
Table S1: Description of Biological Ligands administered in screening of differentiated 
skeletal muscle cells. Skeletal muscle cells were differentiated (C2C12s and Human Skeletal 
Myoblasts) or transdifferentiated human dermal fibroblasts and subsequently screened with 1 
ng/ml and 10 ng/ml biological ligands. These proteins have been described as to play a vital role 
in myogenic signaling pathways that result in developmental and regenerative response.  

 

  

Ligand Protein Signaling 
Pathway 

Myogenic Function 

Follistatin (Fs) TGF-β Inhibition and sequestering of activin [1,2], stimulation of follicle stimulating 
hormone, promotion of proliferation and differentiation [2,3]; promotes 
skeletal muscle doubling, through hypertrophy and hyperplasia [4–6]  

Myostatin/Growth 
Differentiation 
Factor 8 (GDF8) 

TGF-β A myokine, autocrine protein released by skeletal muscle cells [3,7,8], activin 
binding protein, regulator an skeletal muscle development, when silenced mice 
experienced muscular doubling [9–11] 

Fibroblast Growth 
Factor 2 (FGF2) 

PI3K/AKT/mTOR 
and MAPK/ERK 

Promotes cell growth and development, tissue regeneration and increases 
proliferation, inhibitor of myogenic differentiation [12–15] 

GDF11 TGF-β Blood expression levels are elevated at birth and declines with age [16]; 
Conflicting results regarding myogenesis and muscle aging; overexpression in 
old mice increased cardiac and skeletal muscle regeneration [16–18], 
expression levels elevated in active individuals compared to non-active [17]; 
irreproducible and contradictory results with exposure to old mice cardiac 
cells, in vitro exposure to human donor skeletal muscle cells decreased 
differentiation [19–23] 

GDF15 TGF-β Upregulated during injury, regulates inflammatory response and macrophage 
invasion, promotes regeneration and anti-inflammatory effects [24–26] 

human Growth 
Hormone (hGH) 

JAK-STAT, 
MAPK/ERK, and 
PI3k/AKT/mTOR 

Improves skeletal muscle proliferation and differentiation; increases skeletal 
muscle mass, however prolonged exposure induces tumorigenesis [27–31] 

Thymosin β 
(TMSB4X) 

NF-κB and 
PI3K/AKT/mTOR 

Sequestering of G-actin [32], promotes skeletal muscle oriented F-actin [33], 
anti-inflammatory response, improve repair, regeneration and angiogenesis 
[34–37] 

Bone 
Morphogenetic 
Protein 4 (BMP4) 

TGF-β Induction of proliferation, promoting differentiation towards osteogenic and 
chondrogenic cell lineages, inhibition of MyoD1[38–41] 

BMP7 TGF-β Inhibition of skeletal muscle differentiation, skeletal muscle apoptosis, 
induction of osteogenesis [3,6,42] 

Interleukin 6 (IL6) p38 MAPK and 
JAK-STAT 

Anti-inflammatory myokine, promotes wound healing and myogenesis, 
induction of uptake of glucose, significant blood levels elevated during 
exercise, in vitro exposure induced myoblast differentiation, in addition to 
proliferation during injury[39,43–46] 

Tumor Necrosis 
Factor Alpha (TNF-
α) 

NF-κB, 
MAPK/ERK, and 
PI3K/AKT/mTOR 

Inflammatory cytokine, inducing muscle wasting and apoptosis, C2C12 
exposure demonstrated arrested differentiation and progressive apoptosis 
[47–52]  



 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure S1: Ligand screening of differentiated mouse skeletal muscle cells C2C12 at 1 
ng/ml. C2C12 skeletal muscle cells were subject to 1 ng/ml ligands, subsequent of 7 days of 
differentiation, stained with anti-ACTN2, anti-MF20 cytoskeletal stains and DAPI nuclear stain 7 
days later. (A) Fusion index was delineated from myonucleation level divided by total number of 
nuclei (n=12, mean + SD, “*” denotes significance p<0.05 against control). (B) multinucleation of 
myotubes at 1 ng/ml was measured from C2C12 (n>31, mean + SD, “*” denotes significance 
p<0.05, against control).  (C) Nuclear density of both skeletal muscle cells was quantified with 
number of nuclei stained (DAPI+) (n=6, mean + SD, “*” denotes significance p<0.05, against 
control). (D) Myotube length (µm) was measured (n> 135, mean + SD, “*” denotes significance 
p<0.05, against control) along with (E) diameter (µm) of cells, per ligand (n> 160, mean + SD, “*” 
denotes significance p<0.05 against control). Cells exposed to TNF-α showed increased myotube 
development compared to control. (F) Expression of ACTN2+ and DAPI+ skeletal myotubes 
C2C12s. Nuclear expansion was improved with exposure to bFGF, additionally a reduction of 
differentiation and prolifereation of skeletal muscle cells under the influence of BMP4 was 
observed, and enhancement of myotube morphological features (length and diameter) with the 
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administration of TNF-α. C2C12s showed greater propensity towards the observed effects at 
higher concentrations of the aforementioned ligands (bFGF, BMP4, TNF-α).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2: Human Skeletal Myoblasts HSkM screening of 1 ng/ml biological ligand. Initially 
cells were differentiated for a period of 7 days before the exposure to biological ligands, involved 
in skeletal muscle regulation and wound remodeling, for an additional 7-day period, and 
subsequently immunostained to identify effect of myotube differentiation/proliferation parameters. 
(A) Fusion index was calculated by measuring myotube nuclear density divided by total nuclei 
(n=12, mean + SD, “*” denotes significance p<0.05 against control). (B) Myonucleation was 
determined following the screening of biological ligands exposure (n>45, mean + SD, “*” denotes 
significance p<0.05, against control). (C) Cell nuclear density was measured by counting DAPI+ 

cells of each screening condition (n=6, mean + SD, “*” denotes significance p<0.05, against 
control). (D) Differentiated HSkM were morphologically evaluated with the measurement of 
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myotube length (µm) from ACTN2+ cells (n>120, mean + SD, “*” denotes significance p<0.05, 
against control) and (E) Myotube diameter (µm) (n>150, mean + SD, “*” denotes significance 
p<0.05, against control). (F) ACTN2 and DAPI staining indicated significant morphological 
variation in HSkM cells when exposed to TNF-α, in addition, increased multinucleation and the 
overall nuclear count, with respect to untreated HSkM.      
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Figure S3: Biological ligand screening (1 ng/ml) of transdifferentiated human fibroblasts 
(tHFs). Transdifferentiation of HFs was induced via transduction of MYOD gene integration, 
prompting expression through doxycycline and SB43154 incorporation. Cells were induced to 
transdifferentiate for 7 days before administration of Dox and SB were suspended and the 
exposure of biological ligands commenced, for an additional 7 days. Immunohistochemistry of 
tHFs with ACTN2, MF20 and DAPI staining on the 14-day mark was utilized to evaluate the effect 
of biological ligands on skeletal muscle differentiation. (A) High resolution microscopy (60x) of 
untreated tHFs. (B) Cross-striation formed in cells treated with BMP4 (10 ng/ml) as observed from 
high magnification images. (C) tHf myotube fusion index was assessed by measuring myotube 
nuclei level vs total number of nuclei (n=3, mean + SD, “*” denotes significance p<0.05 against 
control). (D) Myotube nuclei count was quantified (n=30, mean + SD, “*” denotes significance 
p<0.05, against control) and (E) nuclear density DAPI+ cells, including normal fibroblasts (n=3, 
mean + SD, “*” denotes significance p<0.05, against control). (F) Myotube length (µm) and (G) 
myotube diameter (µm) derived from ACTN2+ cells (n>60, mean + SD, “*” denotes significance 
p<0.05, against control) (H) Nuclear expansion displayed significant increases without presenting 
improvement in differentiation parameters with bFGF treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure S4: Myotube length and diameter of C2C12 and tHF cells exposed to combinations 
of GDF-11, TMSBX, IL-6, and TNF-α at 10 ng/ml. C2C12 and HF were respectively 
differentiated and transdifferentiated for seven days, and treated with combinations of GDF-11, 
TMSBX, IL-6, and TNF-α at 10 ng/ml for a total of 15 unique conditions, according to previously 
established protocol. Cells were quantified for fusion index, multinucleation, nuclear density per 
image, nuclear count of MYOD1 and Ki67 positive cells in figure 4 (C2C12s) and figure 5 (tHFs). 
(A) C2C12 myotube length (µm) was measured from cells expressing ACTN+ (n>80, mean + 
SD, “*” denotes significance p<0.05, against control). (B) Quantification of C2C12 diameter (µm) 
of ACTN+ C2C12s (n>50, mean + SD, “*” denotes significance p<0.05, against control). Cells 
exposed to TNF-α combinations showed significantly decreases compared to control cells (bar 
GF C2C12 length, TF and IF C2C12 diameter). (C) Myotube length (µm) of tHF was measured 
and tabulated (n>130, mean + SD, “*” denotes significance p<0.05, against control). (D) 
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Similarly, myotube diameter (µm) was determined from tHF cells that have also been measured 
for length (n>160, mean + SD, “*” denotes significance p<0.05, against control). TNF-α 
incorporation with other ligands resulted in large scale decrease in tHF length (bar GF and TF 
and IF combinations). 
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