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Abstract: This work covers the development of non-fullerene acceptors for use in organic photovoltaics
built using the N-annulated perylene diimide dye. The classic perylene diimide dye has been extensively
used to construct non-fullerene acceptors, leading to device power conversion efficiencies of over 10%.
Strong visible light absorption and deep frontier molecular energy levels have made such materials
(both molecular and polymeric) near ideal for pairing with narrow-gap conjugated polymers in bulk-
heterojunction active layers. The N-annulation of the dye provides an extra site for side-chain engineering
and alters the electronic structure of the polycyclic aromatic core. In addition, N-annulation allows for
selective bromination of the perylene core, leading to building blocks that are useful for the construction
of large molecular frameworks using the atom-economical direct heteroarylation cross-coupling method.
Herein, we detail a series of molecules developed by our team that are based on the N-annulated perylene
diimide in the form of dimers with different cores (both electron-rich and electron-deficient); dimers with
varied side chains; tetramers with varying geometries; and large, asymmetric molecules with internal
energy cascades. The use of these molecules as non-fullerene acceptors in organic photovoltaic devices
(binary and ternary blends, outdoor and indoor light applications, and spin-coated vs. slot-die-coated
photoactive layers) is presented.

Keywords: photovoltaic devices; Organic Solar Cells; non-fullerene acceptors; perylene diimide dyes

1. Introduction

Organic photovoltaics (OPVs) have features that include being lightweight [1], flexible,
and stretchable [2], compatible with additive manufacturing [3,4], and color-tunable for
windows and building integration applications [5–8]. They are thus considered a poten-
tially game-changing clean energy technology. Figure 1 summarizes selected applications
to highlight the versatility and promising future of OPVs. Jinno et al. developed stretchable
and washable textile-compatible OPVs (Figure 1a), paving the way towards wearable de-
vices [9]. The industrial sector and startups have contributed heavily to OPV development,
with InfinityPV having created both flexible OPV modules and tapes (Figure 1b,c), Next
Energy Technologies, Inc. having introduced transparent OPVs for building windows
(Figure 1d), ARMOR having developed large-area flexible and semi-transparent OPV films
that serve a wide range of applications (Figure 1e), and Heliatek having commercialized
vacuum-deposited films for building-integrated OPVs (BIOPVs) (Figure 1f,g), while both
Dracula Technologies and Epishine are developing OPV mini-modules for indoor light
harvesting (Figure 1h,i).

The first OPV devices, reported by Tang in 1986, made use of a bilayer heterojunction
architecture composed of two thermally evaporated films (phthalocyanine as the donor
and a perylene derivative as the acceptor). They had a power conversion efficiency (PCE)
of 1% [10,11]. A decade later (1995), Prof. Alan Heeger and coworkers introduced solution-
processed bulk heterojunction (BHJ) OPV devices based on fullerene acceptors [12]. The
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BHJ active layers are typically composed of interpenetrating networks of a donor (polymer
and/or small molecule) [13–15] and an acceptor (typically a fullerene derivative) [16–18]
sandwiched between two charge-transport layers with conductive electrodes on each
side [19,20]. The nanomorphology and phase separation between the donor and acceptor
in these BHJ films is critical to performance and as such has been well studied [21–23].
A typical OPV device architecture is illustrated in Figure 1j.
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Figure 1. Examples showing versatile applications of OPVs: (a) stretchable and washable OPV
devices for wearable applications [9], (b) slot-die-coated flexible OPV modules from InfinityPV,
(c) OPV solar tape from InfinityPV, (d) transparent OPV windows by Next Energy Technologies, Inc.,
(e) semi-transparent OPVs by ARMOR, (f,g) building-integrated OPVs (BIOPVs) by Heliatek,
(h) indoor OPV mini module by Dracula, (i) mini modules for integrated indoor IoT sensors by
Epishine, and (j) schematic illustration of a typical OPV device architecture (active layer morphol-
ogy is shown as zoomed-in image) [24]. Images in (a,j) reproduced with permission from [9,24].
Copyright 2017, Springer Nature and 2011, Royal Society of Chemistry. All images are used
with permission.

For two decades, OPVs were primarily based upon fullerene acceptors (PC61BM [25],
PC71BM [26], Figure 2). Such fullerenes demonstrate good solubility in organic solvents,
have a high electron affinity and electron mobility, and are thermally stable. Paired with
molecular or polymeric donors, fullerenes form suitable nanomorphologies with appro-
priate phase separation, leading to BHJ active layers with efficient charge generation
and balanced charge transport [18,27]. OPVs based upon these fullerene acceptors (e.g.,
PC61BM, PC71BM, and ICBA) have a PCE of approximately 12% [28–30]. In parallel, there
has always been interest in the development of non-fullerene acceptors (NFAs), with re-
cent successes resulting in PCEs increasing from low values of 0.5% for devices based
on perylene diimide molecules (PDI-3) in 2010 to 18% for devices based on ring-fused
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donor–acceptor molecules [31–35]. Recently, Firdaus et al. predicted the realization of 20%
PCEs for single-junction OPVs based upon the use of NFAs [36].

The primary parameters for the development of OPVs include: efficiency, lifetime,
and production cost (e.g., upscaling) [37]. A module efficiency > 10% with operational
stability > 10 years combined with a production cost << EUR 1 per Watt peak is suggested
for the industrial production of OPVs [37,38]. The cost of semitransparent OPVs (with
PCEs > 10%) processed via a roll-to-roll (R2R) manufacturing line is expected to be USD
1.6 per Watt peak [39]. With PCEs reaching over 19% at the lab scale, the transition from
lab to fab is becoming a priority [40]. A recent study demonstrated an OPV mini-module
(active area of 32.6 cm2) processed from eco-friendly solvents under ambient condition with
a PCE of 10.3% under 1 sun illumination [41]. Similarly, flexible OPV mini-modules have
been R2R coated in air, delivering a PCE of 13.4% under indoor office light conditions [42].

Since OPVs retain high performance under indoor illumination conditions, the tech-
nology is an ideal candidate for powering smart devices for the internet of things (IoT) [43].
Such smart devices only require low power inputs and can be operated using the electricity
generated from OPV devices in low-intensity light environments [44–48], thus presenting a
new application for OPVs. In addition to OPVs being a viable clean energy technology for low-
light-intensity applications, large-area installations, building and transportation integration,
and greenhouses, the field of OPVs offers a rich training platform for young scientists to learn
and discover the fundamentals of organic materials design and synthesis, electron transfer
processes, supramolecular chemistry, photochemistry, interface science, and ink formulations
and printing. As such, the field has been subject to numerous review articles [15,49–53].

2. Non-Fullerene Acceptors

There has been a large variety of NFAs reported that have been designed with specific
physical characteristics, optoelectronic properties, and self-assembly tendencies [54,55].
They can have wide or narrow optical band gaps, shallow or deep frontier molecular orbital
(FMO) energy levels, be rendered solution-processible from green solvents and, most
importantly, be tailored for pairing with a specific molecular or polymeric donor material.
The breakthrough in the design of NFAs began with the introduction of ITIC [56] and its
optimized version, IT-4F [57] (Figure 2). PBDB-T:IT-4F blends achieved an OPV device PCE
of 13% and were therefore some of the first reports of NFA-based OPVs outperforming
fullerene-based OPVs. A strongly NIR-absorbing NFA (Y series) was introduced in early
2019 and has led to NFA-based OPVs with PCEs beyond 19% [58] (Figure 2).
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Among the best NFAs are those built upon the perylene diimide (PDI) chromophore.
Facile functionalization at the imide, bay, and headland positions allows for structural
engineering to tailor solubility parameters, optoelectronic properties, and self-assembly
tendencies. As such, hundreds of PDI-based molecules have been constructed and utilized
as NFAs, and the field has been reviewed in depth [63–70]. Devices with binary BHJs with
a PCE of 9.5% (open-circuit voltage (Voc) = 1.11 V; short-circuit current (Jsc) = 13.3 mA/cm2;
fill factor (FF) = 64%) were achieved when using the twisted PDI dimer (SF-PDI2) blended
with the P3TEA polymer donor [61] (Figure 2). Devices with a PCE of over 10% were
achieved by employing the ternary approach using a PDBT-T1:SdiPDI-Se:ITIC blend [71].
The PDI tetramer (FTTB-PDI4, Figure 3) emerged as excellent NFA and has enabled high-
PCE devices (ca. 27%) under low-light illumination (ca. 1650 lux), pushing forward the
field of indoor photovoltaics [72,73]. The chemical structure of the selected PDI examples
(monomer [74,75], dimer [76,77], trimer [78], and tetramer [72]) are shown in Figure 3.
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PDI trimer [78], and PDI tetramer [72] NFAs used in OPV devices.

3. N-Annulated PDI-Based NFAs

A class of PDI-based NFAs are those based on N-annulated PDI dye. While first
reported in 2000 by Langhals et al. [80], our research team, in collaboration with Yan’s
group, re-introduced the N-annulated PDI as a useful building block for constructing
NFAs for OPVs [81]. We first disclosed an OPV device PCE of 7.5% with a high Voc > 1 V
using a N-annulated PDI dimer paired with the P3TEA polymer donor. N-annulation at
the bay position of the PDI chromophore allows for installation of functional groups that
can fine-tune solubility (e.g., rendering the NFAs soluble in green solvents suitable for
large-area processing), self-assembly (e.g., side-chain engineering to increase or decrease
the propensity to crystallize), and optical and electronic properties (e.g., the addition of
the pyrrole moiety destabilizes the frontier molecular orbital energy levels) [82–84]. With
respect to the latter, the N-annulation of PDI raises the LUMO energy level of the PDI by
approximately 0.2 eV, and thus various derivates used as NFAs have led to OPVs with a
high operating Voc that exceeds 1.2 V when paired with wide-gap donor molecules [85].
Another key feature of the N-annulated PDI is that bromination is selective in the opposite
bay position, leading to a building block that can be used to construct PDI-core-PDI-type
molecular frameworks (vide infra). In this personal account, we provide a complete survey
of our group’s development of N-annulated PDIs for use as photoactive materials in OPV
devices. Beyond OPV device performance, we present efforts towards upscaling and indoor
light recycling. The chemical structures and electronic energy levels of the N-annulated
PDIs are presented in Figures 4 and 5, respectively. The chemical structures of the donor
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materials are shown in Figure 5, and the OPV parameters are summarized in Table 1. All
devices were fabricated in air using the inverted device architecture: ITO/ZnO/BHJ active
layer/MoOx/Ag unless stated otherwise.
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Table 1. Summary of the optoelectronic properties of PDI-Core-PDI dimers, PDI4 tetramers, PDI2

dimers, and asymmetric PDIs and the corresponding photovoltaic characteristics based on BHJ
OPV devices.

Compound Eg (eV) LUMO
(eV)

HOMO
(eV) Voc (V) Jsc

(mA cm−2) FF (%) PCE (%) Donor Processing Cond. Ref.

PDI-Core-PDI for binary OPVs

PDI-TII-B-PDI 1.4 −3.6 −5.0 0.93 1.1 34 0.4 PTB7-Th As-cast [86]

PDI-ISI-B-PDI 2.0 −3.6 −5.6 1.03 7.0 38 2.6 PTB7-Th As-cast [86]

PDI-DPP-B-PDI 1.7 −3.6 −5.3 0.97 6.0 50 2.9 PTB7-Th 0.5% DIO [86]

PDI-DPP-L-PDI 1.7 −3.7 −5.3 0.98 11.3 50 5.6 PTB7-Th 5 min SVA [84]

PDI-DPP-L-PDI 1.7 −3.7 −5.3 1.03 10.4 48 5.1 TTFQx-T1 10 min SVA [87]

PDI-BF2fz-PDI 2.0 −3.9 −5.9 0.65 2.0 48 0.6 PPDT2FBT 5 min SVA [88]

PDI-Th-PDI 2.2 −3.5 −5.7 0.99 5.6 37 2.0 PTB7-Th As-cast [89]

PDI-Th2-PDI 2.0 −3.5 −5.6 1.05 7.2 36 2.6 PTB7-Th As-cast [89]

PDI-F-Th-PDI 2.3 −3.5 −5.8 1.10 7.3 33 2.7 PTB7-Th 1% DMN [90]

PDI-Th2-PO-PDI 2.1 −3.6 −5.7 1.00 5.4 37 2.0 PTB7-Th 0.5% DIO [91]

PDI-Th2-B-PDI 2.2 −3.6 −5.8 1.03 10.0 37 3.9 TTFQx-T1 5% DPE + TA [92]

PDI-TPD-PDI 2.2 −3.7 −5.9 1.05 7.4 42 3.3 PBDB-T 3% DPE [93]

(PDI4 tetramers): PDI2-Core-PDI2 for binary OPVs

IDT-NPDI4 1.7 −3.6 −5.3 1.02 9.6 35 3.4 PTB7-Th 3% CN [94]

Th4 PDI4 2.1 −3.6 −5.7 0.99 10.6 43 4.5 PTB7-Th 3% CN [95]

PDI2 dimer for binary OPVs

tPDI2N-Hex 2.2 −3.8 −6.0 0.89 11.8 49 5.1 PTB7-Th As-cast [81]

tPDI2N-Et 2.2 −3.8 −6.0 1.13 11.0 61 7.6 P3TEA 2.5% ODT [81]

tPDI2N-Hex 2.2 −3.8 −6.0 1.03 12.5 49 6.3 TTFQx-T1 TA @180 ◦C [96]

PDI2Ac2 2.2 −3.8 −6.0 0.95 4.4 32 1.3 PTB7-Th As-cast [97]

tPDI2-NH 2.0 −3.8 −5.8 0.87 9.4 41 3.3 TTFQx-T1 TA @180 ◦C [96]

tPDI2N-benzyl 2.4 −3.6 −6.0 0.99 14.1 42 5.8 QX1 TA @180 ◦C [98]

tPDI2N-benzylF 2.4 −3.6 −6.0 0.96 15.1 41 5.8 QX1 TA @180 ◦C [98]

tPDI2N-benzylF5 2.4 −3.6 −6.0 0.96 14.4 40 5.5 QX1 TA @180 ◦C [98]

tPDI2N-EH 2.2 −3.7 −5.9 0.95 15.3 43 6.6 PTB7-Th 0.25% DIO [99]

tPDI2N-EH 2.2 −3.7 −5.9 1.04 9.4 59 5.7 BDT-QX 3% DPE [100]

tPDI2N-EH 2.2 −3.7 −5.9 1.09 11.7 51 6.6 QX3 As-cast [101]

tPDI2N-EH 2.2 −3.7 −5.9 1.04 10.5 58 6.4 QX1 ZnO/PDIN-hex [102]

tPDI2N-EH 2.2 −3.7 −5.9 1.21 8.2 55 5.5 PTQ10 Toluene + 1% DPE [85]

PDI2 dimers for ternary OPVs

tPDI2N-Hex 2.2 −3.7 −5.9 0.87 14.3 71 8.5 PBDB-T PBDB-T: PC61BM:
tPDI2N-Hex [103]

tPDI2N-EH 2.2 −3.7 −5.9 1.24 7.7 40 3.8 PTQ10 PTQ10: tPDI2N-EH:
PDI-EDOT-PDI [85]

tPDI2N-EH 2.2 −3.7 −5.9 0.86 13.2 69 7.9 PPDT2FBT FBT: PC61BM:
tPDI2N-EH [104]

PDI2 dimers for indoor OPVs

tPDI2N-EH 2.2 −3.7 −5.9 0.84 66.8 × 10−3 51 9.6 PPDT2FBT @1000 lux (warm
LED) [105]

tPDI2N-EH 2.2 −3.7 −5.9 1.07 139 × 10−3 48 11.7 PTQ10 @2000 lux (warm
LED) [85]

tPDI2N-EH 2.2 −3.7 −5.9 0.72 167 × 10−3 73 15.5 PPDT2FBT @2000 lux (warm
LED) [104]

Asymmetric dimers

PDI-DPP-IQ 1.5 −3.7 −5.2 0.75 2.5 42 0.8 P3HT 5 min SVA [82]

PDI-DPP-BTXI 1.6 −3.7 −5.3 0.95 3.8 31 1.1 PTB7-Th 10 min SVA [106]

NPDI-DPP-SePDI 1.6 −3.7 −5.3 0.76 2.7 38 0.8 PTB7-Th 5 min SVA [107]
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3.1. N-Annulated PDI Electron Acceptors (PDI-Core-PDI)
3.1.1. PDI-DPP-PDI

The organic dye diketopyrrolopyrrole (DPP) was utilized as a core between two PDI
units. DPP-based small molecules have been reported to organize in the film with solvent
vapor annealing (SVA) treatment, which was a motivation for its use [108]. DPP is a
relatively weaker acceptor than PDI, which creates a unique all-acceptor-based, push-pull
system with strong panchromatic light absorption (the chemical structure of the DPP
core is illustrated in Figure 6b). McAfee et al. [84] demonstrated the facile synthesis of
PDI-DPP-PDI using direct-heteroarylation (DHA) cross-coupling methods. The optical
absorption spectra of the PTB7-Th:PDI-DPP-DPI blend showed strong light absorption
from 400 to 800 nm with an increase at 586 nm upon SVA treatment for 2–5 min (Figure 5c),
which is attributed to the crystallization of the PDI-DPP-PDI molecule. A PCE of 5.6%
(Voc = 0.98 V; Jsc = 11.32 mA/cm2; FF = 50.1%) was achieved using chloroform SVA
treatment for 2.5 min. The J–V curves (Figure 6d) and EQE spectra (Figure 6e) of the
OPV devices with and without SVA treatment of the photoactive layer show that the SVA
treatment led to a significant increase in photocurrent generation in the visible region.
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Figure 6. (a) General chemical structure of the PDI-Core-PDI framework and chemical structure of
DPP-L (R = Octyl), DPP-B (R = 2-ethylhexyl), ISI-B, and TII-B dye cores used in PDI-core-PDI dimers.
(b) Device J–V curves, (c) film UV–Vis absorption spectra, and (d) device EQE of PTB7-Th:PDI-DPP-
PDI blends before and after SVA. (e) Device J–V curves, (f) film UV–Vis absorption spectra, and
(g) device EQE of PTB7-Th:PDI-X-PDI blends where X = TII-B, DPP-B, ISI-B [84,86,87]. (b–d), and
(e–g) reproduced with permissions from [84],[86] respectively. Copyright 2017 American Chemical
Society and 2017 Royal Society of Chemistry.
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Following this, McAfee et al. [87] demonstrated a multigram synthesis of PDI-DPP-
PDI, and the NFA molecule was blended with four different BDT-based donor polymers
(PTB7-Th, PBDB-T, J61, and TTFQx-T1) to identify best donor/acceptor pairings. The best
OPV device performance was obtained using the donor polymer PTB7-Th, providing a
PCE of 6.2% (Voc = 0.98 V; Jsc = 14.52 mA/cm2; FF = 44%). The pairing with TTFQx-T1
provided devices with a slightly lower PCE of 5.7% (Voc = 1.02 V; Jsc = 11.53 mA/cm2;
FF = 49%). Pairing with PBDB-T and J61 resulted in device performance drops, demon-
strating PCEs of 2.3% (Voc = 1.0 V; Jsc = 5.77 mA/cm2; FF = 40%) and 3.1% (Voc = 0.99 V;
Jsc = 6.66 mA/cm2; FF = 48%), respectively. Consistent for all blends was the use of a short
SVA treatment to crystallize the PDI-DPP-PDI acceptor and boost the OPV performance.

Further developing this type of NFA, McAfee et al. [86] investigated the role of other
dye-based cores, including DPP with branched side chains (DPP-B), isoindigo (ISI-B), and
thienylisoindigo (TII-B) (Figure 6a,b). The compounds were paired with the donor polymer,
PTB7-Th, devices were fabricated, and the OPV performance was measured. The devices
based on TII-B, DPP-B, and ISI-B showed much lower performances of 0.4% (Voc = 0.93 V;
Jsc = 1.09 mA/cm2; FF = 34%), 2.9% (Voc = 0.97 V; Jsc = 6.0 mA/cm2; FF = 50%), and 2.6%
(Voc = 1.03 V; Jsc = 6.97 mA/cm2; FF = 37%), respectively, (Figure 6g) compared to devices
based on the parent PDI-DPP-PDI NFA. This work highlights the importance of dye core
selection, specifically the use of DPP, and the role of side-chain engineering in which linear
side chains on the DPP core enable the formation of crystalline domains in the BHJ and
deliver the best OPV performance.

3.1.2. Boron Difluoride Formazanate Non-Fullerene Acceptor

Cann et al. explored the optoelectronic properties of N-annulated PDI NFA dimers
containing different cores connected to the PDIs with acetylene linkers [109]. They found
that by linking the PDI units to the dye cores through acetylene linkers, steric interactions
are minimized. This allows for strong electronic communication between the PDIs and the
dye cores, leading to intense panchromatic optical absorption. Motivated by this work and
with a goal to develop narrow-bandgap PDI-based NFAs, the formazanate (BF2fz) chro-
mophore was investigated as an electron-deficient core with strong light absorption [110].
A new NFA (PDI-BF2fz-PDI), comprised of a BF2fz core acetylene-linked to N-annulated
PDI endcaps, was introduced by Koeing et al. [88]. (Figure 7a). Figure 7b shows the
UV–Vis absorption spectra of PDI-BF2fz-PDI films before and after a 5 min chloroform SVA
treatment. Prior, SVA treatment was proven to induce crystallization of DPP-containing
PDIs, leading to significant changes in optical absorption [82]. After the 5 min chloroform
SVA treatment, a red shift of 150 nm in the onset of absorption was observed in both neat
and blend films (Figure 7b,c). Proof-of-concept OPV devices were fabricated to evaluate
the capabilities of the new molecule as an NFA. The PDI-BF2fz-PDI acceptor was used
as a third component in a ternary blend composed of FBT (donor polymer) and PC61BM
(fullerene acceptor) with a blend ratio of (1:1:0.5 w/w) and a 10 mg/mL total concentra-
tion. OPV devices with active layers treated under chloroform SVA conditions showed
enhanced photovoltaic performance compared to as-cast devices. The PCEs doubled due
to Jsc enhancement (Figure 7d,e). Surface morphologies (as determined by AFM) showed
distinct differences between the as-cast and SVA-treated blend films. The root mean square
surface roughness of the films increased from 1.9 nm for the as-cast films to 4.8 nm for the
SVA-treated films (Figure 7f). The enhanced performance in OPV devices was attributed to
the aggregation of PDI-BF2fz-PDI into phase-separated domains rather than crystallization.
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Figure 7. (a) Chemical structures of the PDI-BF2fz-PDI acceptor, (b) UV–Vis absorption spectra of
neat films before and after chloroform SVA, (c) UV–Vis absorption spectra, (d) device J–V curves,
(e) device EQE, and (f) AFM iamges comparing the effects of SVA using chloroform on ternary
blend OPV devices with FBT:PDI-BF2-PDI:PC61BM (1:1:0.5) active layers [88]. (b–f) reproduced with
permission from [88]. Copyright 2020 Royal Society of Chemistry.

3.1.3. PDI-Thiophene-PDI

Lowering the electron affinity (i.e., raising the LUMO energy level) [31] of PDI is
desired to increase the operating Voc in OPV devices by maximizing the energy gap between
the HOMO of the donor and the LUMO of the acceptor. The use of electron-rich thiophene
cores (donor) with the PDI dye (acceptor), thus applying the donor–acceptor (D–A) strategy,
was carried out to precisely tune energy levels and optical absorption. N-annulated PDI
dimers bearing various thiophene linkers (PDI-core-PDI) were reported by our group
(Figure 8a) [89–93]. Hendsbee et al. demonstrated that the use of thiophene or bithiophene
as the core destabilized the LUMO energy levels to 3.47 and 3.54 eV and electrochemical
bandgaps of 2.22 and 2.04 eV, respectively, relative to the parent N-hexyl PDI dimer
(tPDI2N-Hex; LUMO energy level = 3.76 eV; electrochemical band gap = 2.23 eV) [89]. The
PDI NFAs with thiophene cores were paired with the PTB7-Th donor polymer to deliver
OPV devices with high Voc values above 1 V. However, the inability of the NFAs to form
crystalline domains when compared to tPDI2N-Hex resulted in poor device performances.
To tackle this design drawback, thiophene core fusion was proposed to enhance the PDI
self-assembly and increase the acceptor domain crystallinity. Laventure et al. developed a
fused, thiophene-based PDI acceptor (F-NPDI2), which lead to devices with a higher Voc
(ca. 1.1 V) [90] and improved device PCEs.

Further chemical modification of the thiophene-based dimers was introduced by Welsh
et al., using dithienophosphole and borane incorporation [91,92]. P-phenyl dithienophosphole
oxide (Th2PO) was used as a core, providing the NFA PDI-Th2PO-PDI (Figure 8a). Again,
OPV devices based on this NFA and the PBDB-T donor polymer had high Voc values (1.1 V),
but only moderate PCE values (ca. 2.3%). In contrast, incorporating boron into the molecular
framework, namely, PDI-Th2B-PDI, led to a twisting of the structure [92]. With the addition of
the borane unit, the electrochemical bandgap increased from 2.12 eV for PDI-Th2PO-PDI to
2.20 eV in PDI-Th2B-PDI. OPV devices using this NFA, and the medium-gap donor polymer
TTFQx-T1(QX1) provided a PCE of 1.8% (Voc = 1 V; Jsc = 5.3 mA/cm2; FF = 33%) for the
devices with as-cast active layers. With thermal annealing of the active layers for 10 min
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at 180 ◦C, PCEs increased to 2.3% (Voc = 1 V; Jsc = 6.9 mA/cm2; FF = 33%). Use of a 5%
diphenyl ether solvent additive (DPE) during photoactive film formation, in addition to
thermal annealing for 10 min at 180 ◦C, led to a PCE of ~3.9% (Voc = 1.0 V; Jsc = 9.3 mA/cm2;
FF = 37%), nearly double that of the phosphine oxide analogue (Figure 8). For the PDI-Th2B-
PDI, the overlap of the thiophene π* orbitals and the boron Pz orbital [111] helps to stabilize
the LUMO, while for PDI-Th2PO-PDI, the LUMO is stabilized through the overlap of the
bithiophene π* orbital and exocyclic P—R σ* orbitals [112]. Both have a higher electron affinity
than the parent bithiophene analogue (PDI-Th2-PDI), but they have different geometries
due to the fused planar structure of Th2PO and the trigonal structure of Th2B, providing a
comparison of the effect of molecule shape on device characteristics.
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Figure 8. (a) Chemical structure of the PDI-Core-PDI framework and various thiophene core linkers,
(b) device J–V curves, (c) UV–Vis absorption spectra, and (d) device EQE for best devices with
as-cast and thermally annealed TTFQx-T1/acceptor active layers (green = TTFQx-T1/PDI-Th2-PDI;
red = TTFQx-T1/PDI-Th2PO-PDI; blue = TTFQx-T1/PDI-Th2B-PDI). (e) device J–V curves, (f) UV–
Vis absorption spectra, and (g) device EQE for best devices with as-cast, thermally annealed, and DPE
additive processed TTFQx-T1/PDI-Th2B-PDI active layers [92]. (b–g) reproduced with permission
from [92]. Copyright 2019 American Chemical Society.

Another thiophene building block, thieno[3,4-c]pyrrole-4,6-dione (TPD), was used as a
core to create the NFA PDI-TPD-PDI [93] (Figure 8). TPD is a commonly used building block
for constructing organic photoactive materials with an electron-deficient aromatic system,
a site for side-chain engineering, and activated CH bonds for facile functionalization using
DHA methods [113]. The PDI-TPD-PDI NFA molecule can be considered a hybrid structure
of our previously designed NFAs: PDI-DPP-PDI [86] and tPDI2N-Hex [81]. The use of TPD
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was to provide enough steric bulk between the two PDI units to twist the structure and
prevent significant aggregation, mimicking the effect in tPDI2N-Hex while being electron-
deficient, maintaining a low-lying LUMO energy level, and having a linear octyl chain
(such as within PDI-DPP-PDI) to enable the molecule to self-organize within the film. The
introduction of the TPD core did not have large impact on the ionization potential and
electron affinity values (IP = 5.9 eV, EA = 3.7 eV, and Eelec = 2.2 eV) relative to tPDI2N-Hex
with no core. A PCE of ~3.28% (Voc = 1.05 V; Jsc = 7.40 mA/cm2; FF = 42%) was realized
for OPV devices using the donor polymer PDBD-T with PDI-TPD-PDI. The use of the DPE
solvent additive during BHJ film formation, which induced phase separation, was key.

3.2. Tetramers

Indancenodithiophene (IDT) is a rigid, rod-like organic conjugated building block that
has been used to create one of the most successful NFAs to date, namely, ITIC [56,114].
Payne et al. used IDT as a core for four PDI units (synthesized via a 4-fold DHA coupling
method), providing the tetrameric NFA IDT–NPDI4 (Figure 9a), which exhibited with a
pseudo-butterfly structure [94]. The ease of functionalization of the thiophene-based core
provides a simple synthetic pathway towards tetrameric PDIs. The UV–Vis absorption
spectra of IDT, NPDI building blocks, and the IDT-NPDI4 NFA as thin films are shown in
Figure 9b. The absorption spectrum of the IDT-NPDI4 NFA is dominated by the four PDIs,
which have higher-energy bands attributed to the IDT core.
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Figure 9. (a) Chemical structure of IDT-NPDI4, (b) UV–Vis absorption spectra, (c) device J–V curves,
(d) device EQE of the PTB7:IDT-NPDI4 photoactive layers processed with various chloronaphthalene
(CN, additive) percentages. (e) Chemical structure of Th4-PDI4, (f) UV-Vis absorption spectra, (g)
device J–V curves, (h) device EQE of the PTB7:Th4-PDI4 photoactive layers with various CN percent-
ages [94,95]. (b–d) and (f–h) reproduced with permissions from [94,95], respectively. Copyright 2018
Royal Society of Chemistry and 2019 American Chemical Society.

To test the validity of IDT-NPDI4 as an NFA, OPV devices were fabricated by blend-
ing it with the PTB7-Th donor polymer. Various amounts of a chloronaphthalene (CN)
additive of 3%, 5%, and 7% in chlorobenzene, used during BHJ film formation, achieved
device PCEs of 3.03% (Voc = 1.03 V; Jsc = 8.53 mA/cm2; FF = 35%), 3.41% (Voc = 1.02 V;
Jsc = 9.62 mA/cm2; FF = 35%), and 2.9% (Voc = 1.00 V; Jsc = 8.44 mA/cm2; FF = 34%),
respectively. High Voc values >1 were obtained with modest Jsc values (8–10 mA/cm2)
but poor FFs (Figure 9c). The contribution of the IDT-NPDI4 NFA to light harvesting was
confirmed by EQE measurements (Figure 9d).
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A follow-up work by Koenig et al., which used a less rigid π-conjugated cyclooctate-
trathiophene (Th4) core, introduced the tetrameric NFA Th4PDI4 (Figure 9e) [95]. The new
NFA design was proposed to provide a different molecular shape when compared with
IDT-NPDI4; this might be the reason behind the poor FFs obtained. Testing the viability
of Th4PDI4 as an NFA, OPV devices were fabricated by pairing it with a PTB7-Th donor
polymer. Figure 9e shows the complementary absorption of Th4PDI4 (400–600 nm) and
PTB7-Th (600–750 nm). A device PCE of 2.2% (Voc = 1.01 V; Jsc = 5.1 mA/cm2; FF = 42%)
was obtained for devices with as-cast active layers. The addition of various amounts
of CN additive (1%, 3%, and 5% CN) during the BHJ film formation enhanced the de-
vice PCEs to 3.61% (Voc = 0.98 V; Jsc = 9.5 mA/cm2; FF = 39%), 4.52% (Voc = 0.99 V;
Jsc = 10.6 mA/cm2; FF = 43%), and 4.16% (Voc = 1.00 V; Jsc = 9.3 mA/cm2; FF = 45%), respectively
(Figure 9g). EQE measurements of devices with and without the 3% CN additive showed
a significant enhancement of the photocurrent generation when additives were used for
processing the BHJs (Figure 9h). While the IDT-NPDI4 and Th4PDI4 tetrameric NFAs
only provided modest PCEs, facile synthesis using DHA methods opens the possibility
for a larger number of tetrameric structures to be designed and synthesized for probing
structure–function relationships.

3.3. Side Chain Engineering of Perylene Diimide Dimers
3.3.1. Benzyl Side Chains

We have extensively studied the effect of side-chain engineering N-annulated PDI
dimers on OPV device performance [81,83,96,99,103,105] through the functionalization
of the pyrrolic N-atoms. Nazari eta al. developed three PDI dimers using benzyl-based
moieties at the pyrrolic N-atoms. Benzyl, 4-fluorobenzyl, and pentafluorobenzyl were
used as side chains to form the compounds tPDI2N-benzyl (1), tPDI2N-benzylF (2) and,
tPDI2N-benzylF5 (3), shown in Figure 10a [98]. The UV–Vis absorption spectra of the
neat PDI films and BHJ blended films (with either donor polymer PTB7-Th or QX1) are
shown in Figure 10b,c and exhibit complementary optical absorption. The photovoltaic
characteristics of (1), (2), and (3) were evaluated by blending them with PTB7-Th or QX1
for BHJ layer formation. OPV devices with PTB7-Th: NFA and QX1: NFA BHJ blends
demonstrated a similar trend in terms of photovoltaic characteristics (Figure 10d,e). The
PTB7-Th:1 blend provided the best device performance, demonstrating a PCE of 5.7%
(Voc = 0.96 V; Jsc = 11.7 mA/cm2; FF = 51%) compared to PCEs of 4.9% (Voc = 0.90 V;
Jsc = 11.0 mA/cm2; FF = 49%) and 4.2% (Voc = 0.89 V; Jsc = 10.2 mA/cm2; FF = 47%) for
devices based on the PTB7-Th:2 and PTB7-Th:3 BHJ blends, respectively. Switching to
the QX1 polymer donor resulted in higher device PCEs yet similar metrics, regardless
of the acceptor used: QX1:1 (PCE= 5.8%; Voc = 0.99 V; Jsc = 14.1 mA/cm2; FF = 42%),
QX1:2 (PCE= 5.8%; Voc = 0.96 V; Jsc = 15.1 mA/cm2; FF = 41%), and QX1:3 (PCE= 5.5%;
Voc = 0.96 V; Jsc = 14.4 mA/cm2; FF = 40%). It is important to note that the introduction of
F-atoms into the benzyl side chains stabilizes the frontier molecular orbital energy levels,
which directly correlate to a drop in Voc values for the OPV devices.

3.3.2. Alkyl Side Chains

The N-alkyl chain modification of twisted PDI dimers and its effect on OPV device
performance were first reported by Hendsbee et al. (Figure 11a) [81,99]. First, ethyl-(7b)
and hexyl-functionalized (7 or tPDI2N-Hex) N-annulated PDI dimers provided device
PCEs of 5.5% and 5.1%, respectively, when paired with a PTB7-Th donor polymer. Us-
ing the P3TEA donor polymer with PDI NFA 7b led to the higher device PCE of 7.5%
(Voc = 1.13 V; Jsc = 11 mA/cm2; FF = 61%), as shown in Figure 11b–d. The promising
photovoltaic performance coupled with the simple, scalable, and reproducible synthesis
encouraged us to further optimize these PDI derivatives and use green solvent processing
methods [99]. A series of eight different PDI dimers functionalized with alkyl chains
with lengths ranging from linear methyl (C1) to octyl (C8) and the branched alkyl chain
2-ethylhexyl (C8b) were synthesized and characterized, and their use in OPV devices
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was evaluated. Inverted-type OPV devices were fabricated with BHJ blends comprising
PTB7-Th and each PDI NFA, all processed from the green solvent 2Me-THF. It was found
that regardless of alkyl chain length, comparable photovoltaic performances were achieved.
Ethyl- and hexyl-functionalized PDI dimers gave good device PCEs of 4.8% (Voc = 0.95 V;
Jsc = 11.4 mA/cm2; FF = 43%) and 5.5% (Voc = 0.96 V; Jsc = 12.1 mA/cm2; FF = 45%). The
branched 2-ethylhexyl side-chain functionalized PDI dimer (C8b, tPDI2N-EH) provided
the best device performance with a PCE of 6.5% (Voc = 0.96 V; Jsc = 15.4 mA/cm2; FF = 43%)
(Figure 11e–g). From these results, we conclude that while the length of the side chain does
not matter significantly, the use of a longer and branched side chain produces a PDI NFA
that performs best in OPV devices.
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Figure 10. (a) Chemical structure of tPDI2N-benzyl (1), tPDI2N-beznylF (2), and tPDIN2-beznylF5
(3), (b) UV–Vis absorption spectra of the neat PTB7-Th, neat PDI 1–3, and BHJ blends, (c) UV–Vis
absorption spectra of the neat QX1, neat PDI 1–3, and BHJ blends, (d) device J–V curves of PTB7-Th:
PDI 1–3 blends (1:1), and (e) device J–V curves of QX1: PDI 1–3 blends (1:1.5) [98]. (b–e) reproduced
with permission from [98]. Copyright 2018 Royal Society of Chemistry.
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Figure 11. (a) Chemical structure of PDI dimers with various alkyl side chains (b) device J–V curves,
(c) device EQE, and (d) UV–Vis absorption spectra of OPV devices based on a blend of P3TEA and 7b
processed from 1,3,5-trimethyl benzene with 1,8-octane dithiol additive [81]. (e) device J–V curves,
(f) device EQE, and (g) UV–Vis absorption spectra of OPV devices based on PTB7-Th:C8b blend
films from 2Me-THF, as-cast and with different 1,8-diiodooctane (DIO) concentrations (v/v%) [99].
Note that 7b = tPDI2N-Hex and C8b = tPDI2N-EH. (b–d), and (e–g) are reproduced with permissions
from [81,99], respectively. Copyright 2016 Royal Society of Chemistry and 2018 Wiley.

As mentioned prior, the insertion of acetylene units as spacers in tPDI2N-Hex was
proposed as a strategy to control the steric hindrance between the PDI subunits [97].
Adding one acetylene spacer led to partially twisted dimer when compared to tPDI2N-
Hex, which is highly twisted. Adding two acetylene spacers rendered the PDI subunits
coplanar. However, acetylene spacers were found to reduce the material’s solubility in
organic solvents and thus induced strong aggregation in both solution and thin films. The
latter led to a dramatic deterioration in OPV device performance (PCE = 1.3%, Voc = 0.95 V;
Jsc = 4.4 mA/cm2; FF = 32%) compared to the devices using the parent tPDI2N-Hex
(PCE = 5.2%, Voc = 0.96 V; Jsc = 11.5 mA/cm2; FF = 47%). Thus, in-line with the current
literature on PDI-based NFAs, molecular-based NFAs using PDI subunits perform better in
OPV devices when the structure has non-planar (i.e., twisted) arrangements of the PDIs.
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3.3.3. Versatile Applications of t-PDI2N-Hex and t-PDI2N-EH in OPVs
Ternary Approach, Slot-Die (SD)-Coated Active Layers and Indoor Light Harvesting

The tPDI2N-Hex NFA was introduced as a third component in PBDB-T:PC61BM
BHJ blends to fabricate ternary OPVs. All the active layers were processed in air from
chlorobenzene, using 3% DIO as solvent additive. It was observed that 10 wt.% tPDI2N-Hex
was enough to enhance the device PCE from 8.1% for the binary blend (PBDB-T: PC61BM)
to 8.8% for the ternary blend (PBDB-T:PC61BM:tPDI2N-Hex). The device performance
enhancement was mainly due to an increase in the Voc from 0.80 V for the binary blend
to 0.87 V for the ternary blend. tPDI2N-Hex has optical absorption from 400 to 600 nm,
complementing the optical absorption of the PBDB-T:PC61BM blend.

Owing to the high Voc (1.0 V) values and the strong optical absorption in the visible
range (400–650 nm), OPV devices using the tPDI2N-EH NFA were evaluated for indoor
light harvesting applications [105]. BHJ blends were processed from o-xylene and made
use of the FBT donor polymer. Inverted-type OPV devices provided a PCE of 6.5% (Voc
= 1.03 V; Jsc = 11.9 mA/cm2; FF = 53%) under 1 sun illumination with spin-coated BHJs
(Figure 12a). With slot-die coating the BHJs, the inverted-type OPV devices provided a
PCE of 4.6% (Voc = 1.02 V; Jsc = 9.5 mA/cm2; FF = 48%). The drop in PCE observed in the
transition from spin coating to slot-die coating the BHJs was attributed to the slow drying
time associated with the slot-die coating, which allowed for unfavorable phase separation.
Under low-light illumination (cold and warm white LED source; 600 lux), OPV devices
with slot-die-coated BHJs had a PCE of 9.2% (Voc ≈ 0.82 V; Jsc ≈ 40.3 µA/cm2; FF ≈ 51%)
and an output power of Pout ≈16.6 µW/cm2, as shown in Figure 12b,c. Compared to OPV
devices using other acceptors (PC60BM, ITIC-M, and ITIC-F) and a reference Si diode, the
devices based upon tPDI2N-EH had the highest VOC values and PCEs second to only the
fullerene-based systems. These results demonstrated how N-annulated PDI-based NFAs
have utility for indoor photovoltaic applications.

A follow-up work by Farahat et al. introduced OPVs based on the FBT:PC61BM:
tPDI2N-EH (PDI) ternary blend for indoor light harvesting [104]. In this study, the PDI
acceptor was added to the FBT:PC61BM blend with content at 10–50% of the total concen-
tration (Figure 13a–c). Optimized OPV devices with spin-coated BHJs (ternary blend ratio
of 1:1.2:0.3) achieved a PCE of 7.9% (Voc = 86 V; Jsc = 13.4 mA/cm2; FF = 68%) compared
to a PCE of 7% (Voc = 76 V; Jsc = 12.5 mA/cm2; FF = 73%) for devices using a binary
BHJ blend (i.e., only FBT:PC61BM). Using PEIE/ZnO as the electron transport layer (ETL)
instead of ZnO provided similar device performance but with more consistency and re-
producibility (PCE = 7.4% for binary and PCE = 7.9% for ternary). Under the optimized
processing conditions, OPV devices with slot-die-coated binary blend BHJs had a drop in
performance, demonstrating a PCE of 6.8% (Voc = 78 V; Jsc = 12.3 mA/cm2; FF = 71%) when
compared to their spin-coated counterparts. On the other hand, OPV devices with slot-die-
coated ternary blend BHJs retained performance (PCE= 7.7%; Voc = 86 V; Jsc = 13 mA/cm2;
FF = 69%, Figure 13d) when compared to their spin-coated counterparts.

The optical absorption spectra of the FBT:PC61BM and FBT:PC61BM:PDI blended films
exhibited a strong visible light absorption which directly overlaps with the emission of
indoor lights (Figure 13e,f). Under low-light LED illumination [ca. 2000 lux (568 µW/cm2

respectively)], OPV devices with slot-die-coated binary or ternary BHJs achieved PCEs of
12% (Voc = 0.63 V; Jsc = 154 µA/cm2; FF = 70%) and 14% (Voc = 72 V; Jsc = 153 µA/cm2;
FF = 72%), respectively, as shown in Figure 13g. Devices with spin-coated BHJs under the
same conditions achieved PCEs of 13.1% (Voc = 0.63 V; Jsc = 162 µA/cm2; FF = 73%) and
15.5% (Voc = 72 V; Jsc = 167 µA/cm2; FF = 73%), respectively, as shown in Figure 13h.
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Figure 12. (a) Device J–V curves of the slot-die vs. spin-coated active layers based on PPDT2FBT
(FBT):tPDI2N-EH under 1 sun illumination, (b,c) J–V curves of the slot-die-coated active layers based
on different acceptors paired with FBT under 600 lux warm white 2800 K LED and cold white 5600 K
LED, respectively [105]. (a–c) Reproduced with permission from [105]. Copyright 2019 American
Chemical Society.
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Figure 13. (a) Device J–V curves of OPV devices with spin-coated active layers containing different
PDI% in the ternary system under 1 sun illumination; (b,c) are the corresponding device EQE and UV–
Vis optical absorption spectra, respectively. The control device corresponds to the binary FBT: PC61BM
system, (d) device J–V curves of OPV devices, spin-coated vs. slot-die, with binary and ternary active
layers under 1 sun illumination, (e) optical absorption spectra of the neat films spin coated from
o-xylene (10 mg/mL), (f) emission spectra of a 2700 K (warm) and 6500 K (cold) at 2000 lux LED
illumination, with the optical absorption spectrum of the spin-coated ternary blend [FBT: PC61BM:
PDI (1:1.2:0.3)] from a 20 mg/mL in o-xylene solution (containing 1% (v/v) p-anisaldehyde, AA)
superimposed to show the match between the emission spectra of the LEDs and the absorption
spectrum of the ternary blend, (g) device J–V curves of OPV devices slot-die-coated with binary
and ternary (20 wt.% PDI) active layers under different indoor light illuminations, and (h) device
J–V curves of OPV devices with spin-coated binary and ternary (20 wt.% PDI) active layers under
different warm indoor light illuminations. ZnO/PEIE was used as the ETL [104]. (a–h) Reproduced
with permission from [104]. Copyright 2020 American Chemical Society.

Slot-Die-Coated Active Layers OPVs with High Voc > 1 V

Our team further demonstrated the compound tPDI2N-EH as a versatile NFA by
pairing it with different donor polymers, processing BHJs under a variety of conditions,
and evaluating devices with a range of illumination intensities as detailed below. Achieving
high Voc values≥ 1 V are desired for OPV devices; thus, quinoxaline-based donor polymers
with deep HOMO energy levels are widely used to achieve such metrics. For our group,
pairing such polymers with tPDI2N-EH allowed for the realization of high Voc OPVs in
which the BHJ was processed via slot-die-coating from halogen-free solvents [85,100,101].
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Laventure et al. screened a series of BDT-QX donor polymers (QX1, QX2, QX3, QX4,
Figure 5) with tPDI2N-EH and compared BHJ formation using spin coating and slot-die
coating from non-halogenated solvents (Figure 14a–f) [100]. Spin-coated OPV devices with
QX1, QX2, QX3, and QX4, blended with tPDI2N-EH provided PCEs of 5.7% (Voc = 1.03 V;
Jsc = 9.4 mA/cm2; FF = 59%), 4.8% (Voc = 1.03 V; Jsc = 8.5 mA/cm2; FF = 54%), 4.5%
(Voc = 1.06 V; Jsc = 7.6 mA/cm2; FF = 55%), and 5.7% (Voc = 1.04 V; Jsc = 9.4 mA/cm2;
FF = 59%), respectively. Slot-die-coated devices based on the QX3 polymer resulted in a
PCE of 4.1% (Voc = 1.06 V; Jsc = 7.0 mA/cm2; FF = 56%). For all OPV devices, the VOC was
above 1 V. The diphenyl ether (DPE) solvent additive was found to be critical for increasing
the device performance while maintaining a fully halogen-solvent-free processing. 
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Figure 14. (a,b) Device J–V curves of spin-coated OPVs using the QX1–QX4: tPDI2N-EH (1:1 blend) 
active layer processed from o-xylene without and with 3% DPE additive, (c) device J–V curves of 
slot-die-coated OPVs using the QX3: tPDI2N-EH (1:1 blend) active layer processed from o-xylene 
without and with 3% DPE additive, (d–f) corresponding UV–Vis spectrum of the previous condi-
tions, respectively, (g–i) device J–V curves of slot-die-coated OPVs using the QX3: tPDI2N-EH (1:1 
blend) active layer processed from toluene without and with 3% DPE additive at different total con-
centrations, (j–l) corresponding UV–Vis spectrum of the previous conditions, respectively. (a–f) and 
(g–l) reproduced with permissions from [100], [101] respectively. Copyright 2019 American Chem-
ical Society. 

 

Figure 14. (a,b) Device J–V curves of spin-coated OPVs using the QX1–QX4: tPDI2N-EH (1:1 blend)
active layer processed from o-xylene without and with 3% DPE additive, (c) device J–V curves of
slot-die-coated OPVs using the QX3: tPDI2N-EH (1:1 blend) active layer processed from o-xylene
without and with 3% DPE additive, (d–f) corresponding UV–Vis spectrum of the previous con-
ditions, respectively, (g–i) device J–V curves of slot-die-coated OPVs using the QX3: tPDI2N-EH
(1:1 blend) active layer processed from toluene without and with 3% DPE additive at different to-
tal concentrations, (j–l) corresponding UV–Vis spectrum of the previous conditions, respectively.
(a–f) and (g–l) reproduced with permissions from [100,101] respectively. Copyright 2019 American
Chemical Society.
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Follow-up work by Tontori et al. investigated the effect of solvent additives (DIO and
DPE) on the blend morphology and aggregation behavior of BHJ blends based on QX3
and tPDI2N-EH [101]. Processing the BHJ with a DIO solvent additive induced excessive
crystallization of tPDI2N-EH within the polymer matrix, leading to poor OPV performance,
whereas processing the BHJ with DPE had a more suitable effect and, in turn, led to a
boost in the OPV performance. OPV devices based on the QX3:tPDI2N-EH (1:1) BHJ
with different solution concentrations (10, 15, and 20 mg/mL) were slot-die-coated from
toluene with and without the DPE additive (Figure 14g–l) and compared to devices with
spin-coated BHJs. OPV devices with BHJs processed with the DPE additive had a PCE of
7.3% (Voc = 1.09 V; Jsc = 12.4 mA/cm2; FF = 54%) compared to a PCE of 6.6% (Voc = 1.09 V;
Jsc = 11.7 mA/cm2; FF = 51%) for those processed without the additive. A transition to slot-
die-coated BHJs resulted in devices with a PCE of 6.5% (Voc = 1.08 V; Jsc = 10.5 mA/cm2;
FF = 58%) compared to a PCE of 6% (Voc = 1.06 V; Jsc = 13.0 mA/cm2; FF = 43%) for devices
processed without the additive. Little change was observed in the in device PCEs when
transitioning from spin- to slot-die-coating methods (using halogen-free solvents in air)
and, in all cases, the Voc values were maintained above 1 V.

Further, the QX3 donor polymer was replaced with a simplified version, namely,
PTQ10 polymer, which has a larger band gap (Egap, ca 2.6 eV) and led to even higher Voc
values (Figure 5). OPV devices with a PTQ10:tPDI2N-EH BHJ processed using slot-die coat-
ing from halogen-free solvents had a PCE of 5% (Voc = 1.2 V; Jsc = 8.0 mA/cm2; FF = 52%)
under 1 sun illumination (AM1.5G; 100 mW/cm2). Simialr OPV devices with spin-coated
BHJs had a slightly higher PCE of 5.5% (Voc = 1.21 V; Jsc = 8.2 mA/cm2; FF = 55%)
(Figure 15c,d), again demonstrating that the tPDI2N-EH NFA can be easily transitioned
to large-area devices. OPV devices were tested under low-light illumination conditions
(ca. 400, 1000, and 2000 lux, both with 2700 K and 6500 K LED light, corresponding to Pin
values between 113 and 610 µW/cm2) and provided maximum PCEs of 10.1% (Voc = 1.07 V;
Jsc = 105 µA/cm2; FF = 51%) and 10.4% (Voc = 1.08 V; Jsc = 118 µA/cm2; FF = 50%) with
2700 K and 6500 K, respectively (Figure 15f). These Voc values are among the highest
reported for indoor OPV devices [43]. To further improve the device PCEs, two strategies
were examined: i) ZnO surface modification with PDICA (a carboxylic acid modified PDI),
following a previous work reported by Abd-Ellah et al. [102], and ii) using the ternary
approach by employing PDI-EDOT-PDI [115] as a third component in PTQ10:tPDI2N-
EH. Using PDICA for ZnO modification enhanced PCEs under both 1 sun (PCE = 6.1%;
Voc = 1.24 V; Jsc = 8.9 mA/cm2; FF = 55%) and warm ca. 2000 lux LED illumination
(PCE= 11.7%, Voc = 1.07 V; Jsc = 139 µA/cm2; FF = 48%), as shown in Figure 15g. With the
ternary approach, a Voc of 1.24 V under one sun illumination and 1.11 V under ca. 2000 lux
LED illumination were achieved. Although the ternary approach resulted in reducing both
the device Jsc and FF, leading to an overall lower PCE under 1 sun, a PCE of ~10% under ca.
2000 lux LED illumination (Figure 15h) was achieved.

3.4. Asymmetric Perylene Diimides NFAs

Asymmetric (or unsymmetrical) linear conjugated molecules have emerged as use-
ful NFAs for high-performance OPV devices [116]. For example, asymmetric PDIs out-
performed symmetric PDIs when used as NFAs in OPV devices (PCE = 6.6%; Voc = 0.80 V;
Jsc = 14.8 mA/cm2; FF = 56% vs. PCE = 4.5%; Voc = 0.78 V; Jsc = 14.4 mA/cm2; FF = 40%) [117].
Our group reported on three different asymmetric PDIs and tested then as NFAs in OPV
devices (Figure 16a) [82,106,107]. Payne et al. introduced the first asymmetric molecule
(PDI-DPP-IQ) based on an NPDI, diketopyrrolopyrrole (DPP) and indoloquinoxaline (IQ)
building units connected via C–C bonds in a linear fashion [82]. OPV devices based on
PDI-DPP-IQ as an NFA, paired with P3HT as the donor polymer, showed a significant
performance enhancement after chloroform SVA treatment, demonstrating a PCE of 0.8%
(Voc = 0.75 V; Jsc = 2.5 mA/cm2; FF = 42%) compared to a PCE of 0.1% (Voc = 0.76 V;
Jsc = 0.6 mA/cm2; FF = 26%) prior to SVA treatment (Figure 16b). The device performance
enhancement was mainly attributed to a Jsc enhancement. The SVA treatment crystallized
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the PDI-DPP-IQ, leading to a red-shifting of the absorption spectrum (Figure 16c). The
enhancement in FF values after SVA treatment can be explained by the emergence of pre-
ferred structural rearrangement, forming well-defined nanomorphologies that enhanced
charge extraction [82]. Despite the low PCE values, the new asymmetric chemical design is
a guide for the development of future organic materials for organic electronics, especially
in terms of bandgap engineering.
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Figure 15. (a) UV–Vis absorption spectra of PTQ10:tPDI2N-EH (1:1) blend film from a toluene,
o-xylene, or TMB solvent containing 1% (v/v) DPE, (b) UV–Vis absorption spectra of spin-coated
and slot-die-coated films of the PTQ10:tPDI2N-EH (1:1)blend film from a 10 mg/mL and 15 mg/mL
toluene solution, respectively, containing 1% (v/v) DPE, (c,d) the corresponding device J–V curves,
respectively, under 1 sun illumination, (e) irradiance spectra of 2700 K and 6500 K LED, acting as the
illumination source for the low-light intensity iOPV measurements. The optical absorption spectrum
of the slot-die-coated blended film of the PTQ10:tPDI2-EH (1:1) from a 15 mg/mL toluene solution
containing 1% (v/v) DPE is superimposed to show the match between the emission spectrum of the
LED and the absorption spectra of the blend, (f) device J–V curves of the corresponding OPVs tested
under LED illumination of ca. 2000 lux (568 and 610 µW/cm2 for 2700 K and 6500 K, respectively),
and (g) device J–V curves of OPVs with PTQ10:tPDI2N-EH BHJs coated on top of ITO/ZnO/PDICA,
and (h) device J–V curves of the ternary OPVs with PTQ10:tPDI2N-EH:PDI-EDOT-PDI (1:0.8:0.2)
BHJs under 2000 lux LED illumination [85]. (a–h) reproduced with permission from [85]. Copyright
2020 Royal Society of Chemistry.

Next, the IQ dye was replaced with the N-(alkyl)benzothioxanthene-3,4-dicarboximide
(BTXI) dye, delivering the molecule PDI-DPP-BTXI. This molecule exhibited ambipolar
charge transport characteristics [106]. When paired with a PTB7-Th donor polymer, the OPV
device performance was a modest 0.6% (Voc = 1.0 V; Jsc = 2.1 mA/cm2; FF = 27%). However,
upon SVA treatment of the BHJ, the PCE doubled to 1.1% (Voc = 0.95 V; Jsc = 3.8 mA/cm2;
FF = 31%), as shown in (Figure 14d,e). Next, the BTXI dye was replaced with a Se-annulated
PDI dye (SePDI), producing the molecule NPDI-DPP-SePDI [107]. SVA treatment of the BHJ
lead to a slight redshift accompanied by the emergence of a new high energy peak at 568 nm
in the optical absorption spectrum. OPV devices with a BHJ comprising a PTB7-Th:NPDI-
DPP-SePDI blend showed a slightly enhanced performance PCE of 0.8% (Voc = 0.76 V;
Jsc = 2.7 mA/cm2; FF = 38%) with the BHJ SVA treatment compared to a PCE of 0.5%
(Voc = 0.76 V; Jsc = 2.0 mA/cm2; FF = 37%) without the BHJ SVA treatment (Figure 16f,g).
While the PCEs were low overall, the asymmetric-type PDIs offer unique optical profiles,
energy cascades, and films susceptible to crystallization upon SVA treatment; therefore,
further work is warranted to create structure–property–function relationships and develop
higher-performing photoactive materials.
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Figure 16. (a) Chemical structures of asymmetric PDI derivatives, (b) device J–V curves, and
(c) UV–Vis absorption spectra of OPV devices based on a blend of P3HT:PDI-DPP-IQ [82].
(d) Device J–V curves (e) and UV–Vis absorption spectra of OPV devices based on a blend of
PTB7-Th:PDI-DPP-BTXI [106]. (f) Device J–V curves and (g) UV–Vis absorption spectra of OPV
devices based on a blend of PTB7-Th:NPDI-DPP-SePDI [107]. (b,c), (d,e), and (f,g) reproduced
with permissions from [82,106,107], respectively. Copyright 2017 Royal Society of Chemistry, 2018
American Chemical Society and 2020 Wiley.
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4. Conclusions and Future Outlook

The N-annulated perylene diimide dye has proven to be a useful building block from
which to construct molecular-based non-fullerene acceptors for use in organic photovoltaic
cells. Key attributes of the N-annulation (in reference to the non-annulated perylene
diimide) are: (1) a destabilization of the frontier molecular orbital energy levels, leading
to a higher lying LUMO energy level which, in turn, allows for the realization of high
open-circuit voltages in devices that are routinely over 1 V with a maximum-to-date of
1.2 V, and (2) an additional site for side-chain installation which renders the molecular
compounds highly soluble in a range of suitable processing solvents, notably, halogen-
free solvents (e.g., o-xylenes) and biocompatible solvents (e.g., 2-methyl THF), which has
enabled the formation of large-area active layers via roll-to-roll compatible coating methods
(e.g., slot-die coating). Owing to strong visible light optical absorption (characteristic of the
perylene diimide chromophore), high device operating voltages, and an ability to be easily
processed via slot-die coating, organic photovoltaic devices based on N-annulated perylene
diimide non-fullerene acceptors have found best use in low-light applications, i.e., indoor
photovoltaics. A key remaining challenge is boosting the lower-than-expected fill factor
for the devices. A low electron mobility plagues these N-annulated perylene diimides,
and strategies to tune the electronics and control the molecular self-assembly to enable
highly ordered acceptor domains are warranted. The use of these compounds as third
components in ternary blend active layers to enhance visible light absorption and boost
voltages appears to be a promising route towards high-performance, roll-to-roll-processed
organic photovoltaic devices. As a final comment, we would like to note is that beyond
non-fullerene acceptor development, the N-annulated perylene diimide has proved quite
useful for creating new electron transport layers for use in photovoltaic devices, offering
an exciting opportunity for new molecular designs and synthetic strategies [118–123].
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