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Simple Summary: B-cell lymphoma-extra large (Bcl-xL) is an anti-apoptotic protein that regulates
energy metabolism in neurons. In this study, we found that primary hippocampal neurons transduced
with Bcl-xL shRNA or treated with a pharmacological inhibitor of Bxl-xL had a decrease in the
population of motile mitochondria. Primary hippocampal neurons lacking Bcl-xL failed to retain
ATP at their neurites, which hindered the formation of complex neurite arbors, and ultimately had
enhanced vulnerability to excitotoxic challenge.

Abstract: B-cell lymphoma-extra large (Bcl-xL) is a mitochondrial protein known to inhibit mitochondria-
dependent intrinsic apoptotic pathways. An increasing number of studies have demonstrated that
Bcl-xL is critical in regulating neuronal energy metabolism and has a protective role in pathologies
associated with an energy deficit. However, it is less known how Bcl-xL regulates physiological
processes of the brain. In this study, we hypothesize that Bcl-xL is required for neurite branching and
maturation during neuronal development by improving local energy metabolism. We found that
the absence of Bcl-xL in rat primary hippocampal neurons resulted in mitochondrial dysfunction.
Specifically, the ATP/ADP ratio was significantly decreased in the neurites of Bcl-xL depleted
neurons. We further found that neurons transduced with Bcl-xL shRNA or neurons treated with
ABT-263, a pharmacological inhibitor of Bcl-xL, showed impaired mitochondrial motility. Neurons
lacking Bcl-xL had significantly decreased anterograde and retrograde movement of mitochondria
and an increased stationary mitochondrial population when Bcl-xL was depleted by either means.
These mitochondrial defects, including loss of ATP, impaired normal neurite development. Neurons
lacking Bcl-xL showed significantly decreased neurite arborization, growth and complexity. Bcl-
xL depleted neurons also showed impaired synapse formation. These neurons showed increased
intracellular calcium concentration and were more susceptible to excitotoxic challenge. Bcl-xL may
support positioning of mitochondria at metabolically demanding regions of neurites like branching
points. Our findings suggest a role for Bcl-xL in physiological regulation of neuronal growth
and development.

Keywords: Bcl-xL; mitochondria; motility; ATP; neurite

1. Introduction

B-cell lymphoma-extra large (Bcl-xL) is an anti-apoptotic member of the Bcl2 protein
family [1]. Bcl-xL prevents oligomerization of pro-apoptotic Bcl2 family members such
as Bax and Bak and loss of mitochondrial membrane integrity, thus inhibiting apoptotic
cell death [2–4]. Numerous studies have demonstrated the neuroprotective functions of
Bcl-xL against excitotoxicity, oxidative stress, and neurodegeneration [5–8]. In addition to
its role as an anti-apoptotic protein, Bcl-xL is critical in mitochondrial function regulating
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neuronal bioenergetics and synaptic plasticity in the brain [9,10]. Bcl-xL closes a mitochon-
drial inner membrane leak channel, thereby enhancing neuronal energy metabolism with
greater ATP production without requiring excess oxygen uptake [11–13]. Bcl-xL works
upstream of dynamin-related protein 1 (Drp1) governing the number, size, and activity
of the synapse [14]. Furthermore, the Bcl-xL-Drp1 complex promotes clathrin-mediated
endocytosis and enhances the synaptic vesicle pool [15].

Mitochondria are dynamic organelles that change location, population, and mor-
phology, and alterations of mitochondrial dynamics contribute to the loss of neuronal
function [16–19]. Since neurons are polarized cells with each sub-cellular region possess-
ing its own distinct energy needs [20], efficient mitochondrial trafficking is imperative
to supply ATP at the metabolically active sites of neurons. In mature neurons, 20–30%
of mitochondria are motile with changes in direction, speed, and momentary stationary
periods, which allows for better distribution of mitochondria during the mobilization of
synaptic vesicles, synaptic development, and generation of action potentials [21–27]. Simi-
larly, long-range trafficking is essential to deliver damaged mitochondria back to the soma
for recycling and is needed to shuttle new mitochondria throughout the neurite to replace
these damaged organelles [28]. Therefore, proper mitochondrial movement is necessary for
neuron functioning, and impaired mitochondrial trafficking is thought to contribute to the
pathogenesis of many neurodegenerative diseases, including Alzheimer’s and Parkinson’s
diseases [19,29,30]. Notably, an increasing number of studies have demonstrated that Bcl-
xL has a potential role in mitochondrial dynamics [14,15,31]. Bcl-xL promotes recruitment
of mitochondria at the metabolically active sites of neurons such as presynaptic sites, and it
regulates mitochondrial fission and fusion, which maintains mitochondrial populations.
Bcl-xL is reported to be necessary for neurite outgrowth and synapse formation [14,32].
Altogether, this evidence suggests that Bcl-xL may be pivotal in controlling local energy
supply during high energy demand [14,15,31].

In this study, we investigated whether Bcl-xL is required during the development of
primary hippocampal neurons. Neurons lacking Bcl-xL demonstrated impaired mitochon-
drial movement in both the anterograde and retrograde directions and were associated
with local energy depletion at neurites. Failure of ATP retention at neurites impaired
neurite arborization and increased susceptibility to excitotoxic challenges. We suggest that
Bcl-xL is an important contributor to the physiologic development of neurite complexity
by supporting neurite energy retention.

2. Materials and Methods
2.1. Culture of Primary Hippocampal Neurons

Primary rat hippocampal neurons were prepared from rat feti (Sprague-Dawley,
day 18 of gestation; Envigo, Indianapolis, IN, USA) as described previously [5,32–34].
Briefly, neurons (0.3 × 106 cells/35 mm plate) were seeded on poly-l-lysin coated plates
and grown in a neurobasal medium supplemented with B-27, glutamine, and antibiotics
(Thermo Fisher Scientific, Waltham, MA, USA) for 21 days in vitro (DIV). shRNA lentiviral
particle transduction: Primary hippocampal neurons were transduced with control shRNA
lentiviral particles or Bcl-xL shRNA lentiviral particles (Santa Cruz Biotechnology, Dallas,
TX, USA); copGFP control lentiviral particles or Bcl-xL shRNA-GFP lentiviral particles
(Santa Cruz Biotechnology) at DIV 7. Glutamate treatment: Glutamate (Sigma-Aldrich, St.
Louis, MO, USA) was freshly prepared in sterile PBS (Thermo Fisher Scientific) and added
to the cell culture medium (final concentration: 20 µM). The vehicle control group for the
glutamate experiment was treated with isovolumetric sterile PBS. ABT-263 treatment: ABT-
263 was prepared in dimethyl sulfoxide (DMSO) and added to the cell culture medium (final
concentration 1 µM). The vehicle control group for ABT-263 was treated with isovolumetric
DMSO. The protocol was approved by the Institutional Animal Care Committee (IACUC)
of the University of Alabama, Tuscaloosa, AL, USA.
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2.2. Live Imaging and Mitochondrial Motility Analysis

Mitochondria were labeled with CellLightTM mitochondria-RFP (Thermo Fisher Sci-
entific, Waltham, MA, USA) and image sequences were generated via fluorescent imaging
with images taken every 60 s over a 60 min period. Image sequences were then used to
generate kymographs using the KymoAnalyzer 1.01 software for ImageJ [35]. To generate
the kymographs, image sequences were opened using the Batch Kymograph Generation
plugin within KymoAnalyzer. Each neurite was then traced from the soma to the distal
tip, thereby giving the track directionality in KymoAnalyzer. Anterograde movement is
defined as a movement towards the distal tip, while retrograde movement is a movement
towards the soma. Separate kymograph images were generated for each neurite showing
the movement within the neurite throughout the image sequence. Next, kymograph images
were opened using the Tracks plugin within KymoAnalyzer, and tracks were traced from
the top of the image to the bottom of the image. Traces were completed for each kymo-
graph individually and saved for analysis. The CargoPopulation, NetCargoPopulation,
Segments, and PoolData plugins within KymoAnalyzer were then run successively on the
folder of saved traces, and data was generated and exported. Each data metric is defined
below: % anterograde track: The percentage of total tracks that showed only anterograde
movement; any track that reversed directions are not included; % net anterograde track:
The percentage of total tracks that showed net anterograde movement; includes tracks
that reversed direction so long as the net movement was in the anterograde direction;
% retrograde track: The percentage of total tracks that showed only retrograde movement;
any tracks that reversed directions are not included; % net retrograde track: The percent-
age of total tracks that showed net retrograde movement; includes tracks that reversed
direction so long as the net movement was in the retrograde direction; % stationary track:
The percentage of total tracks that showed no movement; % net stationary track: The
percentage of total tracks that showed no net movement; tracks that moved, but returned
to their original location are included; Anterograde density: The number of tracks showing
anterograde movement per micrometer of neurite (tracks/µm); Retrograde density: The
number of tracks showing retrograde movement per micrometer of neurite (tracks/µm);
Reversal density: The number of tracks that reversed direction at least once per micrometer
of neurite (tracks/µm); Stationary density: The number of tracks showing no movement
per micrometer of neurite (tracks/µm).

2.3. Analysis of Neurite Branching

Primary hippocampal neurons transduced with GFP control lentiviral particles (copGFP,
Santa Cruz Biotechnology) or Bcl-xL shRNA-GFP lentiviral particles (Santa Cruz Biotech-
nology) were imaged with a Zeiss Axio Vert.A1 microscope (Zeiss, Oberkochen, Germany).
Sholl analysis was used to quantify neurite branches as previously described [36,37]. In
brief, fluorescent micrographs of primary hippocampal neurons were opened using the
Simple Neurite Tracer plugin for ImageJ (National Institutes of Health, Bethesda, MD,
USA), and neurites from the soma and daughter branches from the neurites were selected
using the Path Manager function. Saved traces were analyzed using Sholl analysis, and
a Sholl profile was created with the number of intersections at the specific radium, and
micrographs were converted with pseudo-color (16-color annotation).

2.4. Measurement of the ATP/ADP Ratio

Primary hippocampal neurons were transfected at DIV7 with GW1-PercevalHR, a
sensor developed in Gary Yellen’s laboratory [38,39]. Neuronal images (excitation 488 nm
and emission 530 nm/excitation 405 nm and emission 530 nm) were obtained using a Nikon
C2 Laser Scanning Confocal Microscope (Nikon, Tokyo, Japan) at the Optical Analysis
Facility at the University of Alabama. The ratio of fluorescence intensities was calculated as
F488nm/F405nm. Pseudo-color ratiometric images were made using NIS-Elements 5.11 with
the Ratio View Live Ratio Graphing Module (Nikon) [40].
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2.5. Measurement of Mitochondrial Potential (∆ψ)

Mitochondrial membrane potential (∆ψ) was measured using the fluorescent lipophilic
cationic dye tetramethylrhodamine methyl ester (TMRM) (Thermo Fisher Scientific, Waltham,
MA, USA), which accumulates within mitochondria in a potential-dependent manner [41,42].
Primary neurons were stained with TMRM (5 nM in DMSO) for 30 min at 37 ◦C in the dark.
Images were taken with a Zeiss Axiovert A1 microscope using a consistent exposure time
and TMRM fluorescence density was analyzed using AxioVision 4.9.

2.6. Immunoblots

Neurons were scraped and lysed in 1X cell signaling buffer (Cell Signaling Technology,
Danvers, MA, USA) and protein concentration was determined using BCA protein reagents
(Thermo Fisher Scientific, Waltham, MA, USA). Samples (50–100 µg of protein/lane) were
separated on a 4–12% SDS-polyacrylamide gel (Bio-Rad, Hercules, CA, USA) and probed
with anti-Bcl-xL antibody (1:1000, Cell Signaling Technology, Danvers, MA, USA) and anti-
beta actin (Sigma-Aldrich, 1:1000). Scanned images were analyzed using ImageJ software
(National Institutes of Health, Bethesda, MD, USA).

2.7. Calcein-AM, and Propidium Iodide (PI) Staining

Viable or dead cells were stained with Calcein-AM or PI as previously described [5].
After treating neurons with glutamate (20 µM in sterile PBS), Calcein-AM (25 nM in DMSO),
PI (0.5 µM in sterile PBS), or Hoechst (1 µg/mL in sterile PBS) (Thermo Fisher Scientific,
Waltham, MA, USA) was added into the culture medium for 30 min at 37 ◦C in the dark. Mi-
crographs were taken using a Zeiss Axiovert A1 microscope (Zeiss, Oberkochen, Germany)
using a consistent exposure time. The number of PI-positive neurons, Hoechst positive
neurons, or calcein fluorescence density per cell was analyzed using AxioVision 4.9.

2.8. Fluo-4 Staining

Primary hippocampal neurons were treated with 2.5 µM Fluo-4 (Invitrogen) solution
prepared in a light-protected vessel, then incubated for 30 min at 37 ◦C as per the manu-
facturer’s protocol [43]. Micrographs were taken using a Zeiss Axiovert A1 microscope
(Zeiss, Oberkochen, Germany). Fluo-4 fluorescence density per cell was analyzed using
AxioVision 4.9.

2.9. Immunocytochemistry

Primary hippocampal neurons fixed in 10% buffered formalin were blocked in 10%
goat serum for 1 h, then incubated with anti-Bassoon (1:10, Santa Cruz Biotechnology, Dal-
las, TX, USA), anti-synaptophysin (1:10, Santa Cruz Biotechnology, Dallas, TX, USA), anti-
MAP2 (1:100, Cell Signaling Technology, Danvers, MA, USA) antibodies overnight at 4 ◦C.
Cells were washed and incubated with Alexa-fluor 488 antibody or Alexa-568 antibody
(1:200 dilution; Invitrogen, Molecular Probes, Carlsbad, CA, USA) for 1 h at room tempera-
ture and mounted on glass slides. Images were taken with a Zeiss Axiovert A1 microscope
and processed using AxioVision 4.9.

2.10. Statistical Analysis

Data are reported as the mean ± SEM of at least three independent cultures with
multiple independent experimental designs, such as independent neuronal isolation, in-
dependent performance dates, and independent plates within a culture using separately
prepared reagents. All quantitative graphs were made from at least three independent
neuronal isolations. p < 0.05 was considered statistically significant. p values are provided
in figure legends.
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3. Results
3.1. Bcl-xL Depletion Lowers ATP/ADP Ratios at Neurites of Primary Hippocampal Neurons

Bcl-xL is reported to improve neuronal energy metabolism by enhancing mitochon-
drial ATP production via direct interaction with the F1Fo ATP synthase [12,13]. However,
it is still unclear if Bcl-xL can control energy metabolism at a specific region in neurons. In
order to investigate the roles of Bcl-xL on local ATP levels, primary hippocampal neurons
isolated from E18 rats were transduced with either Bcl-xL shRNA or control shRNA at days
in vitro 7 (DIV7) (Figure 1A; Supplementary Figure S1). We have previously shown that
transduction of Bcl-xL shRNA takes about 2 weeks to deplete Bcl-xL in primary hippocam-
pal neurons [32], thus neurons were incubated for additional 2 weeks. Additionally, we
applied a GW1-PercevalHR probe to monitor ATP/ADP ratio in primary hippocampal neu-
rons [38]. The probe undergoes a conformational change upon binding to ATP, resulting in
changes in the fluorescence signal. The ATP/ADP ratio in live neurons is further converted
to a pseudocolor ratiometric image to visualize ATP levels at specific regions of neurons
such as the soma and neurites (Figure 1B–D). Although transduction with Bcl-xL shRNA
lowered ATP/ADP ratio throughout whole neurons, including soma and neurites, we
found that ATP levels at the neurite were greatly impacted by Bcl-xL depletion. We further
applied tetramethylrhodamine (TMRM) to measure mitochondrial inner membrane po-
tential (∆ψ). Primary hippocampal neurons lacking Bcl-xL significantly decreased TMRM
positive signals at their neurites, indicating loss of mitochondrial function and impaired
energy metabolism (Figure 1E–G). TMRM fluorescence was significantly decreased after
treatment with FCCP, an uncoupler of oxidative phosphorylation.

Figure 1. Bcl-xL depletion alters ATP/ADP ratio in primary hippocampal neurons. Primary rat hippocampal neurons were
transduced with control shRNA or Bcl-xL shRNA. Immunoblotting (A) was performed to show depletion of the Bcl-xL
protein levels in Bcl-xL shRNA transduced neurons (n = 4, * p = 0.0286, Mann–Whitney test). ATP/ADP ratio (B,C) was
measured using the GW1-PercevalHR sensor (F488nm/F405nm). Bcl-xL depleted neurons showed lower ATP/ADP ratios in
both the soma (n = 20) and neurites (n = 20). * p < 0.05, and *** p < 0.001, two-tailed Student’s t-test. Scale bar = 50 µm. Pseu-
docolour ratiometric micrographs (D) of neurons indicating the ATP/ADP ratio using the PercevalHR sensor. Red, higher
ATP/ADP; Blue, lower ATP/ADP. Primary hippocampal neurons lacking Bcl-xL showed a significantly decreased TMRM
signal (E–G), indicating a loss of mitochondrial inner membrane potential (∆ψ) (n = 12). ** p < 0.01, and **** p < 0.0001,
two-tailed Student’s t-test. Scale bar = 20 µm.
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3.2. Bcl-xL Depletion Impairs Normal Mitochondrial Motility Patterns in Neurites of Primary
Hippocampal Neurons

To determine whether Bcl-xL is required to localize mitochondria at neurites, we mon-
itored mitochondrial motility using neurons with or without expressing Bcl-xL. Primary
hippocampal neurons were transduced with control shRNA or Bcl-xL shRNA followed
by mitochondrial labeling using mito-RFP BacMam2.0. Image sequences visualizing mito-
chondrial movement were converted to kymographs (Figure 2A), and motility parameters
including anterograde and retrograde movement were applied. Bcl-xL-depleted neurons
demonstrated abnormal mitochondrial movement throughout the neurite compared to
control neurons. The percentage of mitochondria exhibiting only anterograde movement
was reduced in Bcl-xL depleted neurons, but the difference was not significant (Figure 2B).
However, when including mitochondria that reversed direction during the imaging period,
the decrease in the percentage of mitochondria with net anterograde movement was sig-
nificant (Figure 2C). The percentage of mitochondria showing only retrograde movement
was lower in Bcl-xL depleted neurons (Figure 2D); moreover, there was also a significant
decrease in the overall net retrograde movement in Bcl-xL depleted neurons (Figure 2E). In
addition, the percentage of stationary (Figure 2F) and net stationary (Figure 2G) mitochon-
dria were significantly higher in Bcl-xL depleted neurons.

Figure 2. Bcl-xL depletion disrupts mitochondrial motility in primary hippocampal neurons. Primary rat hippocampal
neurons were transduced with control shRNA or Bcl-xL shRNA. Kymographs (A) were produced and analysis using the
KymoAnalyzer was completed to give the percentage of mitochondria that showed mitochondria moving in the following
directions: only anterograde (B), n = 40, net anterograde (C), n = 40, ** p = 0.0022, Mann-Whitney test, only retrograde (D),
n = 40, net retrograde (E), n = 40, ** p = 0.0075, Mann–Whitney test, stationary (F), n = 40, *** p = 0.0001, Mann–Whitney test,
and net stationary (G), n = 40, *** p = 0.0002, Mann–Whitney test. The analysis also provided the mitochondrial density
(number of mitochondria/µm) for mitochondria exhibiting anterograde (H), n = 40 or retrograde (I), n = 40 motion, as well as
mitochondria that reversed directions (J), n = 40, ** p = 0.0029, Mann–Whitney test during the image sequence and stationary
mitochondria (K), n = 40, * p = 0.0177, Mann–Whitney test. The COX IV protein was labeled to visualize mitochondria
(L,M), and mitochondria length was measured (n = 63). * p < 0.05, two-tailed Student’s t-test. Scale bar = 20 µm.

Bcl-xL depletion affected the amount of mitochondrial movement. We, therefore,
tested if Bcl-xL depletion affected the density of mitochondria in the neurite. Primary
hippocampal neurons expressing Bcl-xL also displayed higher densities of moving mi-
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tochondria and number of motile mitochondria per micrometer of neurite than Bcl-xL
depleted neurons (Figure 2H–J). The density of stationary mitochondria (Figure 2K) was
significantly higher in Bcl-xL depleted neurons than in control neurons. Furthermore,
the COX IV protein was labeled to visualize mitochondria. Neurons were imaged and
mitochondria length was measured (Figure 2L,M). It was found that the Bcl-xL depleted
neurons had decreased mitochondria length when compared to control neurons.

3.3. Treatment with ABT-263 Impairs Mitochondrial Motility in Primary Hippocampal Neurons

Furthermore, we applied a pharmacological approach to target Bcl-xL Primary hip-
pocampal neurons were treated with or without 1 µM ABT-263, an inhibitor of Bcl-xL.
As previously described, kymographs were generated (Figure 3A) and the analysis was
performed using the KymoAnalyzer. Neurons treated with ABT-263 showed significantly
decreased retrograde and anterograde movement (Figure 3B–E), whereas the percentage
of stationary mitochondria was significantly increased compared to the control neurons
(Figure 3F,G).

Figure 3. Treatment with ABT-263 impairs mitochondrial motility in primary hippocampal neurons. Primary hippocampal
neurons were treated with or without ABT-263 (1 µM). Neurons treated with ABT-263 were analyzed using the Kymo-
Analyzer (A) and the following metrics were generated: % anterograde (B), n = 57, **** p < 0.0001, Mann–Whitney test,
% net anterograde (C), n = 57, **** p < 0.0001, Mann–Whitney test, % retrograde (D), n = 48, **** p < 0.0001, Mann-Whitney
test, % net retrograde (E), n = 48, **** p < 0.0001, Mann–Whitney test, % stationary (F), n = 48, **** p < 0.0001, Mann–
Whitney test, and % net stationary tracks (G), n = 48, **** p < 0.0001, Mann–Whitney test. Neurons were treated with
TMRM and fluorescence density was measured (H–J), n = 12. *** p < 0.001, and **** p < 0.0001, two-tailed Student’s t-test.
Scale bar = 10 µm. (K–M), The PercevalHR Sensor (F488nm/F405nm) was applied and psuedocolour ratiometric microgaphs
were used to indicate the ATP/ADP ratio (n = 12). *** p < 0.001, two-tailed Student’s t-test. Red, higher ATP/ADP; Blue,
lower ATP/ADP. Scale bar = 20 µm.
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TMRM fluorescence was also analyzed in ABT-263-treated neurons to measure mito-
chondrial inner membrane potential (∆ψ) (Figure 3H–J). ABT-263-treated neurons showed
a significantly decreased TMRM positive signal in both the soma and the neurite. The
GW1-PercevalHR sensor was applied to measure ATP/ADP ratio in primary hippocampal
neurons. It was found that ABT-263-treated neurons had decreased ATP/ADP ratio in both
the neurite and soma, indicating impaired energy retention (Figure 3K–M).

3.4. Bcl-xL Depletion Impairs Neurite Arborization and Synapse Formation in Primary
Hippocampal Neurons

We have previously shown that Bcl-xL is necessary for neurite outgrowth during
the development of primary hippocampal neurons [32]. To test if Bcl-xL-dependent ATP
retention at neurites is required to maintain normal neurite morphology, we measured
the number of neurite branches by applying the Sholl analysis. Primary hippocampal
neurons transduced with either control-GFP or Bcl-xL shRNA-GFP were analyzed by
tracing the neurite projections from the soma. The number of intersections, or branch
points, was totaled at the radius from the soma in 10 µm increments. Bcl-xL depleted
neurons and control neurons had similar amounts of intersections up to 40 µm from the
soma. At 50 µm and beyond, however, Bcl-xL depleted neurons had significantly decreased
levels of intersections (Figure 4A). Furthermore, no Bcl-xL depleted neuron showed any
branching past 190 µm from the soma, while control neurons showed branching up to
200 µm from the soma, suggesting again that Bcl-xL plays a large role in neurite growth
and development. Original fluorescent micrographs were converted to pseudocolor with
16-color annotation: red indicates more intersections and blue indicates fewer intersections.
Pseudocolor images visualized primary hippocampal neurons lacking Bcl-xL showed
decreased neurite branches suggesting the importance of Bcl-xL in the formation of neurite
complexity (Figure 4B).

We then further tested to see if Bcl-xL depletion impacted synapse formation. Im-
munocytochemistry was performed on primary hippocampal neurons (Figure 4C,D) to
visualize Bassoon, a scaffolding protein that is important to the structure and function
of the pre-synapse [44]. Cells were imaged and Bassoon-positive puncta were counted
from 50–100 µm from the soma. This range was chosen because at 50 µm from the soma
neurite arborization begins to differ between control and Bcl-xL depleted neurons, and
at any distance further than 100 µm from the soma Bcl-xL depleted neurons show very
little neurite branching and are underdeveloped compared to control neurites at the same
distance. Thus, markers of the pre-synapse cannot fully be attributed to Bcl-xL protein
depletion at distances further than 100 µm. We found that Bassoon-positive puncta were
significantly decreased in Bcl-xL depleted neurons compared to the control neurons. This
data suggests that Bcl-xL depletion impairs proper neurite growth, branching, and synapse
formation (Figure 4C,D; Supplementary Figure S2).

3.5. Bcl-xL Depletion Increases the Susceptibility of Primary Hippocampal Neuron
to Excitotoxicity

Alteration of neurite morphology does not cause the immediate death of developing
neurons; however, it does increase the vulnerability of neurons during maturation [32].
To determine if impaired neurite branching in Bcl-xL depleted neurons is associated with
susceptibility of neurons against neurotoxic insult, we analyzed the viability of neurons
under treatment with the excitotoxic neurotransmitter, glutamate. After transduction
with control shRNA or Bcl-xL shRNA, primary hippocampal neurons were treated with
or without glutamate or solvent control for 24 h. Neurons were treated with Fluo-4 to
measure intracellular calcium concentration (Figure 5A,B). Bcl-xL depleted neurons showed
increased Fluo-4 signal compared to control neurons without treatment with glutamate.
Furthermore, Bcl-xL depleted neurons treated with glutamate showed a greatly increased
Fluo-4 positive signal compared to control neurons treated with glutamate. These data
suggest that treatment with glutamate greatly increases intracellular calcium and that Bcl-
xL depleted neurons are much more susceptible to this increase in calcium concentration.
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Figure 4. Bcl-xL depletion impairs neurite arborization and synapse formation in primary hippocampal neurons. Primary
hippocampal neurons were transduced with conGFP control or Bcl-xL shRNA-GFP. The Sholl analysis (A) determined the
number of neurite intersections (n = 12). Pseudocolour images (B) show a qualitative difference in neurite intersections re-
sulting from Bcl-xL depletion. Red, higher intersections; blue, fewer intersections. Scale bar = 50 µm. Immunocytochemistry
(C) was performed, and Bassoon-positive puncta were counted from 50–100 µm from the soma (n = 63). * p < 0.05, ** p < 0.01,
*** p < 0.001, and **** p < 0.0001, two-tailed Student’s t-test. (D) Red, Bassoon; Green, MAP2; Blue, DAPI. Scale bar = 20 µm.

Neurons were then labeled with calcein-AM, to indicate live, healthy cells, and
Hoechst, to show all cells present. Consistent with our previous report [45], treatment
with glutamate significantly lowers the calcein-positive fluorescent signal. Interestingly,
glutamate-induced excitotoxicity was exacerbated in Bcl-xL depleted neurons (Figure 5C,D).
Similarly, neurons lacking Bcl-xL showed significantly increased propidium iodine (PI) pos-
itive cells under glutamate challenge, indicating increased levels of apoptotic and necrotic
death (Figure 5E,F). These results suggest that Bcl-xL plays a role in protection against
excitotoxicity in neurons.

Figure 5. Cont.
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Figure 5. Bcl-xL depletion makes primary hippocampal neurons more susceptible to excitotoxicity. Primary hippocampal
neurons transduced with control shRNA or Bcl-xL shRNA were treated with or without glutamate to induce excitotox-
icity. Neurons were treated with Fluo-4 (A,B) to measure intracellular calcium concentration (n = 121). ** p < 0.01 and
**** p < 0.0001, Kruskal–Wallis test with Dunn’s multiple comparisons test. Calcein-AM and Hoechst staining (C,D) shows
the proportion of healthy cells via fluorescent image analysis (n = 100). ** p < 0.01, and *** p < 0.001, one-way ANOVA
with a Tukey’s post-hoc-analysis. Scale bar = 20 µm. PI and Hoechst staining (E,F) shows the proportion of dead cells via
fluorescent image analysis (n = 20). **** p < 0.0001, one-way ANOVA with a Tukey’s post-hoc analysis. Scale bar = 50 µm.

4. Discussion

Bcl-xL is traditionally known as a blocker of apoptotic death via its ability to bind
pro-apoptotic proteins. In this study, we found an additional function of Bcl-xL under
physiological conditions. Depletion of Bcl-xL significantly decreased the population of
motile mitochondria in primary hippocampal neurons, and this may hinder the delivery
of mitochondria, impairing local energy metabolism at neurites. Indeed, we found that
neurons transduced with Bcl-xL shRNA failed to maintain mitochondrial inner membrane
potential and depleted ATP at their neurites, arresting arborization of neurites compared
to neurons expressing Bcl-xL. Although Bcl-xL depletion did not immediately change neu-
ronal viability, failure to achieve neurite complexity eventually increased the vulnerability
of neurons against excitotoxic challenge.

Bcl-xL regulates the efficiency of ATP production in mitochondria via direct interaction
with the F1Fo ATP synthase [12,13]. In particular, Bcl-xL binds directly to the β-subunit of
the F1 complex, the key subunit that phosphorylates ADP to produce ATP [12]. Interaction
between Bcl-xL and the F1Fo ATP synthase enhances the efficiency of ATP production
by blocking a leak channel activity. Although there are several candidates to form mito-
chondrial permeability transition pore (mPTP), the c-subunit of the F1Fo ATP synthase, a
ring-shaped subunit found in the Fo complex, exhibits non-selective voltage-gated and
calcium-activated channel activities resembling mPTP [46–48]. A recent study demon-
strated that the monomeric form of the F1Fo ATP synthase showed mPTP-like activities,
whereas treatment with oligomycin A closed the channel [47]. Since motor proteins such
as dynein and kinesin contain ATP hydrolyzing sites [49–51], inefficient operation of the
F1Fo ATP synthase in neurons lacking Bcl-xL may lead to failure of intracellular transport.
Additionally, we found that primary hippocampal neurons expressing Bcl-xL have ap-
proximately 22% motile and 78% stationary mitochondrial populations, whereas neurons
lacking Bcl-xL maintained only 7% motile mitochondria (Figure 2F,G). Consistently, neu-
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rons treated with ABT-263 completely lost mitochondrial motility (Figure 3A,B). Since we
currently achieve an 80–90% transfection rate with Bcl-xL shRNA [32], 7% motile mito-
chondria may represent an un-transfected population in the Bcl-xL shRNA group. ABT-263
is a BH3 mimetic that blocks the interaction between Bcl-xL and other pro-apoptotic BH3
proteins. The BH3 only protein Bim is known to bind to Bcl-xL [52,53], and it is previously
reported to form a complex with dynein, a motor protein that carries mitochondria [54,55].
Therefore, it may be important to further test if Bcl-xL-dependent mitochondrial motility is
due to the direct interaction between Bcl-xL and the motor complex or regulation of the
efficiency of the F1Fo ATP synthase.

Previously, we reported that depletion of Bcl-xL does not directly cause neuronal
death under physiological conditions, but neurons lacking Bcl-xL show significantly altered
neurite morphology leading to death during hypoxic insult [32]. Similarly, in this study, we
found that neurons lacking Bcl-xL arrest the formation of neurite branches, and the failure
to achieve neurite complexity, are associated with the susceptibility of neurons against
excitotoxicity. Notably, neurites proximal to the soma (<40 µm) developed normally in
Bcl-xL shRNA transduced neurons, whereas impaired arborization severely occurred in
distal regions of neurites. We have demonstrated that transduction of Bcl-xL shRNA takes
about 2 weeks to deplete Bcl-xL in primary hippocampal neurons [32]. Thus, neurons may
be able to maintain adequate ATP during early development. However, when neurons
start their maturity, grown in vitro for approximately 2 weeks, Bcl-xL depleted neurites
failed to form daughter branches.

In this study, we showed that full-length Bcl-xL is required for neurite develop-
ment. Bcl-xL supports local energy retention at neurites and enhances both the effi-
ciency of ATP production and the recruitment of mitochondria to intracellular locations.
We suggest a physiological function of Bcl-xL during neuronal development and under
neurotoxic challenge.
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