5~29.3) 11.9 14.9 7.2 164 −7.2 2.7 124

Based on this study’s results, it was determined that vegetation coverage could po-
tentially inhibit Hg emission from the soil. The treatment differences between the vegeta-
tion coverage, vegetation removal, and bare soil were all significant in July and August
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(p < 0.05), which was the most thriving period of plant growth (Figure 3). In addition, it
was found that the plant community compositions had substantial effects on the Hg fluxes.
In summary, during the vegetation growing periods, significant differences in the Hg fluxes
were found to exist between the vegetation coverage and the vegetation removal (p < 0.05).
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Figure 3. Box plots of the soil-air Hg exchange fluxes for the three examined conditions
(Artemisia anethifolia coverage, Artemisia anethifolia removal, and bare soil) from May to Septem-
ber 2018. *: In the figure, the asterisk represents a significantly different flux compared to the
other plots during the same season; sub figure (a–e) represents May to September 2018; * p < 0.05;
** p < 0.01.

Furthermore, there were clear diurnal fluctuations in Hg fluxes for the three treatments,
as illustrated in Figure 4. The Hg was generally released from the soil to the air during
the daytime hours and deposited from the air to the soil during the nighttime hours,
with peaks occurring during the middle of the day at the same time as peaks occurred
in the solar radiation levels. Generally speaking, the GEM fluxes began to increase after
sunrise sharply. The peaking values were observed at approximately noon (12:00 to 14:00).
The valley values were observed at night before sunrise (1:00 to 3:00) and near midnight
(23:00 to 24:00). The dawn (4:00 to 6:00) and late evening (18:00 to 20:00) time periods
were the turning points between emissions and depositions. In nearly all cases, the peak
Hg fluxes from the soil surfaces with vegetation coverage were lower than those with
vegetation removed.

3.4. Environmental Factors Influencing the Mercury Soil-Air Exchanges

In the present investigation, in order to clarify the mechanism of Hg emissions for
the three treatments, linear regression and Spearman correlation analyses between the
Hg flux values and the meteorological parameters were derived (Figure 5, Table 4). The
results revealed that higher Hg emission levels were observed when the solar radiation
and air/soil temperature levels were high under all the examined conditions. In addition,
negative correlations between the air/soil humidity and the Hg fluxes were observed in
this study. However, it was determined that solar radiation was the most important factor
influencing the Hg exchange fluxes under all the examined conditions (R2 = 0.4337 to
0.5307). The second most important factor was air temperature (R2 = 0.2548 to 0.3561).
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Those findings were in agreement with the results of previous studies [32]. Generally
speaking, the increased humidity corresponded well with the decreasing solar radiation
and temperature levels. However, a positive correlation between the soil moisture and the
Hg fluxes has been noted in previous studies [38,39].
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Figure 5. Correlation between the diurnal GEM fluxes with meteorological factors, such as air/soil
temperatures, solar radiation, and air/soil humidity levels for the three examined conditions during
the entire growing season from top to bottom: Anethifolia cover; Anethifolia removal; and bare soil.

Table 4. The Pearson’s correlation between Hg fluxes and environmental variables under three treatments.

Treatments Air
Temperature

Relative
Humidity

Solar
Radiation

Soil
Temperature

Soil
Moisture

forbs coverage p = 0.001 p = 0.000 p = 0.000 p = 0.021 p = 0.032
forbs removal p = 0.001 p = 0.001 p = 0.000 p = 0.023 p = 0.034

Bare soil p = 0.001 p= 0.001 p = 0.000 p = 0.015 p = 0.036

4. Discussion
4.1. General Characteristics of the GEM Fluxes
4.1.1. Characteristics of the GEM Fluxes of Different Terrestrial Surfaces

This research investigation presented the soil-air Hg exchange flux measurements
in a degraded meadow steppe located in northeastern China. Similar studies regarding
GEM fluxes over other terrestrial surfaces have been conducted. (Table 5). The data used
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below is based on the DFC method. The Hg fluxes in the current study (5.4 ± 14.7 to
6.7 ± 14.8; 5.9 ± 14.2 to 7.1 ± 13.6; and 5.9 ± 11.9 to 7.1 ± 13.6 ng·m−2·h−1) were ob-
served to be much higher than the global natural emission (0.7 to 1.1 ng·m−2·h−1) [40].
However, the results were comparable to those observed in the studies conducted in
the Changbai temperate forests (4.4 ± 28.74 ng·m−2·h−1) [41] and croplands (−11.8 to
7.1 ng·m−2·h−1) in northeastern China [42]. Moreover, when compared with Hg polluted
areas, the fluxes were remarkably lower than those observed in urban grasslands (between
718 ± 1517 ng·m−2·h−1 and 4115 ± 1512 ng·m−2·h−1) [36] and Hg mining areas (33 to
3638 ng·m−2·h−1) [37]. This study determined that the important reasons for the higher Hg
fluxes in the aforementioned areas were the impacts of human production and livelihood
pursuits, such as coal consumption and metallurgy, which contributed to elevated GEM
concentrations. In contrast, the Hg emissions from soil in natural meadow steppe areas
are the results of automatic processes which are only minimally affected by pollution or
human activities.

Table 5. Characteristics of the Hg fluxes of different terrestrial surfaces in northeastern China.

Terrestrial Surfaces Hg Fluxes (ng·m−2·h−1)

Global natural emissions 0.7–1.1
A. anethifolia cover 5.4 ± 14.7–6.7 ± 14.8

A. anethifolia removal 5.9 ± 14.2–7.1 ± 13.6
Bare soil 5.9 ± 11.9–7.1 ± 13.6

Changbai temperate forest 4.4 ± 28.74
Changbai temperate cropland −11.8–7.1

Urban grassland 718 ± 1517 and 4115 ± 1512
Hg-mining area 33–3638

4.1.2. Diel Variations in the Gaseous Elemental Mercury Concentration Levels

In the present study, there were clear diurnal fluctuations in the Hg fluxes under the
three conditions, as illustrated in Figure 3. Generally speaking, Hg was released from
the soil to the air during the daytime and deposited from the air to the soil during the
nighttime, with peaks occurring during the middle of the day at the same time as the peaks
in solar radiation. This was one of the reasons why solar radiation was considered to be
the most important environmental parameter affecting the emissions of soil mercury to the
atmosphere. That conclusion agreed well with the findings of previous studies [29,43]. The
turning points of the emission and deposition processes were approximately 6:00 (morning)
and 18:00 (evening). It was observed that in nearly all cases, the peaks of the Hg fluxes from
the soil surfaces with vegetation coverage were lower than those with vegetation removed.

4.1.3. Seasonal Variations in the Gaseous Elemental Mercury Concentration Levels

The gaseous elemental mercury (GEM) concentrations in the ambient air presented
seasonal variations during the observation periods (Figure 6). These variations were
apparent, with the mean GEM concentrations decreasing with the order of August > June
> May > September > July. The differences in the GEM during all the months were found
to be statistically significant (p < 0.05), with the exceptions of June and August. The
GEM concentrations in July were the lowest, while the Hg exchange fluxes were the
highest. This may have been due to the influencing effects of the growing plants absorbing
the gaseous Hg through their stoma [44]. Plants are known to accumulate Hg in their
above-ground biomasses over the growing season [45]. In the present investigation, it
was clear that the GEM concentrations were significantly elevated when compared with
the background atmospheric Hg concentrations in China (1.7 ng·m−3 in summer and
0.6 ng·m−3 in winter) [30].
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4.2. Impacts of Vegetation Coverage on Hg Fluxes

In the present study, it was observed that the GEM fluxes with vegetation coverage
were significantly lower than those under the conditions of removed vegetation. These find-
ings indicated that plants may potentially inhibit Hg emissions from soil layers (Figure 2).
Vegetation is known to have considerable impacts on air/soil Hg fluxes through the fol-
lowing two pathways: 1. Altering environmental variables at the soil-air interfaces (for
example, reducing solar radiation and temperature levels and changing soil properties) [46];
2. Direct absorption of Hg by foliage [32]. However, when the plants were removed, the
environmental variables had not displayed significant differences between vegetation
coverage and vegetation removal in this study (independent-sample t-test; p > 0.05). The
increased Hg deposition events observed in this study’s experiments were interesting
phenomena that suggested that plants in the natural meadow steppe may have inhibited
the Hg emissions from the soil mainly through absorbing atmospheric Hg. The net ecosys-
tem flux is the balance between soil emissions and vegetation uptake, which provides an
overall estimate of whether a region is a net source or a net sink of Hg to the atmosphere.
According to the results obtained in this study, the examined meadow steppe region was
a terrestrial source of the regional Hg budget. With regard to the influencing effects of
the grass coverage, it was observed that the contribution was lower than that without
vegetation. Those results corresponded with a review of recent Hg flux data obtained
in the northwestern American states [46]. Therefore, when accounting for the uptake of
gaseous Hg by vegetation, the results had shifted to 62% of the terrestrial surfaces having
net emissions [38].

The effects of vegetation on Hg fluxes have also been observed in the forest canopy
studies conducted by Mazur et al. [47]. However, the influencing mechanisms in forested
areas are not entirely the same as those in meadow steppe areas. The harvesting processes
in forested lands tend to lead to wetter soil, with substantially more solar radiation reaching
the forest floor. Studies have identified significant differences in Hg fluxes based on the
different types of forest harvesting (clear-cut + biomass, clear-cutting, and controlled).
Since biomass harvesting removes a larger quantity of vegetation when compared with
traditional clear-cutting, the soil surface layers become exposed to proportionately more
solar radiation. In addition, canopy shading through the growing seasons effectively limits
the magnitude of Hg emissions from lower levels when compared with those observed
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under canopies with minimal shading, regardless of the higher air and soil temperatures
experienced during those periods [39,48].

4.3. Impacts of the Meteorological Conditions and the Air/Soil Hg Content Levels

The measurements of GEM fluxes under different coverage and meteorological con-
ditions allowed the relationships between fluxes and meteorological conditions to be
investigated. Figure 5 details the correlation coefficients for the GEM fluxes against the
meteorological parameters under specific conditions. It can be seen in the figure that there
were strong correlations between the fluxes and five meteorological parameters under the
different coverage conditions. In summary, positive correlations were observed between
the fluxes and the solar radiation and between the fluxes and the air/soil temperatures.
However, negative correlations were observed between the fluxes and the relative humidity
levels and between the fluxes and the soil moisture values.

4.3.1. Solar Radiation Levels

This study’s comparison results of the correlation coefficients of the five meteorological
parameters revealed that the highest positive correlation coefficients were between the
fluxes and the solar radiation. Therefore, solar radiation was considered to be the most
important factor affecting the GEM fluxes. Solar radiation is widely recognized as one
of the most important environmental parameters affecting Hg emissions from the soil
to the atmosphere. Solar radiation promotes the photo-reduction of Hg2+ to Hg0 [49].
During the month of July in this study, when the solar radiation was at the maximum level
during the entire growing season, the Hg2+ photo-reduction had proceeded at the highest
rate. This was similar to the results of a study conducted in Australian alpine grasslands
by Howard et al. [26]. In addition, it has been determined that intense solar radiation
levels will lead to higher air and soil temperatures, which tend to accelerate the biotic or
abiotic transformation of Hg0 and enhance the mercury vapor pressure to facilitate the
volatilization of mercury [50].

In the current investigation, higher correlation coefficients were obtained between
the flux and solar radiation values under the A. anethifolia removal condition when com-
pared with the A. anethifolia cover condition. These findings suggest that meteorological
conditions have weaker effects on fluxes under soil-covered conditions. Furthermore, some
studies have shown that the thermal energy absorbed by plants from solar radiation can in-
crease the mercury vapor pressure and transport mercury from plants into the atmosphere
by convection [47]. However, that type of phenomenon was not obvious in the current
study. Therefore, it was concluded that the correlation between the solar radiation and
mercury flux had increased with the decrease in vegetation coverage.

4.3.2. Air and Soil Temperature Values

Significant positive relationships (p < 0.01) between Hg fluxes and the air/soil temper-
ature values were observed under all the examined conditions in this study, which was
similar to the results obtained by Tao et al. [32], Choi and Holsen [51], and Lindberg [52].
The coefficients between the fluxes and the air temperature values were second only to
that of the solar radiation. During the measurement processes, it was determined that
the Hg2+ photo-reduction was driven by solar radiation rather than by air temperature.
Therefore, solar radiation was concluded to be the main factor affecting the fluxes. The
increases in solar radiation not only accelerated the photo-reduction but also increased
the air temperature levels, thereby promoting Hg emissions [47]. The influences of air
temperature on the Hg emissions mainly involved increasing the vapor pressure and
activation energy of the chemical reactions. That mechanism is typically described using
the Arrhenius Equation [47].

It has been proposed that there are at least two sources of Hg0 emitted from soil: a
natural “pool” of Hg0, which is primarily absorbed on the surface, and Hg2+, which can
be photochemically reduced to Hg0 by sunlight [23]. Gustin suggested that elevated soil
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temperature levels can accelerate Hg desorption from soil and its movement up through soil
columns [53]. Therefore, under dark conditions, the primary factors leading to emissions
of Hg from soil are generally considered to be related to the enthalpy of volatilization.
However, under light conditions, the emissions will be related to both the enthalpy of
volatilization and the photo-reduction process. In summary, solar radiation drives Hg
emissions during daylight hours while soil temperature levels become the most important
driving factor during nighttime hours.

4.3.3. Air Humidity and Soil Moisture Values

In the present investigation, the GEM fluxes and air relative humidity/soil moisture
values were found to be negatively correlated under the three examined conditions. How-
ever, based on the currently obtained results, no clear conclusion was reached regarding the
effects of relative humidity on Hg fluxes. For example, some studies have found negative
correlations between Hg fluxes and relative humidity levels [43,51]. Meanwhile, other
studies have observed positive correlations [38] or even no correlations [54]. In this study, it
was observed that the Hg fluxes were negatively correlated with the relative humidity. Gen-
erally speaking, increases in solar radiation and air temperature tend to lead to decreases
in relative humidity, which may be the main cause of the negative correlation. Second,
increased relative humidity can potentially combine vapor and mercury. Meanwhile, vapor
can occupy air gaps in the soil and block the release of soil gases [55].

In this study, soil moisture was found to be negatively correlated with the fluxes. This
had differed from several previous reported results, in which positive correlations between
the soil moisture and the Hg fluxes were identified under controlled laboratory settings,
as well as during some field investigations [55,56]. Precipitation has also been believed to
influence Hg emissions in several ways, such as the desorption of Hg0 in the soil matrix by
water molecules; reduction in Hg2+ by dissolved organic matter, O3, Fe2+, and/or biotic
mechanisms, and then transported to the surface with water vapor [55]. However, it was
determined that one of the most important reasons for the differing results was that there
were no rainy days during this study’s measurement processes, and the soil moisture
varied diurnally followed by high solar radiation levels.

4.3.4. GEM Concentrations in the Air and Soil

Air is an important Hg “pool” and can influence the Hg transmission to other “pools.”
Recent studies have shown the ambient-air Hg0 concentration levels determine the direc-
tion of Hg movement [5]. If the Hg0 concentrations are at relatively low levels (3.26 to
10.8 ng·m−3), the fluxes will be positively related to the Hg0 concentrations [57]. However,
the studies conducted in high-level Hg regions have indicated that high air Hg0 concen-
trations (122 to 284 ng·m−3) have negative effects on released fluxes and may even result
in air Hg0 sediment in the soil, although the soil will contain more Hg (150 to 260 ng·g−1)
than local background level [57]. In this study, the air Hg0 concentrations were observed
to be positively correlated with the Hg fluxes in all the obtained measurements (p < 0.05).
The possible reason was that the air Hg0 concentrations were driven by the emission
fluxes. It was speculated that this had also led to the observed air Hg0 diel and seasonal
variable patterns.

Along with the air pools, the pool effects of the soil are also considered to be very
important. Numerous studies have reported that there is a significantly positive correlation
between the soil Hg concentrations and the surface-Hg fluxes [5]. In this study, not only
no significant correlations could be found between the soil Hg concentrations and the
fluxes but also there were unobvious seasonal varieties in the soil Hg concentrations, with
the maximum values reached in July. A common explanation is that the temperature and
rainfall levels in July had promoted organic matter accumulation, which led to the strong
sorption of Hg to functional groups on the soil organic matter [58,59].
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5. Conclusions

This study represents the first-time measurements of the exchange fluxes of GEM over
soil-air interfaces under the conditions of different vegetation types. The study area was
located in the Songnen Grasslands region of northeastern China. The results indicated that
the GEM fluxes over the soil-air surfaces ranged from -18.0 ng·m−2·h−1 to 47.3 ng·m−2·h−1,
with a mean value of 4.3 ng·m−2·h−1 to 9.0 ng·m−2·h−1 at the plant coverage and removal
treatments in the Songnen Grasslands, during the growing season in 2018. Therefore,
it was assumed that natural meadow steppe regions are significant local atmospheric
emission sources. In this study, the fluxes exhibited diurnal and seasonal patterns, in
which the emissions were usually observed during the daytime hours, the depositions
were observed during the nighttime hours, and the peak flux values were reached during
the summer (July). This study also found that vegetation played an important role in
the GEM exchange processes in that it inhibited the emission fluxes through absorbing
atmospheric Hg. Moreover, the fluxes were found to have significant correlations with solar
radiation, air/soil temperature, and air/soil humidity levels. However, solar radiation
was determined to be the most important factor affecting the Hg fluxes in the Songnen
Grasslands steppe region. Overall, the data obtained in this study provided a basis for
estimating the Hg budget from similar terrestrial surfaces and also supported the prior
findings regarding the relationships between environmental factors and Hg fluxes.
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