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Simple Summary: Soil quality and fertility rely on soil microorganisms which contribute to nutrient
cycling and plant nutrition. Accidental or intentional fires can almost completely kill soil microbiota
and cause soil sterilization. Fires can also destroy soil organic matter (OM), thus causing the release
of potentially toxic elements such as Cr that can further disturb soil recolonization by surviving
bacteria. The identification of species able to cope with such altered environments is highly relevant
to restore soil life in degraded soils and to remediate polluted sites. In this study, we identified soil
microorganisms potentially suitable to colonize fire-affected areas and tolerate high concentrations of
bioavailable and toxic Cr, and which therefore could be useful for the above-mentioned purposes.

Abstract: Fire events in agricultural soils can modify not only soil properties but also the structure of
soil microbial communities, especially in soils containing high concentrations of potentially toxic
elements (PTEs). The recolonization of burned soils can in fact favor the proliferation of certain
microorganisms, more adaptable to post-fire soil conditions and higher PTE availability, over others.
In this study, we simulated with laboratory experiments the microbial recolonization of an agricultural
soil containing high Cr concentrations after heating at 500 ◦C for 30 min, to mimic the burning of
crop residues. Changes in soil properties and Cr speciation were assessed, as well as soil microbial
structure by means of 16S rRNA gene sequencing. Both altered soil conditions and increased Cr
availability, especially Cr(VI), appeared to be responsible for the reduction in species diversity in
heated soils and the proliferation of Firmicutes. Indeed, already after 3 days from the heat treatment,
Firmicutes increased from 14% to 60% relative abundance. In particular, Paenibacillus was the most
abundant genus identified after the simulation, with an average relative abundance of 40%. These
bacteria are known to be good fire-responders and Cr-tolerant. These results could be useful to
identify bacterial strains to be used as bioindicators of altered environments and for the recovery of
fire-impacted polluted sites.

Keywords: Firmicutes; Paenibacillus; hexavalent chromium; soil degradation; soil restoration; 16S
rRNA sequencing; bioinformatics

1. Introduction

Fires affect large areas of land around the world, causing a temporary and localized
increase in soil temperatures, often of high magnitude [1]. In the last few decades, uncon-
trolled fires are becoming increasingly frequent as a consequence of global warming or, in
some other cases, of biomass and waste burning on the soil [2]. Additionally, controlled
fires are widely used in many common agricultural practices including slash-and-burn
farming, land clearing and post-harvest stubble management [3].
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High temperatures occurring during (and immediately after) fire events can cause
significant changes in soil properties and element biogeochemistry [4]. In particular, the
effects of fire on soil properties as well as the short and/or long-term impacts on chemical
and microbiological characteristics are strictly related to fire intensity and residence time,
which depend on several environmental factors such as fuel distribution, soil mineral com-
position, climatic conditions, etc. Fire typically increases soil pH and electrical conductivity
(EC), reduces the soil organic matter (OM) content, thus altering nutrient cycling (especially
P and N cycles), and decreases soil permeability and porosity [4,5].

Fire can also affect the mobility and bioavailability of potentially toxic elements
(PTEs), most often as a consequence of changes in soil properties (e.g., OM decomposition
and mineral weathering) [6]. In agricultural soils, PTEs’ release and mobilization could
represent a potential risk for crop production and consequently for human health [6]. Such
a risk is higher for elements such as chromium (Cr), which, depending on the soil redox
conditions and the availability of OM, can modify its oxidation state, forming highly mobile
and toxic hexavalent species (Cr(VI)) [7].

Soil biological properties have been reported to significantly change after fires as
well, since fires can impact (either directly or indirectly) both the composition and the
activity of soil microbial communities. Microbial communities can be profoundly altered in
the short term through selective heat-induced microbial mortality, whereas medium- and
long-term responses are strictly related to indirect effects concerning the changes in the
abiotic environment [8,9] and the consequent recolonization by different microbial groups;
in fact, several studies have reported that some microbial groups may take advantage of
fire-altered conditions, while others may be adversely affected [10].

Firmicutes phylum, for example, was found to be a positive fire-responder, becoming
predominant in post-fire soils characterized by low organic carbon content. In the same
way, an increase in other fire-responder taxa, such as the spore-forming Actinobacteria and
the akinetes producing Cyanobacteria, was observed in different studies [11–13]. Some
of the strongest fire-responder taxa have also been identified as highly PTE-resistant,
such as those belonging to bacterial phyla of Proteobacteria (e.g., genera Burkholderia,
Pseudomonas, Shewanella and Agrobacterium), Firmicutes (e.g., genera Serratia, Bacillus and
Exiguobacterium), and Actinobacteria (e.g., genera Arthrobacter) [13].

Most of the studies on the effect of fire on soil’s physico-chemical and microbiological
properties have been carried out in forest environments, where these events are more
frequent and of higher intensity, while limited information on agricultural soils is avail-
able [6]. The soil microbiota plays a key role both in nutrient and PTE cycling in the
rhizosphere, with relevant implications for crop productivity and production quality [13].
Fire can induce a positive or negative selective pressure on specific microbial taxa, with
consequences not only on plant fitness but also on the soil’s capacity to restore its pre-fire
properties [4]. Therefore, it is crucial to assess how fire can shape the composition and
functioning of soil microbial communities in agricultural soils, especially in the presence of
high concentrations of PTEs.

In this work, 16S rRNA gene sequencing was used for probing the possible changes
in bacterial community structure as affected by laboratory-simulated fire events in an
agricultural soil containing a high concentration of Cr. We hypothesize that the soil
bacterial community diversity and structure change as a consequence of both altered
post-fire chemical soil properties and modified speciation and availability of Cr.

2. Materials and Methods
2.1. Site Description

The experiment was conducted in a monoculture of durum wheat (Triticum durum
Desf.) field in the south of Italy (Apulia Region) near the town of Altamura (Figure 1),
amended for more than 10 years by low-quality compost derived from tannery waste
sludges, as described by Gattullo et al. (2020) [14]. The soils in this area are classified as
Calcaric Leptosols, according to WRB classification [15].
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As reported by Gattullo et al. (2020) [14], Cr was the most abundant PTE in the soil,
with concentrations up to 5160 g kg−1. Anyway, the high OM content (about 220 g kg−1)
formed strong complexes with Cr and other PTEs, thus immobilizing them and making
them not available for plant uptake, and not affecting wheat production [16]. Additionally,
the high OM content of soil hindered Cr oxidation; therefore, Cr was present only in the
reduced and less mobile form (Cr(III)) [14].

2.2. Soil Sampling and Characterization

Three soil sub-samples were collected at 0–10 cm depth in an area of approximately
4 m2 and were carefully homogenized. A portion of soil was immediately stored at 4 ◦C
for the subsequent microbial extraction, while the remaining part was air-dried, sieved
at 2 mm, and then characterized for pH, EC, organic C content, total N content, available
P, total CaCO3 and exchangeable bases, following the standard methodologies of soil
analysis [17]. The total PTE content was determined by ED-XRF (NITON XL3t GOLDD
with laboratory stand, Thermo Scientific) following the procedure reported in Gattullo et al.
(2020) [14]. Chromium(VI) was determined after the alkaline digestion of soil samples [18],
while the exchangeable Cr(VI) was extracted by shaking the soils for 30 min with a 5 mM
K2HPO4/KH2PO4 buffer solution (pH 7.2) at a ratio of 1:4 (soil: buffer solution, w/v), as
reported in Bartlett and James, 1996 [19]. The Cr(VI) estimation in both extracts (total
Cr(VI) and exchangeable Cr(VI)) was performed by the colorimetric assay with diphenyl-
carbazide [20]. The detection limit of the assay is 0.0052 mg L−1 [19], corresponding to
about 0.2 µg Cr(VI) g−1 of dry soil for the total Cr(VI), and 0.02 µg Cr(VI) g−1 of dry soil
for the exchangeable Cr(VI).

PTE plant-available fraction (DTPA-extracts) was also determined by extracting the
soil sample with a diethylenetriaminepentaacetic acid (DTPA) solution (0.005 M DTPA,
0.01 M CaCl2, 0.1 M triethanolamine, pH = 7.3) [21] and analyzing the extracts by ICP-OES
(Thermo iCAP 6000 series, Thermo Fisher Scientific Inc., Waltham, MA, USA).

2.3. Soil Thermal Treatment

Fire was simulated in the laboratory by heating the soil in a muffle furnace (Nabertherm,
B180). Muffle furnace heating is one of the most common strategies to simulate fire events
in the lab, as reported by Pereira et al. (2019) [22]. Two hundred grams of soil was placed
in a 20 cm diameter ceramic crucible, creating a soil layer of about 0.7 cm thickness to allow
a homogeneous heat transfer through the sample. Soil was heated up to 500 ◦C for 30 min.
Such a temperature was selected after performing preliminary thermogravimetric analyses
(not reported) showing that at 500 ◦C almost all the soil OM was lost [4]. Heating time
was selected according to studies on agricultural soils where such high temperatures were
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recorded for about 30 min after burning crop residues on soil [23]. Three replicates were set
up and, for each of them, soil characterization was carried out as described in Section 2.2.

2.4. Extraction of Bacterial Communities and Soil Inoculation

About 100 g of unheated soil was weighed and homogenized in 900 mL 25% sterile
Ringer solution and 100 mL sodium pyrophosphate (Na4P2O7 1,8%). Ringer solution was
prepared by solubilizing in deionized water NaCl (0.225% w/v), KCl (0.0105% w/v), CaCl2
(0.0045% w/v), NaHCO3 (0.005% w/v) and citric acid (0.0034% w/v) at pH = 7.0 ± 0.2 [24].
The solution was autoclaved for 15 min at 121 ◦C before use. Microbial community
desorption from soil particles was performed by sonication for 2 min and subsequent
storage at 4 ◦C for 15 min to let soil particles sediment. Serial dilutions (10−4, 10−5 and
10−6) of the aqueous phase were performed and poured on nutrient agar plates after
addition of cycloheximide (1% w/v) to determine the number of CFU. The plates were then
incubated at 30 ◦C for 48 h. Since after 48 h the number of grown colonies for each plated
dilution was very low, about 80 mL of 10−1 dilution was used for the inoculation of 100
g aliquots of the 500 ◦C heated soil sample. Each aliquot was then incubated in sterile
glass flasks closed with a screw cap, and kept for 3, 7 and 14 days (T3, T7 and T14) in a
growth chamber at 23 ◦C. For each incubation time, three experimental replicates were set
up. Inoculation of bacterial community extracted from untreated soil was performed to
simulate a recolonization of the soil after burning, since heating treatment at 500 ◦C causes
soil sterilization.

2.5. Soil DNA Extraction, 16S rRNA Sequencing and Bioinformatics Analysis

Soil DNA was extracted from 0.5 g of both unheated soil (Control) and 500 ◦C-
heated and inoculated soil aliquots (T3, T7 and T14) by using the soil DNA extrac-
tion kit (MP Biomedicals™ FastDNA™ SPIN Kit) and following the manufacturer’s in-
structions. The quality and concentration of the extracted DNA were verified with the
NanoDrop spectrophotometer (ND-1000, EuroClone, Italy). The DNA was then concen-
trated up to 20 ng µL−1 by SpeedVac concentrator (Savant DNA120, ThermoScientific)
and stored at −20 ◦C prior to the sequencing procedure. Universal primers: 341F (5′–
CCTACGGGNGGCWGCAG–3′) and 805R (5′–GACTACHVGGGTATCTAATCC–3′), based
on the V3 and V4 hypervariable region of the 16S rRNA, were used for the detection
of Bacteria, and the sequencing procedure was performed by using an Illumina MiSeq
next-generation sequencer (Illumina, San Diego, CA, USA). The sequencing was carried
out at the IGA Technology Service (Udine, Italy) (https://igatechnology.com, accessed on
7 January 2020).

Raw reads produced by Illumina sequencing were processed using the Metagenomic
Rast Server (MG-RAST) (http://metagenomics.anl.gov, accessed on 23 April 2020) [25].
Raw data were uploaded as FASTQ files and subjected to quality control, which includes
the removal of artificial duplicate reads, quality-based read trimming, and length-based
read trimming. The sequences were then clustered into operational taxonomical units
(OTUs) at 97% similarity and then subjected to taxonomic assignment using the Ribosomal
Database Project (RDP) Naïve Bayesian classifier.

Sequence data were deposited at the National Center for Biotechnology Information
(NCBI) and available under the SRA accession: PRJNA723052.

Relative abundances of each taxon were calculated as a percentage of the total number
of sequences for each sample; only the relative abundances greater than 1% are shown in
the text.

2.6. Statistical Analysis

The α-diversity indices were statistically analyzed by one-way analysis of variance
(ANOVA), and means were compared by the Student–Newman–Keul (SNK) test at p ≤ 0.05
using the SPSS package (SPSS Inc., v.24, Chicago, IL, USA).

https://igatechnology.com
http://metagenomics.anl.gov
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The Bray–Curtis dissimilarity matrix was used for the analysis of similarity (ANOSIM)
to highlight the differences among bacterial composition in the investigated soils.

The β-diversity was evaluated by Principal Coordinate Analysis (PCoA) to compare
and plot the structure of all samples. Moreover, Canonical Correspondence Analysis
(CCA) was used to relate the relative abundances of the phyla (>1%) to some selected
environmental variables in a two-dimension graphic. Finally, SIMilarity PERcentage
(SIMPER) analysis was carried out to identify the OTUs responsible for the differences
between T3, T7 and T14 samples. Multivariate statistical approach (ANOSIM, PCoA, CCA
and SIMPER) and Ward’s clustering method were performed using PAST 3.17 software.

3. Results
3.1. Soil Chemical Characterization

Soil chemical analyses, performed both on unburned soil and 500 ◦C thermally treated
soil, revealed that the heating treatment significantly altered the soil chemical properties
(Table 1).

Table 1. Chemical properties and potentially toxic element (PTE) concentrations in the unheated and heated soils (mean
value± standard deviation, n = 3). Only one determination was performed for the basic chemical properties of the unheated
soil, being a composite sample.

Chemical Characteristics Unheated Soil Heated Soil

pH (H2O) 7.5 8.1 ± 0.1
EC (mS cm−1) 0.2 1.8 ± 0.1

Total N (g kg−1) 15 2.6 ± 0.2
Available P (mg kg−1) 181 397 ± 4.4

Organic C (g kg−1) 136 14 ± 1
Total CaCO3 (g kg−1) 202 240 ± 30
Ca+2 (cmol(+) kg−1) 47 39 ± 2
Mg+2 (cmol(+) kg−1) 1.9 1.8 ± 0.5
Na+ (cmol(+) kg−1) 0.1 0.3 ± 0.1
K+ (cmol(+) kg−1) 2.2 0.8 ± 0.1

Cu
Total (mg kg−1) 134 ± 5 201 ± 11

Available (mg kg−1) 14.0 ± 0.7 8.8 ± 0.3

Pb
Total (mg kg−1) 114 ± 3 177 ± 5

Available (mg kg−1) 5.0 ± 0.3 8.3 ± 0.5

Zn
Total (mg kg−1) 1270 ± 10 1834 ± 23

Available (mg kg−1) 208 ± 25 59 ± 6

Cr
Total (mg kg−1) 5160 ± 35 5715 ± 13

Available (mg kg−1) 0.30 ± 0.03 105 ± 9
Cr(VI) (µg g−1) b.d.l. 152 ± 44

Exchangeable Cr(VI) (µg g−1) b.d.l. 34 ± 4

b.d.l.: below detection limit.

After the thermal treatment, pH and even more EC increased compared to untreated
soil. The organic C content was strongly reduced and, consequently, the value of OM
content decreased from 234 g kg−1 in unburned soil to 24 g kg−1 in burned soil. The heating
treatment also reduced the total N content by about 80%, while it increased the available
P by more than twice and total carbonates by 18%. The concentrations of exchangeable
base cations in the unburned soil followed the sequence Ca2+ > K+ > Mg2+ > Na+, while
after the 500 ◦C thermal treatment they followed the sequence Ca2+ > Mg2+ > K+ > Na+. In
particular, K+ and Ca2+ concentrations decreased in the heated soil.

The total concentrations of Cu, Pb, Zn and Cr increased after the thermal treatment by
50%, 55%, 44% and 11%, respectively. Total PTE concentration increased as a consequence
of OM loss. Available Pb and Cu remained almost similar after the thermal treatment, while
potentially available Zn decreased and available Cr dramatically increased. In addition,
the concentration of Cr(VI), which is the most mobile and toxic form of Cr, changed from
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undetectable values in the untreated soil to 152 mg kg−1 in the heated soil. Moreover, about
22% of Cr(VI) was exchangeable, thus potentially available for plants and microorganisms.
The soil chemical properties of burned soil did not change during the different incubation
times (3, 7 and 14 days), as expected (data not shown).

3.2. Soil Bacterial Communities and Correlation with Physico-Chemical Soil Properties

Illumina sequencing produced a total of 1,144,661 raw reads, reduced to 953,904 reads
after quality control. The rarefaction curves (Figure 2), drawn by plotting the number
of sequences and the OTUs associated with each sample, showed that the coverage of
sequencing was reasonable. Nevertheless, considering the different size of sequences
among samples, a reduced dataset was built by randomly selecting 52,517 sequences for
each sample, corresponding to the lowest number of sequences obtained in the sample T3_c.
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Figure 2. Rarefaction curves relative to the number of sequences and OTUs associated with each soil
sample. C are the control unheated samples; T3, T7, T14 are the thermally treated samples after 3, 7
and 14 days of incubation, respectively; a, b, c are the replicates.

The C_a and C_b samples (two replicates of the control unheated sample) had the
highest number of sequences, compared to T3, T7 and T14 samples.

Consequently, the α-diversity indices (Shannon, Simpson 1-D, Evenness) (Table 2)
were calculated for all the samples under investigation on the normalized dataset. The
highest number of OTUs, as well as the highest values of Shannon and Evenness indices,
were observed in the control sample, thus pointing out a significant difference compared to
T3, T7 and T14 samples.

Table 2. Species richness and diversity indices of bacterial communities of control (C), T3, T7 and T14 soil samples.

Samples Reads Good Quality Sequences Observed Species * Shannon * Simpson 1-D * Evenness *

C 147,107 ± 100 112,810 ± 54,505 1669 ± 7.78 a 2.72 ± 0.05 a 0.82 ± 0.01 a 0.37 ± 0.02 a

T3 87,810 ± 26,178 68,503 ± 15,883 1286 ± 192.22 b 1.87 ± 0.21 b 0.68 ± 0.07 a 0.16 ± 0.03 b

T7 91,530 ± 10,324 81,755 ± 11,929 1317 ± 73.43 b 2.28 ± 0.10 b 0.80 ± 0.03 a 0.23 ± 0.02 b

T14 104,142 ± 393 92,503 ± 6150 1384 ± 129.06 b 2.20 ± 0.30 b 0.79 ± 0.06 a 0.22 ± 0.07 b

* Values, calculated on a normalized dataset (52,517 sequences), are means ± standard deviation of 3 replicates for each sample, except for
C (n = 2); data with different letters in each column are significantly different, according to SNK test at p < 0.05.

The taxonomic composition showed that the identified sequences were related to
25 phyla, 49 classes, 109 orders, 253 families, 793 genera and 3058 species within all the
samples under investigation (C, T3, T7 and T14).

Eight phyla were considered as the most abundant, represented by more than 1% of
bacterial total sequences: Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemma-



Biology 2021, 10, 587 7 of 14

timonadetes, Planctomycetes, Proteobacteria, Verrucomicrobia, and unclassified bacteria
(Figure 3).
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The analysis of the taxonomic profile revealed a significant difference among the soils
under investigation (Figure 3), which was considerably evident already at the phylum
level. The difference among all the samples was confirmed by the ANOSIM global test
of the relative abundances, by comparing group similarities (R = 0.61 and p = 0.0012).
Additionally, the pairwise comparison highlighted that the control sample (C) was very
different compared to T3, T7 and T14 samples (R = 1 for C vs. T3, T7, T14, each); on the
other hand, no significant differences among T3, T7 and T14 samples (R = −0.03 for T3 vs.
T7; R = 0.70 for T3 vs. T14; R = 0.14 for T7 vs. T14) have emerged.

Firmicutes relative abundance increased up to 60% after 3 days of incubation (T3),
whereas it represented only 14% of the total sequences in the control. Moreover, Firmicutes
relative abundance slightly decreased 7 and 14 days after inoculation down to percent-
ages of 50% and 42%, respectively. On the other hand, Actinobacteria and Proteobacteria
relative abundances decreased after 3 days of incubation, compared to the control, while
after 7 and 14 days from the inoculation they increased, reaching approximately the initial
values (about 25% for Actinobacteria and 10% for Proteobacteria). A low percentage of the
sequences of the control was associated with Bacterioidetes, Planctomycetes, Verrucomicro-
bia, Chloroflexi, and Gemmatimonadetes; these phyla rapidly and strongly decreased after
3 days of incubation (T3) and continued to decrease after 14 days (T14), when they showed
relative abundances of 1%, 0.5%, 0.4% (both Verrucomicrobia and Chloroflexi) and 0.1%,
respectively. Euclidean distances among the control, T3, T7 and T14 soil samples were com-
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puted using Ward’s clustering algorithm. In this regard, treatments clustered into different
groups in terms of bacterial communities at the phylum level (relative abundance > 1%),
in which T3 treatment has less distance to the control compared to T7 and T14 treatments
(Figure 3).

PCoA better illustrates the differences between the structure of bacterial communities
associated with the control (C), T3, T7 and T14 soil samples (Figure 4). The two-dimensional
plot revealed a clear segregation of C from T3, T7 and T14 samples. The first axis, accounting
for about 77% of the variance, highlighted the differences between the T3, T7 and T14 and
the control soil. The second axis (~14%) separated C from T14 well.
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Canonical correspondence analysis (CCA) aimed at explaining the relationships be-
tween the most abundant phyla (relative abundance ≥ 1%) and selected environmental
variables (soil parameters) of the T3, T7 and T14 samples. The selected soil parameters
were: pH, EC, base cations, organic C, total N, available P, total Cr, DTPA-extractable Cr,
total Cr(VI), and exchangeable Cr(VI). Most of the total variance (95%) was accounted by
seven axes and explained by the first two components (Figure 5). The first axis, accounting
for about 75% of variance, clearly discriminated T3 from T7 and T14. A further division
within these three main clusters accounted for about 20% of variance by the second axis.
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With the exception of Actinobacteria and Proteobacteria, all other phyla were strictly
correlated to most of the considered environmental parameters, Cr(VI) included. Ac-
cording to CCA (Figure 5), Firmicutes was highly related to Cr(VI) content and other soil
chemical properties such as pH, organic C, total N, available P, Ca2+. On the other hand,
Bacteroidetes, Verrucomicrobia, Gemmatimonadetes, Chloroflexi and Planctomycetes were
less influenced by these soil properties, while Actinobacteria and Proteobacteria were not
influenced by any variable. Looking at the soil microbiota at the three different times of
incubation, T3 samples appeared related to Cr(VI) concentration, soil pH, organic C, total
N, available P, Ca2+, Mg2+ and K+, whereas T7 and T14 samples were mainly related to
total Cr, available Cr and exchangeable Cr(VI).

The SIMPER analysis (Table 3) on the relative abundance of OTUs (genus level)
revealed that OTUs belonging to Firmicutes, Actinobacteria and Proteobacteria phyla
were those mainly responsible for differences between T3, T7 and T14. Particularly, OTU
belonging to Paenibacillus genus contributed to ~40% of differences.

Table 3. Similarity percentage analysis (SIMPER) showing (i) the relative abundance of each identified genus and the
corresponding phylum, (ii) the contribution to the total diversity and, (iii) the cumulative contribution to the average
similarity. Contributions below 3% are not shown.

Phylum Genus
Abundance (%)

Contribution % Cumulative %
T3 T7 T14

Firmicutes Paenibacillus 46.50 35.65 29.93 39.06 39.06
Firmicutes Cohnella 3.71 6.01 5.07 8.55 47.61

Actinobacteria Arthrobacter 5.22 3.39 1.49 7.88 55.49
Actinobacteria Nocardioides 1.49 3.96 3.75 7.52 63.01
Proteobacteria Rhizobium 0.40 2.64 1.73 5.26 68.28
Actinobacteria Geodermatophilus 0.67 1.87 2.53 5.15 73.42
Actinobacteria Pimelobacter 0.37 2.65 1.87 4.47 77.89
Actinobacteria Kocuria 0.29 2.82 0.07 4.43 82.31

Firmicutes Bacillus 2.38 3.04 1.60 3.98 86.30
Proteobacteria Ensifer 0.04 1.52 0.97 3.28 89.58

4. Discussion

Chemical analyses performed on both unheated and heated soil revealed that heating
treatment significantly altered most of the soil properties (Table 1). The increase in pH
observed in burned soil was ascribable to the loss of organic acids, the release of oxides,
hydroxides, carbonates and cations through ash particles, and the displacement of H+ from
the exchange sites of clay minerals [26,27]. The soil EC considerably increased after heating
because of the release of soluble inorganic ions deriving mainly from the combustion of
OM, but also from the exchange complexes [28]. The increase in soil salinity can enhance
the PTEs’ mobility due to the competition between salt-derived ions and PTE ions for the
adsorption sites, as well as to PTE complexation by salt-derived anions [29]. The organic C
content, as well as the total N concentration, decreased after thermal treatment by about
90% and 80%, respectively. This was due to the mineralization of the OM, which is almost
total at 460 ◦C [30]. Furthermore, the OM combustion released inorganic P, as proved by
the doubling of the available P concentration in heated soil compared to unheated soil. All
these modifications reveal the positive effects of fire in regard to the nutrient release, at
least in the short term (14 days).

The PTE total concentrations after the thermal treatment increased by a minimum
of 11% (for Cr) to a maximum of 55% (for Pb). However, the hazardousness of PTEs is
correlated more to their mobility and bioavailability, rather than to their total concentrations.
Therefore, the quantification of the PTE plant-available fraction (estimated through DTPA-
extraction) is a better index of potential risk for microorganisms and crops and, via the
food chain, for human health. Zinc DTPA-extractable fraction decreased after the thermal
treatment, Cu and Pb remained almost unchanged, while the DTPA-extractable fraction
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of Cr increased from 0.3 to 105 mg kg−1. Indeed, in the unheated soil, Cr was almost
completely immobilized by OM, as reported by Gattullo et al. (2020) [14]. After soil
burning, part of the Cr complexed or entrapped by OM was released, thus explaining the
sharp increase in its available fraction. Another dangerous transformation caused by fire
in soil was the oxidation of Cr(III) to Cr(VI), in agreement with other pieces of evidence
reported in the literature [7,31]. As suggested by Panichev et al. (2008) [7], Cr oxidation
might have been favored by the presence of carbonates released by fuel combustion. In the
soil under investigation, the concentration of total carbonates was very high already before
the fire, then it further increased after the laboratory fire simulation (Table 1). Additionally,
Fe and Mn oxyhydroxides’ transformation might have also contributed to the Cr oxidation
process [31]. The Cr (VI) concentration after the thermal treatment was 152 mg kg−1, a
level considerably higher than the safety threshold established for agricultural sites in
Italy (2 mg kg−1; Italian Legislative Decree n. 152/2006) [32]. About 20% of the total
concentration of Cr(VI) was exchangeable and therefore potentially available for plant and
microbe uptake.

The soil chemical properties did not change during the incubation period after bacteria
inoculation (data not shown), in agreement with evidence reported in the literature. Indeed,
the restoration of physico-chemical soil characteristics after a fire requires from a few
months to several years, at least in an open system [4,11,33]. In the present study, the soil
was incubated for 14 days in a closed system, thus the occurrence of chemical modifications
was scarcely probable.

Heat can directly affect the survival and the recolonization of soil microbial com-
munities since the temperatures occurring during a fire event often considerably exceed
those for killing most of the living organisms [4]. Previous field-scale experiments have
revealed that high temperatures (≥500 ◦C), reached during high-severity fires, are gen-
erally restricted to a soil depth of no more than 1 cm, with a residence time from some
minutes up to several hours, depending on fuel density and distribution [4,13,34]. Fires
are often extremely heterogeneous, depending on localized fuel loads and wind strength
and direction, which result in large patches of unburned and moderately burned areas.
Consequently, the microbial recolonization processes are generally driven by the bacterial
communities of the unburned areas or of the deeper horizons/layers, in the case of post-fire
plowing [35].

Indirect effects on microbial phylogenetic and taxonomic composition are related to
different soil properties such as soil moisture, quantity and quality of organic carbon and
nutrient cycling [9,36,37]. Moreover, fire severity could lead to different recolonization
pathways, thus favoring the growth of some bacterial taxa rather than others. Among
the factors influencing the bacterial recolonization processes, PTEs’ concentration and
speciation can also play a crucial role in selecting specific taxa able to survive and promote
environmental restoration.

Alpha diversity indices (i.e., species richness and evenness within a sample) are
generally related to the ecosystem stability and functionality [38]; in particular, the Simpson
1-D index is weighted towards the abundances of the most common species, whereas the
Shannon index is more influenced by species richness [39]. In the present study, the total
species richness was significantly altered by post-fire changes in the abiotic environment.
The higher diversity was found in the control (microbiota extracted from the unheated soil)
compared to T3, T7 and T14 samples (microbiota extracted from heated soil inoculated
and incubated for 3, 7 and 14 days) (Table 2). The reduction in diversity in T3, T7 and T14
samples was probably due to some taxa’s inability to physiologically cope with abiotic
stressors. In T3, T7 and T14 samples, in fact, the combination of high Cr(VI) content
(152 mg kg−1, with about 20% in the exchangeable form) and fire-altered soil chemical
properties probably induced a negative selective pressure on a number of taxa, thus
reducing the microbial diversity. This evidence matched with the findings reported in
other studies, where both the contribution of wildfires and soil pollution on bacterial group
selection are widely discussed [12,13,38,40].
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Cluster analysis showed more shifts in the structure of bacterial communities in T7
and T14 treatments than in T3 samples, indicating that they were more sensitive to these
variations. In this regard, taxonomic composition revealed a significant shift from Acti-
nobacteria in the control to Firmicutes in T3, T7 and T14 samples (Figure 3). However,
Actinobacteria relative abundances increased again after 14 days of incubation. A similar
trend was observed for Proteobacteria. The shift at phylum-level suggests that Firmicutes
can immediately (after 3 days incubation) deal with post-fire changes, including Cr ox-
idation and increasing bioavailability, as well as alterations in soil chemical properties
(i.e., pH, EC, organic C, total N, available P, etc.). Indeed, Firmicutes, Actinobacteria and
Proteobacteria were detected in different investigations where both PTE pollution and
wildfire severity were considered as drivers of soil microbial diversity [12]. Miranda et al.
(2018) [40] focused on responses of soil microbial communities after the application of
tannery sludge for seven years. They found that Cr content in association with increased
pH and organic C were the key variables that influenced the soil microbial structure. In
particular, the amendment of soil with 10 and 20 Mg ha−1 of composted tannery sludge
promoted a shift in bacterial community composition compared to the control unamended
soil. The analysis of sequences revealed that Actinobacteria, Proteobacteria and Firmicutes
were the most abundant phyla in amended soils, suggesting that these bacterial groups
have a great tolerance to altered soil conditions and Cr contamination [40]. Noteworthy,
it should be remembered that Firmicutes and Actinobacteria include endospore-forming
bacteria, which are able to survive under environmental stresses. These groups were also
found in different studies focusing on high-severity fire occurrence [13], thus confirming
their ability to survive and colonize extremely altered environments.

The Planctomycetes, Chloroflexi and Verrucomicrobia relative abundances decreased
after 3, 7 and 14 days of incubation compared to the control. In accordance with Mi-
randa et al. (2018) [40], Planctomycetes relative abundance probably decreased as a con-
sequence of the increase in soil pH and total Cr concentration, whereas the decrease in
Chloroflexi and Verrucomicrobia was probably due to the selected temperature (500 ◦C)
and residence time (30 min), as these parameters are generally ascribed to high-severity
fires [12].

All the above-discussed results were supported by the PCoA plot showing a clear
separation between the bacterial communities of the control and those of T3, T7 and T14
samples (Figure 4). Furthermore, CCA (Figure 5) showed the associations between the
most abundant phyla (with relative abundances > 1%) detected in T3, T7 and T14 samples
and the chemical variables which were considered relevant for taxa selection.

At first glance, a correlation between T3 samples, Cr(VI) content and some of the
main soil chemical parameters (pH, EC, organic C, available P, total N and base cations)
was observed. This could be explained by considering that 3 days after the microbial
inoculation, bacterial groups, able to grow in extreme environmental conditions, started
to colonize the heated soil. Generally, as reported by Saenz de Miera et al. (2020) [12],
taxa with oligotrophic strategies as well as spore-forming species are good fire-responders.
Among these taxa, Firmicutes are spore-forming bacteria and have been noted to grow
after high-severity fire disturbance [13]. These findings confirm the idea that nutrient
deficiencies and low organic C content in soil lead to an increase in the relative abundance
of oligotrophs. Previous studies have revealed that, in the case of environmental stress
due to and/or resulting in low-resource concentrations in soils, the oligotrophs prevail
over the copiotrophs [41,42]. Wang et al. (2019) [43] and Yaghoubi et al. (2020) [44] also
reported a negative relationship between the relative abundance of oligotrophic taxa and C
substrates in soil. The Firmicutes phylum was also identified as PTE-resistant; in particular,
total Cr concentration has been shown to affect the relative abundances of different genera
belonging to Firmicutes [40]. A positive correlation among some altered soil chemical
properties, Cr(VI) and Firmicutes was also evident in CCA (Figure 5), especially in T3 soil,
and is in line with the above-mentioned studies.
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The CCA (Figure 5) evidenced that after 7 and 14 days of incubation, soil samples
are more influenced by the total Cr content, the exchangeable Cr(VI) (Exchang-Cr) and
the DTPA-extractable Cr (Avail-Cr). The differences observed in CCA among the T3, T7
and T14 soil samples suggest that, after 14 days of incubation, the highly PTE-tolerant
microbial groups colonizing the soil samples may have promoted the soil recovery to
pre-fire conditions.

Bacteroidetes, Verrucomicrobia, Gemmatimonadetes and Chloroflexi were less influ-
enced by the selected chemical variables, while Proteobacteria and Actinobacteria were not
influenced by such environmental parameters. In this regard, no matches were found in
literature studies. Finally, the SIMPER analysis (Table 3) identified the genus Paenibacillus,
belonging to the phylum Firmicutes, as the main factor responsible for the dissimilarity
between T3, T7 and T14. In particular, Paenibacillus contributed to the community dissimi-
larity with a percentage of about 40%. This result is in line with the work of Miranda et al.
(2018) [40], as Paenibacillus was found to be highly resistant to high Cr concentrations and
is considered a good bioindicator of Cr pollution.

5. Conclusions

In this work, a laboratory-scale approach was used to study the effects of high temper-
atures on the chemical and microbiological properties of a Cr-polluted agricultural soil.

Despite the high Cr total concentration, previous studies [12,13,45,46] have shown
limited environmental risks in the investigated soils because of the huge OM content
that does not allow Cr mobilization and the oxidation of Cr(III) to more toxic Cr(VI).
Fire occurrence (accidental or intentional) might pose a serious risk for the environment
and human health since high temperatures could cause OM depletion, leading to Cr(III)
oxidation and mobilization. Such remobilization could negatively affect not only crops but
also soil microorganisms and therefore soil quality.

Heating treatment considerably altered soil physico-chemical properties (pH, EC,
total N, organic C, available P, base cations) and changed Cr speciation into more mobile
and potentially available chemical forms, including the formation of significant amounts
of Cr(VI), as well as a different colonization capacity of microbial communities. Soil
microbial analyses revealed, in fact, a predominance of Firmicutes (Paenibacillus genus) in
response to altered soil conditions. Specifically, 3, 7 and 14 days after the inoculation of
autochthonous bacterial communities, Firmicutes relative abundances were about 60%,
50% and 42%, respectively. This phylum is known to include good fire-responder species as
well as PTE-resistant microorganisms. In particular, Cr concentration appeared to affect the
relative abundance of the genus Paenibacillus, which is considered a good bioindicator of Cr
contamination. Indeed, SIMPER analysis performed on T3, T7 and T14 samples revealed
that Paenibacillus made the greatest contribution to the community dissimilarity with a
percentage of about 40%.

The results reported here could constitute a starting point for the identification of
biological indicators of Cr pollution in soils after fire events and their isolation both for
bioremediation purposes and post-fire recovery of fire-impacted polluted sites.
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