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Simple Summary: The estrogen receptor (ER) status and the availability of agonists or antagonists of
these receptors determine the processes of growth, differentiation, and proliferation of breast cancer
cells. Estrogens and anti-estrogenic compounds have been shown to influence breast cancer cell
survival/apoptosis via action through the mitochondrial enzyme proline dehydrogenase/proline ox-
idase (PRODH/POX). In this review, we highlight the molecular effects of ER stimulation/inhibition
in signaling pathways.

Abstract: It has been suggested that activation of estrogen receptor α (ER α) stimulates cell pro-
liferation. In contrast, estrogen receptor β (ER β) has anti-proliferative and pro-apoptotic activity.
Although the role of estrogens in estrogen receptor-positive breast cancer progression has been well
established, the mechanism of their effect on apoptosis is not fully understood. It has been considered
that ER status of breast cancer cells and estrogen availability might determine proline dehydro-
genase/proline oxidase (PRODH/POX)-dependent apoptosis. PRODH/POX is a mitochondrial
enzyme that converts proline into pyrroline-5-carboxylate (P5C). During this process, ATP (adenosine
triphosphate) or ROS (reactive oxygen species) are produced, facilitating cell survival or death,
respectively. However, the critical factor in driving PRODH/POX-dependent functions is proline
availability. The amount of this amino acid is regulated at the level of prolidase (proline releasing
enzyme), collagen biosynthesis (proline utilizing process), and glutamine, glutamate, α-ketoglutarate,
and ornithine metabolism. Estrogens were found to upregulate prolidase activity and collagen
biosynthesis. It seems that in estrogen receptor-positive breast cancer cells, prolidase supports proline
for collagen biosynthesis, limiting its availability for PRODH/POX-dependent apoptosis. Moreover,
lack of free proline (known to upregulate the transcriptional activity of hypoxia-inducible factor 1,
HIF-1) contributes to downregulation of HIF-1-dependent pro-survival activity. The complex regula-
tory mechanism also involves PRODH/POX expression and activity. It is induced transcriptionally
by p53 and post-transcriptionally by AMPK (AMP-activated protein kinase), which is regulated by
ERs. The review also discusses the role of interconversion of proline/glutamate/ornithine in sup-
porting proline to PRODH/POX-dependent functions. The data suggest that PRODH/POX-induced
apoptosis is dependent on ER status in breast cancer cells.

Keywords: estrogens; advanced cancer; estrogen receptor; breast cancer

1. Introduction

According to the WHO (World Health Organization) epidemiological data, for 2020,
19.3 million people developed cancer, and about 10 million people died. Breast cancer was

Biology 2021, 10, 1314. https://doi.org/10.3390/biology10121314 https://www.mdpi.com/journal/biology

https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0002-7934-6973
https://orcid.org/0000-0002-6385-1182
https://orcid.org/0000-0002-8476-2023
https://doi.org/10.3390/biology10121314
https://doi.org/10.3390/biology10121314
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biology10121314
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology10121314?type=check_update&version=1


Biology 2021, 10, 1314 2 of 15

the most common malignant neoplasm in women and accounted for 11.7% of all cancers
globally. WHO cites obesity as one of the main reasons for the high incidence of the disease.
The recent increase in the mortality of breast cancers was due to the COVID-19 pandemic
that affected both therapy and prevention of the disease [1,2]. Although several thera-
peutic approaches for breast cancer treatment have been established, the role of estrogen
receptor (ER) status in the complex regulatory mechanisms driving apoptosis/survival
of cancer cells is not fully understood. Most of the studies presented in this review were
done on breast cancer cell models. Although cell line models have some limitations (e.g.,
inability to observe systemic phenomena), they are a powerful tool which offers several
advantages. Certainly, the cell models allow to strictly control conditions of the experiment
in order to establish the critical factor affecting the studied processes. They are especially
helpful in case of limited availability of clinical samples or in vivo models (e.g., estradiol
deficiency or estrogen receptor status). Therefore, results on cell models allow to predict
the consequences of pharmacotherapeutic manipulation in human. Different treatment
regimens and combinations of therapies have been tested using cell lines which have
yielded interesting and potentially promising results that currently have an application
value [3,4].

The presence of the ER (ER+) in breast cancers increases positive response to anticancer
treatment. Moreover, a better prognosis concerns progesterone receptors (PR+) and human
epidermal growth factor (HER2+) positive cancers. The absence of ER is a significant
risk factor for relapse and shorter life expectancy. Some authors emphasize that at least a
two-receptor ER+PR+HER- expansion profile has a better prognosis than a single-receptor
profile such as ER+PR-HER- or ER-PR+HER- [3]. This is probably due to the hormonal
reorganization of cellular metabolism driving pro-survival or pro-apoptotic pathways.
However, the mechanisms driving apoptosis/survival are not fully understood. In this
report, we provide evidence that some of the ER functions could be attributed to proline
dehydrogenase/proline oxidase (PRODH/POX).

2. Estrogen Receptors Structure, Location and Function

Two distinct estrogen receptor (ER) types, ERα and ERβ, are known to be encoded
by two different genes located on two different chromosomes. ERα and ERβ are encoded
by ESR1 (chromosome 6, region q24-q27) and ESR2 gene (chromosome 14, region q23.2).
The molecular weight of ERα is 67 kDa, the ERβ isoform has 57 kDa [4]. Both types are
composed of 6 functional domains named A–F [5]. Domains A and B are located at the
amino terminal of the protein. The domain AF1 is able to activate gene transcription in
the absence of bound ligand (e.g., the estrogen); however, the activation is weak. Domain
C is responsible for receptor dimerization and binding of the ligand-receptor complex to
a specific sequence on DNA. The D domain is also called the hinge. It has DNA-binding
properties, and its sequence is more variable than that of the C domain. Next is the E
domain, which contains a hydrophobic pocket structure called the ligand-binding domain
(LBD). The E domain also enables dimerization of nuclear receptors. Some receptors also
have an F domain, whose role is not fully elucidated (Figure 1) [5].

Non-active ERs occur in the cell cytosol, where they form large complexes with
chaperone proteins of the HSP (Heat Shock Proteins) family. In this form, they are still
inactive but capable of ligand attachment [5]. Ligand binding causes dimerization of the
receptor. This process is crucial for the formation of a functional transcription factor and
the regulation of gene transcription interacting with the Estrogen Response Element (ERE)
(Figure 2). The molecule required for the binding of ER to DNA is FoxA1. It is a critical
factor that promotes binding to chromatin [6].
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Figure 1. The structure of the estrogen receptor. ERα—Estrogen Receptor α; ERβ—Estrogen Receptor 
β; AF1—activator of transcription 1; C-DBD—DNA Binding Domain, domain C; D-H—Domain D-
hinge; E-LBD—Ligand Binding Domain, domain E; AF-2—activator of transcription 2; NH2—amino-
terminus, NH2—terminus, N—terminal end or amine-terminus; COOH—carboxylic terminus. 
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Figure 1. The structure of the estrogen receptor. ERα—Estrogen Receptor α; ERβ—Estrogen Receptor
β; AF1—activator of transcription 1; C-DBD—DNA Binding Domain, domain C; D-H—Domain
D-hinge; E-LBD—Ligand Binding Domain, domain E; AF-2—activator of transcription 2; NH2—
amino-terminus, NH2—terminus, N—terminal end or amine-terminus; COOH—carboxylic terminus.
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The distribution of ERα and ERβ receptors in tissues and organs varies. In most
tissues and organs, both types of estrogen receptors are present, while in some, only one
type predominates. In the ovaries, uterus, mammary gland, kidney, adrenal gland, testes,
epididymis, pituitary gland, and hypothalamus, ERα expression is higher [7–9] than in the
urinary bladder, prostate gland, heart, and liver [10]. The highest level of ERβ expression
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was found in the ovary and prostate gland [11]. An important function of estrogen receptors
is transcriptional and post-transcriptional regulation of cellular metabolism [12]. It has
been suggested that ERα is involved in the regulation of cell proliferation, while ERβ
evokes anti-proliferative and pro-apoptotic activity [13,14]. However, ERs comprise also
several membranes bound receptors as G protein-coupled estrogen receptor (GPER) and
Gq-coupled membrane estrogen receptor (GqmER). Recent studies revealed a functional
link between all types of ERs. Interestingly, several oncogenic miRNAs have been shown
to modulate the expression of ERs affecting malignant behaviour of cancer cells [15].
Moreover, a ligand-independent signaling has been reported for ERα through kind of
cross-talk with epidermal growth factor or insulin-like growth factor-I [16,17]. Whether
they are involved in PRODH/POX-dependent regulation of apoptosis/survival requires to
be explored.

3. Apoptosis

Apoptosis is the process of programmed cell death, important in the development
and homeostasis of multicellular organisms [18]. This process enables the elimination
of damaged, old or unnecessary cells. Initiation of the apoptosis pathway is one of the
possible cell responses to intracellular or extracellular action of the chemical, physical
or biological factors. The external factors that cause cell damage include UV radiation,
ionizing radiation, thermal shock, low availability of oxygen and nutrients, drugs, or viral
and bacterial infections [19]. The internal factors are activated by oncogenes, cell cycle
defects, deficiency of growth factors, energy, hormonal deregulation, etc. [20,21]. Factors
inducing apoptosis contribute to the development of neurodegenerative and autoimmune
diseases, growth defects, and cancer. The disturbed balance between survival and apoptosis
is a common feature of cancer cells [22]. It is also the cause of resistance to chemotherapy,
radiotherapy, hormonal and immune therapy [23].

Apoptosis is a precisely regulated process by several classes of proteins. The most
important are caspases (a family of intracellular cysteine proteases). They are divided
into initiator, implementing, and inflammation caspases. Another important protein in
the apoptosis process is the family of BCL-2 proteins (Bax; Bak, Bid, Bim), which have
proapoptotic, antiapoptotic, and regulatory activities [24].

Several pathways lead to the induction of apoptosis. The extrinsic pathway is initiated
by binding a ligand to the death surface receptors [25]. The intrinsic pathway of apop-
tosis can be activated by proapoptotic factors released from mitochondria. Apoptogenic
molecules that are produced during intracellular stress leads to the increase in permeation
of mitochondria. Both pathways stimulate apoptosis through proteolytic cleavage of pro-
caspases into active enzymes [26]. The initiator caspases include caspase-8, -9, -10, whereas
caspases-3, -6, and -7 are called effector caspases [27]. They can disrupt entire cells within a
few minutes.

3.1. The Extrinsic Apoptosis Pathway

The extrinsic process of apoptosis is induced in the cell through the signals from
other cells activating the death receptor, which initiates a cascade of intracellular effector
proteins [28,29]. Tumor necrosis factor (TNF) is the best-characterized protein that initiates
programmed cell death [30]. The same superfamily includes ligand of TNF family receptors
(THANK), lymphotoxin (LT), Fas Ligand (FasL), TNF-related apoptosis-inducing ligand
(TRAIL), or the Vascular Endothelial Growth Inhibitor (VEGI) [31]. Some of them contain
an intracellular death domain (DD). During protein binding to the receptors of the TNF
family, the TRADD (Tumor necrosis factor receptor type 1-associated DEATH domain
protein) or FADD (Fas-associated protein with death domain) adapter proteins interact
with the DD region. Subsequently, the DISC complex (Death-inducing signaling complex)
is formed [32–34]. This complex combines procaspases -8 and -10 and has autoproteolytic
activation properties [35]. Cleaved caspases -8 and -10 activate the implementing caspases
and initiate changes in the cell structure leading to cell death [32]. In addition, active
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caspases -8 and -10 activate BID (a pro-apoptotic BCL family protein), which leads to
increased release of cytochrome C from mitochondria by its truncated form tBID (Figure 3).
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An important apoptosis inducer is a p53 protein. This protein participates in the exter-
nal and internal pathways of apoptosis. p53 interacts with BCL (B-cell lymphoma) proteins
family contributing to the upregulation of mitochondrial channels and the cytochrome C
efflux into the cytoplasm, activating the internal pathway of programmed cell death [36,37].
It has been established that p53 also induces genes coding for death receptors and death
ligands [37].

3.2. The Intrinsic Apoptosis Pathway

This pathway is also called a mitochondrial pathway. It depends on energetic and
metabolic processes in the cells and is induced by stress factors. These factors are oxidative
stress, DNA damage, changes in cytoplasmic calcium ions concentration, and others.
Furthermore, the production of reactive oxygen species (ROS) activates pro-apoptotic
BCL- family proteins [38]. As a result of these reactions, the mitochondrial membrane
is leaking [39], leading to the release of cytochrome C from mitochondria [38]. Released
cytochrome C binds with procaspase9 and apoptotic protease activating factor-1 (APAF-1),
forming apoptosome complex. The complex activates the cascade of structural changes
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in the cell that contribute to cell death through active forms of executive caspases such as
caspase-3, caspase-6, and caspase-7 (Figure 3) [40,41].

4. Functional Significance of PRODH/POX in Cell Metabolism

Proline oxidase (POX), also known as proline dehydrogenase (PRODH), is a mito-
chondrial flavin enzyme associated with the inner mitochondrial membrane. The enzyme
catalyzes proline degradation by converting this amino acid to ∆1-pyrroline-5-carboxylic
acid (P5C). During this reaction, electrons are transferred via flavin adenine dinucleotide
(FAD) to cytochrome C in the respiratory chain, producing ATP molecules, facilitating
survival. However, when electrons are transferred directly to oxygen, that happens in
specific metabolic conditions, ROS are formed, inducing apoptosis or autophagy [42–45].

Although the mechanism for switching from ATP to ROS production is not fully
understood, it has been suggested that excessive rates of electron transport may contribute
to ROS generation [46]. The mechanism of this process is based on mitochondrial membrane
potential driving ATP synthase and ATP production and the Kadenbach mechanism
(occurring at high ATP/ADP radio) that involves binding of ATP to cytochrome c oxidase
(CytOx) and inhibition of the enzyme. In stress situation, ATP-dependent inhibition
is switched off and CytOx activity is determined by membrane potential leading to an
increase in ROS production. Another mechanism depends on the quantity of electron
transfer to the Heme aa3 of CytOx and, in case CytOx is inhibited by ATP, ROS production
is decreased. Whether PRODH/POX-dependent ATP/ROS generation involves the same
mechanism requires to be explored. However, it has been found that PRODH/POX
binds to Coenzyme Q1 (coQ1) decreasing respiratory fitness that was counteracted by
N-acetyl-cysteine, suggesting that the effect was mediated by PRODH/POX-dependent
ROS formation [47]. Of interest is also finding that PRODH/POX is inhibited by succinate
alleviating PRODH/POX effects on respiratory fitness. It suggests that PRODH/POX-
induced ATP or ROS formation is metabolic contextdependent.

Conversion of mitochondrial proline into P5C by PRODH/POX may contribute to
ROS-dependent intrinsic and extrinsic apoptosis [45,48–52]. It has been well established
that overexpression of PRODH/POX causes cytochrome C release from mitochondria
to cytosol and activation intrinsic apoptotic pathway by caspases-3 and -9 [53]. How-
ever, it has been also shown that upregulation of PRODH/POX induces caspase-8 acti-
vation in the extrinsic apoptotic pathway through stimulation of TNF-related apoptosis
inducing ligand (TRAIL) and death receptor 5 (DR5) [53]. Moreover, the mechanism of
PRODH/POX-dependent apoptosis may involve modulation of cell signaling pathways
and cell cycle regulatory processes that could induce extrinsic apoptosis. The most potent
inducer of PRODH/POX activity is tumor suppressor p53. Transcriptional regulation of
PRODH/POX by p53 was found in the PRODH/POX promoter, containing a p53-response
element [54–56].

It seems that ATP or ROS generation depends on the metabolic context in which
proline availability for PRODH/POX and proline utilization processes play a critical role.
Prolidase is an important factor in providing substrate for PRODH/POX. This enzyme
catalyzes the last stage of collagen degradation by releasing proline or hydroxyproline from
the C-terminus of imidodi- or imidotripeptides [57,58]. Free proline could be degraded by
PRODH/POX or reused for collagen biosynthesis [59]. Proline for PRODH/POX could
be also derived from amino acid metabolism. The most important are glutamate and
ornithine yielding P5C in reactions catalyzed by P5C synthase and ornithine aminotrans-
ferase, respectively. The generated P5C is converted into proline in reaction catalyzed by
isoforms of P5CR (P5C reductases). The conversion of glutamate to the proline is catalyzed
by mitochondrial PYCR 1

2 , while the conversion of ornithine to proline is catalyzed by
cytosolic PYCRL that is coupled to the Pentose Phosphate Pathway (PPP). PPP maintains
a redox balance between cytosol and mitochondrion and participates in the synthesis of
nucleotides [45,48]. However, the proline conversion product, P5C, can be rapidly used to
synthesize glutamate by P5CDH (P5C dehydrogenase). Glutamate is, in turn, a precursor
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for the synthesis of α-ketoglutaric acid, which is a component of the tricarboxylic acid cycle
(TCA) [48]. Proline can also be converted to ornithine, which in turn is a component of the
urea cycle. These reactions link TCA and urea cycles with amino acids metabolism deter-
mining proline availability for PRODH/POX-dependent functions (Figure 4). However,
the enzyme could be regulated by other factors. An important transcriptional regulator of
PRODH/POX is the p53 protein. The presence of a response element for p53 protein in the
promoter sequence of the gene coding PRODH/POX has been demonstrated. It indicates
the direct participation of p53 in the transcription of PRODH/POX [49]. Among factors that
inhibit the expression of PRODH/POX is the oncogenic c-MYC transcription factor that
may indirectly affect PRODH/POX by stimulating expression of PRODH/POX-inhibiting
factor–miR-23b [50]. This is an endogenous, non-coding small RNA fragment that has the
ability to bind to the PRODH/POX 3′UTR mRNA. It has been shown that overexpression
of miR-23b resulted in downregulation of PRODH/POX expression [52].

Biology 2021, 10, x  7 of 15 
 

 

catalyzed by cytosolic PYCRL that is coupled to the Pentose Phosphate Pathway (PPP). 
PPP maintains a redox balance between cytosol and mitochondrion and participates in 
the synthesis of nucleotides [45,48]. However, the proline conversion product, P5C, can 
be rapidly used to synthesize glutamate by P5CDH (P5C dehydrogenase). Glutamate is, 
in turn, a precursor for the synthesis of α-ketoglutaric acid, which is a component of the 
tricarboxylic acid cycle (TCA) [48]. Proline can also be converted to ornithine, which in 
turn is a component of the urea cycle. These reactions link TCA and urea cycles with 
amino acids metabolism determining proline availability for PRODH/POX-dependent 
functions (Figure 4). However, the enzyme could be regulated by other factors. An im-
portant transcriptional regulator of PRODH/POX is the p53 protein. The presence of a 
response element for p53 protein in the promoter sequence of the gene coding 
PRODH/POX has been demonstrated. It indicates the direct participation of p53 in the 
transcription of PRODH/POX [49]. Among factors that inhibit the expression of 
PRODH/POX is the oncogenic c-MYC transcription factor that may indirectly affect 
PRODH/POX by stimulating expression of PRODH/POX-inhibiting factor–miR-23b [50]. 
This is an endogenous, non-coding small RNA fragment that has the ability to bind to the 
PRODH/POX 3′UTR mRNA. It has been shown that overexpression of miR-23b resulted 
in downregulation of PRODH/POX expression [52]. 

 
Figure 4. Complex regulatory mechanisms linking proline cycle, urea cycle, TCA cycle, pentose–phosphate pathway and 
collagen metabolism to PRODH/POX-dependent apoptosis/survival. X-Pro—amino acid-proline; PRO—proline; X—
amino acid; PRODH/POX—proline dehydrogenase/proline oxidase; P5C—pyrroline-5-carboxylate; ROS—reactive oxy-
gen species; ATP—adenosine triphosphate; GLU—glutamate; GLUT—glutamine; PPP—Pentose-Phosphate Pathway; 
P5CR—P5C reductase; HIF-1α—Hypoxia inducible factor 1α; TCA-cycle—The tricarboxylic acid cycle, also known as the 
Krebs or citric acid cycle; α-KG—α-ketoglutaric acid; ORN—ornithine; p53—TP53 or tumor protein; AMPK—AMP-acti-
vated protein kinase; PPAR γ—peroxisome proliferator activated receptor. 

The best characterized PRODH/POX expression inducer is the peroxisome prolifera-
tor-activated receptor γ (PPAR-γ). It was shown that in the promoter sequence of the 

Figure 4. Complex regulatory mechanisms linking proline cycle, urea cycle, TCA cycle, pentose–phosphate pathway
and collagen metabolism to PRODH/POX-dependent apoptosis/survival. X-Pro—amino acid-proline; PRO—proline;
X—amino acid; PRODH/POX—proline dehydrogenase/proline oxidase; P5C—pyrroline-5-carboxylate; ROS—reactive
oxygen species; ATP—adenosine triphosphate; GLU—glutamate; GLUT—glutamine; PPP—Pentose-Phosphate Pathway;
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Krebs or citric acid cycle; α-KG—α-ketoglutaric acid; ORN—ornithine; p53—TP53 or tumor protein; AMPK—AMP-activated
protein kinase; PPAR γ—peroxisome proliferator activated receptor.

The best characterized PRODH/POX expression inducer is the peroxisome proliferator-
activated receptor γ (PPAR-γ). It was shown that in the promoter sequence of the gene-
encoding PRODH/POX, there are regions binding ligand-activated receptors, the so-called
PPRE or PPAR-γ response element [51].
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PRODH/POX participates in the induction of apoptosis by activating both extrin-
sic and intrinsic pathways. Activation of the extrinsic pathway requires stimulation of
the transmembrane receptors containing the death domain through specific ligands [53].
PRODH/POX activates the extrinsic pathway via stimulation of geminin production.
This action leads to cell cycle arrest in the G2 phase and cell apoptosis [55]. Moreover,
PRODH/POX stimulates DNA damage inducible genes (GADDs).

PRODH/POX also participates in apoptosis by activating the intrinsic pathway
(Figure 4). ROS formed during PRODH/POX-induced proline degradation disrupt trans-
port in the mitochondrial membrane and affect membrane potential. In consequence,
cytochrome C is released from the intermembrane space and initiates the intrinsic apopto-
sis pathway [54].

PRODH/POX indirectly inhibits the process of angiogenesis in tumor tissues and
thus tumor growth. It degrades proline that was shown to upregulate the transcriptional
activity of HIF-1α (Hypoxia-inducible factor-1) and HIF-1-dependent proteins such as
vascular endothelial growth factor (VEGF) [56,60,61]. It has been documented that, in
standard conditions, HIF-1α is continuously degraded by pVHL (Hippel–Lindau tumor
suppressor gene product), which is a mediator in the ubiquitin pathway [56]. Proline has
been shown to inhibit the degradation of HIF-1α, increasing its transcriptional activity [60].
Therefore, degradation of proline by PRODH/POX contributes to a decrease in proline
level, expression of HIF-1, and angiogenesis [61].

PRODH/POX also participates in the regulation of cell proliferation. This enzyme,
together with P5C reductase, forms proline cycle coupled to PPP-producing nucleotides
for DNA biosynthesis (Figure 4) [62,63].

5. Involvement of ER Agonists in PRODH/POX-Dependent Apoptosis

ERs regulate the expression of AMP kinase (AMPK), which stimulates the activity of
PRODH/POX [64,65].

The primary ligands for ER are estrogens, which represent a group of pleiotropic
hormones. There are two dominant sources of estrogens in female physiology. In the
pre-menopausal age, the ovaries are the principal producer of estrogens. In the post-
menopausal age, when ovarian estrogen production declines, fat tissue becomes the main
source. Adipocytes have a specific enzyme called aromatase, which converts testosterone
to estrogen [66]. ER ligands—estrone, estriol, estradiol, and 2-hydroxy estrone—play
functional roles in the physiology of the central nervous system, bones, reproductive
and cardiovascular system. However, they also play an important role in carcinogenesis,
stimulating cancer cell growth. These hormones act on the cancer cells by targeting the
steroid receptor complex to specific DNA sequences, activating specific gene transcription.
Several studies have demonstrated this mechanism using tamoxifen, a selective estrogen
receptor modulator that inhibits estrogen-dependent tumor growth [67].

Estrogens regulate PRODH/POX-dependent functions at the level of ER, p53, sub-
strate availability for PRODH/POX that is dependent on prolidase activity (proline sup-
porting enzyme) and collagen biosynthesis (proline utilizing process), as well as HIF-1α. It
seems that the most important player in determining pro-apoptotic/anti-apoptotic pheno-
type of cancer cells is the correlation between ERα, P53, and PRODH/POX. As pointed
out in the above section, PRODH/POX is a P53-induced gene promoting apoptosis. How-
ever, ERα antagonizes P53-dependent apoptosis, promoting cell survival [68–70]. Based
on these data, it has been established the mechanism for ERα anti-apoptotic potential,
suggesting the formation of ERα-P53 complex [71]. Since ERβ was found to attenuate the
complex formation, it was concluded that ERβ has pro-apoptotic activity [71]. Whether pro-
apoptotic activity of ERβ undergoes through PRODH/POX that has either pro-apoptotic
or pro-survival potential requires further study.

Another potential link between estrogens and PRODH/POX-dependent apoptosis
is at the level of substrate availability for the enzyme. PRODH/POX is the only enzyme
that degrades proline. During this process, ATP or ROS are produced (Figure 4). This
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amino acid could be synthesized from glutamine or ornithine. However, it is energeti-
cally unfavorable, particularly in cancer cells. Instead, proline is derived from collagen
degradation products. The last step of collagen degradation is catalyzed by prolidase,
releasing proline from imododipeptides [63]. The activity of prolidase may regulate pro-
line availability for PRODH/POX-dependent functions. However, the free proline could
be rapidly used for collagen resynthesis, limiting its degradation by PRODH/POX in
mitochondria. Such a case may take part in MCF-7 breast cancer cells, where estradiol
(independently on the ERβ/ERα status) was found to stimulate collagen biosynthesis
(Figure 5a) [72–74]. This process limits proline availability to the proline cycle (Figure 4)
and PRODH/POX-dependent functions. It has been found that ERα is involved in the
upregulation of prolidase activity, suggesting that it supports proline for collagen biosyn-
thesis [75]. Interestingly, it also induces HIF-1α transcriptional activity, contributing to the
pro-survival phenotype of breast cancer cells [75].
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6. Effects of ER Modulators on PRODH/POX-Dependent Apoptosis

Phytoestrogens are natural compounds that are ER modulators. They resemble es-
trogens in their structure. Phytoestrogen’s ability to binding ER induces an estrogenic
response or an anti-estrogenic effect [76]. This effect depends on the concentration of the
compound and the type of target tissue. Isoflavones at low concentrations have an agonist
effect, and at higher concentrations, they are antagonists. Due to this feature, phytoe-
strogens are called selective estrogen receptor modulators (SERMs) [77]. Phytoestrogens
exhibit a broad spectrum of anticancer activity. They inhibit proliferation, invasiveness
and induce apoptosis of breast cancer cells. Furthermore, they modulate the activity of
ROS-scavenging enzymes [78,79]. For instance, genistein is a characteristic isoflavone
found in soybean and is the most abundant natural ERβ modulator. It has an affinity for
both ERα and ERβ. However, it has a ninefold preferential affinity for ERβ. By regulating
ERβ expression, genistein exerts anticancer effects. Numerous in vitro and in vivo studies
have shown that genistein decreases cancer cell proliferation by blocking the cell cycle in
the G2/M phase. Induction of apoptosis is associated with the activation of caspase-9 and
downregulation of cyclin B1 [80,81].

Some studies have shown that genistein and other phytoestrogens have synergistic
effects with other chemotherapeutics and enhance the efficacy of anticancer therapy. ER
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modulators inhibit PI3K/Akt/mTOR pathway and NF-κB activation [82]. Furthermore,
Akt and NF-κB inhibition leads to downregulation of Bcl-2 protein and upregulation of
Bax protein [83,84]. The possible mechanism for inhibition of the PI3K/AKT pathway
and enhancement of breast cancer cell apoptosis by ER modulators (e.g., equol, biochanin
A, daidzein) could be related to PRODH/POX-dependent ROS generation. It has been
found that ER modulators inhibit collagen biosynthesis (proline utilization process), mak-
ing proline available for PRODH/POX-dependent functions [85–88]. Whether this is the
case requires to be explored. However, some line of evidence supports such a hypothesis.
In contrast to 17β-estradiol (the most active estrogen in the stimulation of the collagen
biosynthesis), its metabolite, 2-methoksyestradiol, has the opposite effect (Figure 5b). It
inhibits collagen biosynthesis (increasing the amount of intracellular proline, the substrate
for PRODH/POX) and activates PPAR-γ (stimulating PRODH/POX) [89,90]. Further-
more, 2-methoxyestradiol inhibits HIF-1α [89]. Another correlation between estrogens,
collagen, and PRODH/POX was found at the level of PPAR-γ. Activation of this tran-
scription factor is known to upregulate PRODH/POX [91]. Telmisartan, PPAR-γ ligand
was found to inhibit collagen biosynthesis in breast cancer cells [92], supporting free pro-
line for PRODH/POX-dependent functions. It is supported by several studies of other
authors [93,94].

It is generally accepted that estrogens induce collagen metabolism, while anti-estrogens
evoke either stimulatory or inhibitory effects, depending on the concentration of anti-
estrogen, cell type and microenvironmental conditions [95–97]. Anti-estrogen functions
are of great importance in the biology of breast cancer. Our previous studies show that in
estrogen-stimulated MCF-7 breast cancer cells, raloxifene at low concentrations (1 or 4 µM)
evoked an antiestrogenic effect on collagen biosynthesis and prolidase activity, while an
estrogenic effect on gelatinolytic activity. However, at high concentration (10 µM), ralox-
ifene induced estrogenic effects on collagen biosynthesis and prolidase activity, while
an antiestrogenic effect on gelatinolytic activity [85]. We also found that, at 10 µM, ta-
moxifen induced apoptosis in MCF-7 cells. Whether this effect is due to activation of
PRODH/POX-dependent ROS formation requires to be explored.

However, recently we have found that, in estrogen-negative MDA-MB-231 breast can-
cer cells (expressing ERβ), cultured in estradiol-free medium, stimulation of PRODH/POX
by troglitazone (TGZ) contributed to apoptosis [98]. The effect was not found in MCF-7
cells, independently of the presence or absence of estradiol in culture medium nor in
MDA-MB-231 cells cultured in the medium with estradiol. It has been suggested that
the mechanism involves upregulation of PRODH/POX expression (by TGZ) and atten-
uation of collagen biosynthesis (by eliminating estradiol-induced collagen biosynthesis),
that facilitate proline availability for PRODH/POX-dependent apoptosis. The hypothesis
was provided that TGZ together with anti-estrogen treatment could be considered as an
approach to experimental pharmacotherapy of estrogen-negative breast cancers.

The above data suggest that ERs are involved in PRODH/POX-dependent apopto-
sis; however, the complexity of the mechanism of these processes requires further study.
Nevertheless, based on the cited facts, it seems that blocking the function of both estro-
gen receptors promotes PRODH/POX-dependent apoptosis in breast cancer cells. The
hypothetical mechanism of this process is shown in Figure 6.
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Figure 6. Downregulation of ERα and ERβ facilitates PRODH/POX-dependent apoptosis in breast cancer cells. Activation of
both ERs is known to stimulate collagen biosynthesis utilizing proline as a substrate for PRODH/POX-dependent functions.
(a) since ERα has the ability to form a complex with p53 [66], the process diminishes the potential of ERα to stimulate
collagen biosynthesis contributing to an increase in proline concentration, facilitating PRODH/POX-dependent apoptosis.
(b) The same effect could be achieved by eliminating ERβ or its inhibition by unknown factors [66,90]. P5C—pyrroline-
5-carboxylate; PRODH/POX—proline dehydrogenase/proline oxidase; ROS—reactive oxygen species; GLY—glycine;
PRO—proline; ATP—Adenosine triphosphate; ER—estrogen receptor.

7. Conclusions

The hypothesis that estrogens affect PRODH/POX-dependent apoptosis is based
on the studies showing estrogen-induced utilization of PRODH/POX substrate (proline)
for collagen biosynthesis [99,100]. In this way, estrogens stimulate proline utilization
for protein synthesis, limiting its availability as a substrate for PRODH/POX-dependent
apoptosis. However, estrogens may differentially affect PRODH/POX-induced functions
dependently on the ERβ/ERα status. It seems that ERα has anti-apoptotic potential
through antagonizing P53-dependent apoptosis, inducing the expression of HIF-1α, PPARγ,
and prolidase. ERβ evokes opposite effects. The data suggest that PRODH/POX-induced
apoptosis is dependent on ER status in breast cancer cells.

Therefore, in further studies on antiestrogen therapy, PRODH/POX could be con-
sidered as a target enzyme. Since tamoxifen is the only endocrine agent with approval
for prevention and treatment of ER-positive breast cancers [101], it would be reason-
able to perform more clinical studies on PRODH/POX-dependent apoptosis/survival in
tamoxifen-treated ER-negative breast cancers.
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