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Abstract: Organic azo dyes, which are widely used in industrial, health and cosmetic fields, pose
genotoxic risks due to their chemical structures; however, the molecular details of the undesirable
effects of these dyes on DNA have been poorly or insufficiently clarified. In this computational
molecular docking study, the DNA binding modes and binding affinities of 14 azo dyes, previously
determined to show DNA clastogenicity, were characterized using 2 different double-stranded DNA
(dsDNA) conformations (an intact dsDNA and dsDNA with an intercalation gap). In this study, it was
determined that 10 out of the 14 genotoxic azo dyes were strong dsDNA minor groove binders, while
the remaining ones formed tight binding complexes with dsDNA through intercalation or threading
intercalation modes. The azo, nitro, hydroxyl, ammonium, sulfonate, naphthalene, methoxyphenyl,
bromine, nitrophenyl, imidazole, amino-phenylethanol and chloro-nitrophenyl groups were found
to play primary role in the most favorable binding conformations of these dyes on dsDNA with an
affinity ranging from −6.35 kcal/mol to −9.42 kcal/mol. It was determined that dsDNA sequences
containing GT dinucleotides are frequently preferred in binding by these dyes, and that rings and
polar groups are important features for tight binding with dsDNA. It was concluded that these dyes
may be banned, or non-genotoxic congeners should be manufactured with appropriate molecular
optimization for the genetic health of the human population and for future generations.
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1. Introduction

Azo dyes are the largest colorant group, constituting 70% of all organic dyes produced
in the world [1]. Simple synthesis protocols, large structural diversity, high molar extinction
coefficients and medium-to-high fastness properties are the basis of such wide use of azo
dyes [1]. The first azo dye, aniline yellow, was produced by Mene in 1861 [2]. On the
other hand, dye production by diazotization and azo coupling method, as performed in
modern industry today, was first performed in 1875 by Caro and Witt in Badische Aniline
and Soda-Fabrik (BASF) [3].

Despite their widespread use around the world, serious biological effects of azo
dyes, especially carcinogenic, mutagenic and genotoxic effects, have been consistently
reported [4–8]. For instance, some industrial azo dyes are illegal additives that are fre-
quently analyzed in foodstuffs. Although they do not have any nutritional value for the
human body, they have toxic, carcinogenic and mutagenic effects that seriously harm
consumer health [9].

While some azo dyes (4-aminoazobenzene, o-aminoazotoluene, methyl yellow and
its derivatives, Sudan azo dyes and para red) are directly carcinogenic [10], others show
carcinogenicity in the form of electrophilic metabolites (benzidine, p-phenylenediamine,
etc.) [11]. Amido Black 10B, Basic red 51, Basic Brown 17, Disperse Red I, Disperse Red
13, Disperse Orange 1, Amaranth and Allura red were found to significantly increase the
frequency of his+ revertants in Salmonella typhimurium, induced primary DNA damage in
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the comet test and micronucleus formation, and significantly upregulated genes involved
in the inflammatory response, cell cycle control and apoptosis [12–16]. Acid Chrome Blue
K, on the other hand, showed its genotoxic effect by binding to the grooves of the DNA in
supercoiled plasmid pBR322 and by inducing the transition of the molecule to the nicked
DNA form [17]. As can be seen, the structural alterations in the DNA molecule induced
by azo dyes can adversely affect human health and jeopardize the molecular integrity of
this molecule. If the abnormal structural changes that occur in DNA include genes that
control the cell cycle, all these mutations, along with the disabling of apoptosis, can lead
to the onset of malignant transformation [18–20]. Therefore, elucidation of the genotoxic
action mechanisms of azo dyes at the molecular level is also of great importance in terms of
public health.

DNA molecules are made up of two long polynucleotide chains consisting of four types
of nucleotide subunits. Each of these chains is called a “DNA strand”. The hydrogen bonds
between the bases of the nucleotides hold the two chains together. Nucleotides consist of a
five-carbon sugar attached to phosphate groups and a nitrogen-containing base. Bases in
DNA can be adenine (A), thymine (T), cytosine (C) or guanine (G) [21–23].

As is known, small molecules interact with DNA through the mechanisms of inter-
calation or groove recognition [24,25]. Although the major groove of DNA contains more
hydrogen bonding donor and acceptor sites, it is less favorable than the minor groove for
binding of small molecules, and the majority of small ligands bind to minor grooves of
DNA [25,26]. Among these binding modes, intercalation is the mode for small and rigid
aromatic molecules to recognize DNA, while shape-selective agents generally bind to DNA
through minor grooves similar to a lock-and-key mechanism [26,27]. In this context, although
DNA is a known macromolecular target of azo dyes, studies characterizing the interaction
of these dyes with DNA at the molecular level are not sufficient [28]. In silico structure–
activity models have been acquiring more importance in elucidating the mechanisms of
action of genotoxic small molecules. In this context, the molecular docking method offers
unique advantages in harmonizing and correlating the data obtained from genotoxicity
and cytotoxicity tests with structural information. Using this method, the visualization
and analysis of the genotoxic mechanisms of small molecules at the molecular level can be
performed reliably [29–31].

Therefore, in this study, double-stranded DNA (dsDNA) binding modes and affinities
of certain genotoxic azo dyes, which were determined to interact or bind with dsDNA as
a result of a detailed literature analysis, were studied by the molecular docking method.
Two different dsDNA conformations were used to determine the dominant dsDNA bind-
ing modes of azo dyes: an intact dsDNA and dsDNA with a natural intercalation gap.
The mechanistic information obtained as a result of this study provides a molecular-scale
perspective on the dsDNA-damage-inducing potential of certain azo dyes.

2. Materials and Methods
2.1. Literature Filtering Criteria

Initially, we held the opinion that it would be useful to give information about the
selection criteria of certain azo dyes which were simulated for dsDNA interactions in our
study. In the literature filtering step, azo dyes showing experimental evidence of interacting
with dsDNA were selected. For this purpose:

1. In the Web of Science database, a total of 84 research articles were found by using a
combination of keywords “azo dye genotoxicity”.

2. In the second step, among these 84 articles, further filtering was performed by using a
combination of keywords, “genotoxicity DNA”; therefore, the total number of articles
was reduced to 28. Thus, articles on the studies of azo dyes in which the genotoxic
effect occurs due to intermolecular interactions with DNA were selected.

However, as is widely known, a positive result in genotoxicity/clastogenicity assay
performed with cellular systems may not necessarily be an indication of the potential of the
substance to cause direct DNA damage. Another point is that the induced lesions in DNA
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in the comet assay can be efficiently repaired by the cell in a short time [32]. Therefore, a
second criterion is whether the DNA damage revealed in genotoxicity tests is due to the
direct interaction of the test substance with DNA [32–34]. Considering this point, the
following further criteria were applied to rationalize the exact azo dye–DNA interaction:

a. In vivo micronucleus (MN) test result should be positive;
b. In vivo chromosome aberration (CA) test result should be positive;
c. Both in vitro comet and in vitro MN/CA test results should be positive;
d. Both in vivo comet and in vivo MN/CA test result should be positive;
e. Capability of forming DNA adducts in DNA-binding assays.

As a result, p-aminoazobenzene, o-aminoazotoluene, p-dimethylaminoazobenzene,
phenazopyridine, Acid Chrome Blue K, Basic Red 51, Basic Brown 17, Amaranth, Allura
Red, C.I. Disperse Blue 291, Amido Black 10B, C.I. Disperse Red 1, Disperse Orange 1 and
Disperse Red 13 dyes were selected as certain DNA-reactive molecules to be simulated in
molecular docking studies.

2.2. Receptor/Ligand Retrieval

In this study, azo compounds (Figure 1) (p-aminoazobenzene, o-aminoazotoluene,
p-dimethylaminoazobenzene, phenazopyridine, Acid Chrome Blue K, Basic Red 51, Basic
Brown 17, Amaranth, Allura Red, CI Disperse Blue 291, Amido Black 10B, CI Disperse Red
1, Disperse Orange 1 and Disperse Red 13), that were simulated based on their interactions
with dsDNA, were downloaded in the sdf format from the PubChem database, National
Library of Medicine (NIH). On the other hand, two receptor dsDNA molecules (PDB ID:
1MKL; resolution: not applicable; PDB ID: 1HJB; resolution: 3.00 Å) was downloaded
from the RCSB Protein Data Bank in the pdb format. 1MKL is a 20-nucleotide dsDNA
that possesses the intercalated aflatoxin B1 molecule (therefore, an intercalation gap) on its
structure. On the other hand, the double-stranded crystallographic 1HJB consists of a total
of 52 nucleotides in which the numerical distribution of A, T, G and C bases (14, 14, 12 and
12, respectively) are balanced; therefore, it does not possess a significant bias in favor of
any nucleotide. Therefore, the 1HJB model isolated from Homo sapiens can be a preferable
crystallographic structure in molecular docking simulations to better reflect the binding
site preferences of azo compounds on the DNA molecule. The rationale for choosing two
different dsDNA conformations—with and without an intercalation gap—in our study was
to determine which binding mode (intercalative and groove binding) of azo dyes were
more dominant.

2.3. Control Dockings

Control groups in molecular docking is important for success [35]. For this purpose,
aflatoxin B1 (AFB1), a known DNA intercalator/minor groove binding agent, was used
as the positive control in our study. In addition, as a negative control, aspirin (acetylsalicylic
acid), a non-steroidal anti-inflammatory (NSAID) drug, which is experimentally proven to
not interact strongly with DNA and to be non-genotoxic, was used [36–38]. Although the
intercalative binding modes of both AFB1 and aspirin [39] have been reported in the litera-
ture, AFB1 can also interact with dsDNA through the minor groove binding mode [36,40].
Therefore, as described in the previous section, our docking simulations were performed
using two different target conformations—dsDNA with an intercalation gap (1MKL) and
an intact dsDNA (1HJB)—to avoid possible false positive or false negative binding poses.
Thus, the different binding modes of AFB1 and aspirin arising from conformational changes
in dsDNA have been revealed, and it has been shown which of these binding modes was
energetically more favorable. Therefore, the positive and negative control groups used in our
docking experiments ultimately provided a validation of the employed docking protocol.
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2.4. Receptor/Ligand Preparation and Molecular Docking

In this study, 14 azo dyes (Table 1) and the control ligands downloaded from PubChem
database in the sdf format were geometrically optimized using the Merck Molecular Force
Field 94 (MMFF94) in the Avogadro program, and subsequently saved in pdb format [41].
MMFF94 is an efficient force field in the optimization of organic molecules [42] and provides
reasonable accuracy in the geometric optimization of azo dyes and their metabolites [43,44].
On the other hand, the crystallographic dsDNA structures (1MKL and 1HJB) used as the
target receptors in our study were prepared by removing the bound ligand and protein
complexes in the Discovery Visual Studio v16 program and recorded in pdb format prior
to docking.
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Table 1. PubChem CID, molecular weight and molecular formula of the genotoxic azo dyes and
their metabolites.

No Compound PubChem
CID

Molecular
Weight (g/mol) Molecular Formula

Genotoxic azo dyes
1 p-Aminoazobenzene 6051 197.24 C12H11N3
2 o-Aminoazotoluene 7340 225.29 C14H15N3

3 p-Dimethylaminoazobenzene 6053 225.29 C14H15N3 or
C6H5N=NC6H4N(CH3)2

4 Phenazopyridine 4756 213.24 C11H11N5
5 Acid Chrome Blue K 135659037 586.4 C16H9N2Na3O12S3
6 Basic Red 51 166491 279.77 C13H18ClN5
7 Basic Brown 17 135515517 401.8 C19H20ClN5O3

8 Amaranth 13506 604.5 C20H11N2O10S3.3Na or
C20H11N2Na3O10S3

9 Allura Red 33258 496.4 C18H14N2Na2O8S2
10 C.I. Disperse Blue 291 92446 509.3 C19H21BrN6O6
11 Amido Black 10B 135442942 616.5 C22H14N6Na2O9S2
12 C.I. Disperse Red 1 17886 314.34 C16H18N4O3
13 Disperse Orange 1 17414 318.3 C18H14N4O2
14 Disperse Red 13 18516 348.78 C16H17ClN4O3

For molecular modelling, the new AutoDock Vina (version 1.2.0, Center of Compu-
tational Structural Biology—Scripps Research, La Jolla, CA, USA) was used to perform
rigid receptor–flexible ligand docking simulations in our study. Along with AutoDock4
(AD4), AutoDockGPU, AutoDockFR and AutoDock-CrankPep, AutoDock Vina (Vina) is
one of the docking engines in the AutoDock Suite and is among the most widely used and
successful docking programs in the world. The reasons for this success are its ease of use,
speed (up to 100 times faster than AD4) and open source code, both in the suite and when
compared with other docking programs [45].

In the molecular docking studies of azo dyes against two different dsDNA conforma-
tions, polar hydrogen atoms in receptor and ligand molecules were retained, while nonpolar
hydrogens were merged and then the Gasteiger charges of the ligands were calculated with
AutoDockTools, as previously described [46]. On the other hand, the Kollmann charges
were added for the target receptors. During the docking experiments, all the rotatable
bonds of the azo dyes and control ligands were allowed to rotate freely, and the prepared
dsDNA and ligand structures were saved in PDBQT format. Two different grid box sizes
were determined in dockings with two different dsDNA conformers: 90 × 90 × 90 Å points
(x: 118.9; y: 93.2; z: 14.1) for dsDNA with an intercalation gap; 80 × 80 × 160 Å points (x:
24.8; y: 91.3; z: 4.6) for intact dsDNA, using a grid spacing of 0.375 Å. These grid box sizes
included the entire dsDNA structure as the search space and adequately covered all the
major and minor grooves of these target receptors.

For all ligands and controls, 2 separate docking runs were performed (40 dockings
for each ligand with an exhaustiveness value of 200) against 2 different dsDNA conforma-
tions. Following docking, all potential binding modes of the ligands were clustered by
AutoDock Vina 1.2.0 and were ranked based on the binding affinity (∆G◦; kcal/mol) of
the ligand conformation which showed the lowest binding free energy against the dsDNA
targets. The Best-ranked conformation of the ligands obtained by AutoDock Vina 1.2.0
among different poses on the targets was visualized and analyzed using Discovery Studio
Visualizer v16.

3. Results and Discussion
3.1. Control Dockings

In this study, aflatoxin B1 (AFB1) and aspirin (acetylsalicylic acid) were used as internal
controls for the validation of the docking protocol. Control calculations are important to the
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success of docking experiments; control molecules are useful in distinguishing real active
molecules from real inactive molecules [35]. The positive control molecule AFB1 exhibited in-
tercalation and minor groove binding mode in dsDNA (Table 2), and both modes of binding
are consistent with the literature [36,40]. However, the dsDNA intercalation mode of AFB1
was energetically more favorable (∆G◦ = −8.64 kcal/mol) (Figure 2a, Table 2). The negative
control aspirin binds energetically favorably to both dsDNA conformations (intact dsDNA,
dsDNA with intercalation gap), whereas it binds more favorably (∆G◦ = −6.10 kcal/mol) to
dsDNA with an intercalation gap (Figure 2b, Table 2). The docking conformation of aspirin
is in agreement with the reported experimental data. A previous spectroscopic and docking
study showed that the dominant binding mode of aspirin to DNA was intercalative [39].
Therefore, positive and negative control ligands (AFB1 and aspirin) that we used in our study
provided validation for further docking simulations with azo compounds.

Table 2. Docking results of 14 genotoxic azo dyes and control compounds showing the binding free
energy (BFE), dual binding mode and intermolecular interactions with dsDNA.

Dye (Ligand) BFE (kcal/mol) Binding Mode Intermolecular Interactions

AFB1
(positive control) −8.64 Intercalation 1 carbon–hydrogen bond (Cyt15), 9 pi–pi

stacked (Cyt5, Gua6, Gua16)

−8.12 Minor groove 3 H bonds (Ade11, Gua18)

Aspirin
(negative control) −6.10 Intercalation 1 H bond (Gua6), 6 pi–pi stacked (Cyt5,

Gua6, Cyt15, Gua16)

−5.77 Minor groove 4 H bonds (Gua18, Thy19, Gua20)

p-Aminoazobenzene −6.49 Intercalation 2 H bonds (Gua6), 6 pi–pi stacked (Cyt5,
Gua6, Gua16, Cyt15)

−6.45 Minor groove 3 H bonds (Gua12, Cyt16, Thy17),
1 pi–donor H bond (Gua12)

o-Aminoazotoluene −6.92 Threading intercalation

1 H bond (Gua16), 6 pi–pi stacked (Cyt5,
Gua6, Cyt15, Gua16), 2 pi–pi T-shaped
(Gua6, Ade7), 5 pi–alkyl (Cyt5, Gua6,

Cyt15, Gua16)

−6.73 Minor groove 2 H bonds (Gua12, Thy17)

p-Dimethylaminoazobenzene −6.50 Threading intercalation
1 carbon–hydrogen bond (Gua16), 6 pi–pi

stacked (Cyt5, Gua6, Cyt15, Gua16),
1 pi–pi T-shaped (Gua6)

−6.66 Minor groove 3 H bonds (Ade11, Gua18, Thy19),
1 carbon–hydrogen bond (Ade11)

Phenazopyridine −6.69 Intercalation
2 H bonds (Cyt15, Gua16), 1 pi–donor H

bond (Gua16), 6 pi–pi stacked (Cyt5,
Gua6, Cyt15, Gua16)

−6.94 Minor groove 4 H bonds (Gua18, Thy19, Gua20),
1 carbon–hydrogen bond (Ade11)

Acid Chrome Blue K −8.71 Threading intercalation

4 H bonds (Cyt5, Gua6, Ade7, Cyt15),
1 carbon–hydrogen bond (Cyt15),

11 pi–pi stacked (Cyt5, Gua6,
Cyt15, Gua16)

−9.36 Minor groove

6 H bonds (Ade9, Cyt10, Ade13, Gua18,
Gua20), 3 carbon–hydrogen bonds

(Gua12, Thy19, Gua20),
1 pi–sulfur (Ade9)
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Table 2. Cont.

Dye (Ligand) BFE (kcal/mol) Binding Mode Intermolecular Interactions

Basic Red 51 −6.94 Threading intercalation

2 carbon–hydrogen bonds (Ade7, Gua16),
1 pi–donor hydrogen bond (Gua6),

6 pi–pi stacked (Cyt5, Gua6,
Cyt15, Gua16)

−6.35 Minor groove 1 H bond (Gua12), 1 carbon–hydrogen
bond (Cyt16)

Basic Brown 17 −8.50 Threading intercalation

2 H bonds (Ade7, Cyt15),
2 carbon–hydrogen bonds (Gua6),
1 pi–donor hydrogen bond (Gua6),

9 pi–pi stacked (Cyt5, Gua6,
Cyt15, Gua16)

−8.79 Minor groove
1 attractive charge (Thy19), 6 H bonds
(Ade11, Ade13, Cyt16, Thy17, Gua18),

2 carbon–hydrogen bonds (Gua18)

Amaranth −8.74 Threading
intercalation

4 H bonds (Gua6, Cyt15, Gua16),
1 pi–sulfur (Ade7), 11 pi–pi stacked
(Cyt5, Gua6, Cyt15, Gua16), 1 pi–pi

T-shaped (Ade7)

−9.42 Minor groove

5 H bonds (Ade9, Gua12, Thy17, Gua20,
Gua21), 1 carbon–hydrogen bond

(Gua12), 1 pi–donor hydrogen bond
(Ade11), 1 pi–sulfur (Gua20)

Allura Red −8.19 Intercalation

1 H bond (Cyt15), 1 carbon–hydrogen
bond (Gua16), 1 pi–donor hydrogen bond

(Gua6), 10 pi–pi stacked (Cyt5, Gua6,
Cyt15, Gua16), 2 pi–alkyl (Cyt5, Gua6)

−8.80 Minor groove
5 H bonds (Ade9, Ade11, Gua12, Gua20,

Gua21), 1 carbon–hydrogen bond
(Gua12), 1 pi–sulfur (Gua20)

C.I. Disperse Blue 291 −7.39 Threading intercalation

2 H bonds (Gua6, Cyt15),
3 carbon–hydrogen bond (Cyt15, Ade17),

6 pi–pi stacked (Cyt5, Gua6, Cyt15,
Gua16), 3 pi–alkyl (Cyt15, Gua16)

−6.90 Major groove 4 H bonds (Ade13, Cyt14), 1 pi–pi
T-shaped (Gua14), 1 Pi–alkyl (Gua14)

Amido Black 10B −8.30 Threading
intercalation

4 H bonds (Cyt15, Gua16), 6 pi–pi
stacked (Cyt5, Gua6, Cyt15, Gua16)

−9.23 Minor groove 7 H bonds (Ade5, Thy22, Thy23, Gua24),
2 pi–pi T-shaped (Gua21, Gua24)

C.I. Disperse Red 1 −6.94 Threading
intercalation

6 pi–pi stacked (Cyt5, Gua6,
Cyt15, Gua16)

−7.67 Minor groove 3 H bonds (Ade9, Gua20), 1 pi–donor
hydrogen bond (Ade11)

Disperse Orange 1 −8.18 Threading
intercalation

6 pi–pi stacked (Cyt5, Gua6,
Cyt15, Gua16)

−8.23 Minor groove 3 H bonds (Ade9, Gua20)

Disperse Red 13 −7.27 Threading
intercalation

1 pi–donor hydrogen bond (Gua6),
1 pi–sigma (Gua16), 6 pi–pi stacked

(Cyt5, Gua6, Cyt15, Gua16), 2 pi–alkyl
(Cyt15, Gua16)

−7.68 Minor groove 4 H bonds (Ade9, Gua12, Gua20)

BFE: Binding free energy (kcal/mol).
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Figure 2. Molecular surface view of the best-ranked conformations of aflatoxin B1 (a,b) and aspirin
(c,d) on two different conformations of dsDNA (with and without an intercalation gap) and 3D ligand–
dsDNA interaction diagrams. Notice that both the controls, aflatoxin B1 and aspirin, are snugly fitted
on the dsDNA with an intercalation gap (a,c).

3.2. Molecular Docking against Intact dsDNA and dsDNA with Natural Intercalation Gap

In our study, the docking calculations of 14 azo dyes (p-aminoazobenzene, o-aminoazotoluene,
p dimethylaminoazobenzene, phenazopyridine, Acid Chrome Blue K, Basic Red 51, Ba-
sic Brown 17, Amaranth, Allura Red, C.I. Disperse Blue 291, Amido Black 10B, C.I.
Disperse Red 1, Disperse Orange 1, Disperse Red 13), which were confirmed to be geno-
toxic as a result of a comprehensive literature review, were performed against two different
dsDNA conformations: an intact dsDNA and dsDNA with an intercalation gap. Since the
docking simulations using a single receptor conformation can be misleading in terms of
the real binding mode of the molecule, such an approach could be used as a strategy to
determine which binding mode is energetically more favorable.

P-aminoazobenzene interacted with both dsDNA conformations (intact dsDNA and
dsDNA with an intercalation gap) with very close binding affinities (∆G◦ = −6.45 kcal/mol;
∆G◦ = −6.49 kcal/mol, respectively) (Table 2). While hydrogen bonds were more nu-
merous in the interaction of p-aminoazobenzene with the minor groove of intact dsDNA,
hydrophobic pi–pi stacking interactions played the most important role in binding with
dsDNA carrying an intercalation gap (Table 2). While the interaction with the minor groove
was through the phenyl, azo and aniline groups of p-aminoazobenzene, azo and ani-
line groups, on the other hand, played an important role in the snug fit of this ligand
into the dsDNA with an intercalation gap (Figures 3a,b and 4a,b). O-aminoazotoluene was
slightly favorably bound to dsDNA containing an intercalation gap compared with the
intact dsDNA (∆G◦ = −6.92 kcal/mol; ∆G◦ = −6.73 kcal/mol, respectively) (Table 2).
Hydrophobic stacked pi–pi and pi–alkyl interactions played the most important role in
the interaction of o-aminoazotoluene with dsDNA carrying an intercalation gap. On the
other hand, hydrogen bonds played a dominant role in the interaction with the minor
groove of intact dsDNA (Table 2). While 2-methyl aniline and 2-methyl phenyl groups were
effective in the threading intercalation of o-aminoazotoluene, only the azo (–N=N–) struc-
ture was effective in the interaction of this ligand with the minor groove of intact dsDNA
(Figures 3c,d and 4c,d). In the interaction of p-dimethylaminoazobenzene with the dsDNA
molecule, the dsDNA affinity of the intercalation (threading) and minor groove binding
modes were quite close to each other (∆G◦ = −6.50 kcal/mol; ∆G◦ = −6.66 kcal/mol, re-
spectively) (Table 2). While hydrophobic pi–pi interactions played the most important
role in the snug fit of this ligand to the dsDNA containing the intercalation gap, the
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minor groove recognition mode basically occurred through the formation of H bonds
(Table 2). Moreover, it was found that the aniline group was effective in the threading
type intercalation of p-dimethylaminoazobenzene on dsDNA, while the azo (–N=N–)
structure was effective in convergence and binding to DNA via the minor groove recogni-
tion (Figures 3e,f and 4e,f). In the intermolecular interaction of phenazopyridine with the
dsDNA molecule, the minor groove binding mode was slightly more favorable than the
intercalative binding (∆G◦ =−6.94 kcal/mol; ∆G◦ =−6.69 kcal/mol, respectively) (Table 2).
While hydrogen bonds played the dominant role in the interaction of phenazopyridine with
the minor groove of the dsDNA molecule, H bonds and hydrophobic pi–pi interactions
are prominent in the intercalative binding mode of this ligand (Table 2). The minor groove
binding mode of this ligand was mediated by azo and amine groups, while azo, pyridine
and amine groups played a dominant role in the intercalative binding of phenazopyridine
(Figures 3g,h and 4g,h).

In an in vivo comet assay conducted with eight different mouse organs, p-aminoazobenzene,
o-aminoazotoluene, p-dimethylaminoazobenzene and phenazopyridine caused DNA frag-
mentation in the stomach, colon, lung, urinary bladder, brain and bone marrow, and also
caused tumor formation in the liver, lung, urinary bladder and colon [47]. While there is
no correlation between the genotoxic potency and the number of azo bonds for these four
compounds, the exocyclic amino group of these derivatives (even other azo dyes which
possess this group) has been shown to be the critical unit for genotoxicity or carcinogenicity,
as it undergoes N-oxidation by cytochrome P450 in the liver to form reactive electrophiles
that induce the formation of DNA adducts [48–50]. This reported literature data is also
in agreement with our docking results, as exocyclic amino groups showed efficacy in the
most energetically favorable interactions of these four ligands against the dsDNA (Table 2,
Figure 3a–h).

In the intermolecular interaction of Acid Chrome Blue K (ACBK) with the dsDNA, the
minor groove binding mode was considerably more favorable compared with the inter-
calative binding (∆G◦ = −9.36 kcal/mol; ∆G◦ = −8.71 kcal/mol, respectively) (Table 2).
H bonds played an important role in the minor groove recognition of ACBK with the ds-
DNA molecule, while H bonds and hydrophobic pi–pi stacking contacts were more promi-
nent in the intercalative (threading) binding mode of this ligand (Table 2). The minor groove
binding mode of this ligand was mediated by sulfonic, naphthalene (hydroxyl groups)
and phenol groups (hydroxyl groups); meanwhile, sulfonic and naphthalene rings played
a dominant role in its intercalative binding mode (Figures 3i,j and 4i,j). Although there
are no adequate studies on the genotoxicity of ACBK in the literature, in a DNA binding
assay conducted using plasmid pBR322 DNA, it was found that ACBK was snugly fit
into the minor groove of DNA, and the hydroxyl and sulfonic acid moieties have been
reported to play a primary role in this binding mode [17]. Additionally, it was shown
that an efficient DNA strand cleavage occurred in the presence of a high concentration
of ACBK in the irradiated plasmid DNA [17]. These experimental results are in excellent
agreement with our docking study, since the dsDNA minor groove binding mode of ACBK
had occurred primarily through sulfonic acid and hydroxyl groups; furthermore, the minor
groove binding mode of ACBK was energetically quite favorable based on the docking
experiment (Table 2, Figure 3i,j).
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In the intermolecular interaction of Basic Red 51 with the dsDNA molecule, the
intercalative (threading) binding mode was more favorable than minor groove recognition
(∆G◦ = −6.94 kcal/mol; ∆G◦ = −6.35 kcal/mol, respectively) (Table 2). While H bonds
and hydrophobic pi–pi-stacked contacts played an important role in the intercalative
binding mode of Basic Red 51 against the dsDNA molecule, H bonds were more prominent
in the minor groove binding mode of this ligand (Table 2). The mode of intercalative
binding of this ligand to dsDNA was mediated by the imidazole ring, phenyl, and tertiary
amine (on the phenyl), while azo and imidazole rings played a dominant role in the
minor groove binding (Figures 3k,l and 4k,l). In the in vitro comet and cytokinesis-blocked
micronucleus tests performed on HepG2 cells, Basic Red 51 significantly increased DNA
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damage (DNA fragmentation and micronucleus, respectively) compared with the control
group. Researchers have suggested that the resulting clastogenic damage may be partially
due to the azo group in the dye [16]. In our docking study, imidazole ring, phenyl and
tertiary amine were the groups shown to be effective in intercalation (Figure 3k,l), which is,
energetically, the most favorable binding conformation of Basic Red 51 against the dsDNA.

However, considering that the cellular DNA used in the reported study does not
contain intercalation gaps, minor groove binding and thus the effect of azo and imidazole
groups may also be responsible for the induced genotoxicity in HepG2 cells [16].

In the interaction of Basic Brown 17 with dsDNA, the minor groove recognition was
more efficient than the intercalative (threading) binding mode, and in the minor groove
recognition mode, Basic Brown 17 showed a very high binding affinity with dsDNA
(∆G◦ = −8.79 kcal/mol; ∆G◦ = −8.50 kcal/mol, respectively) (Table 2). While H bonds
and electrostatic interactions played the dominant role in the groove recognition mode, hy-
drophobic pi–pi-stacked contacts and H bonds were active in Basic Brown 17’s intercalative
binding mode (Table 2).

The nitro, azo, hydroxyl and ammonium groups were effective in the minor groove
recognition of this ligand, whereas the ammonium, naphthalene and its hydroxyl group,
and 2-nitroaniline moieties in the molecular structure of Basic Brown 17 played significant
role in the intercalative binding mode with dsDNA (Figures 3m,n and 5a,b). Basic Brown 17
significantly induced the formation of DNA fragments at all concentrations used in the
in vitro comet test and chromosomal damage in the micronucleus test in HepG2 cells [16].
Researchers attributed DNA damage induced by Basic Brown 17 partially to the azo group
(R–N=N–R′) in its structure. These reported results are in agreement with our docking
study, as the azo group, as well as the nitro, hydroxyl and ammonium groups, are active in
minor groove recognition, which is the most favorable binding mode of this agent with
dsDNA (Table 2). The results obtained from the docking of Basic Brown 17 also show that
the docking conformational search can produce the correct molecule orientation compatible
with the experimental results.

Amaranth’s interaction with dsDNA through the minor groove was considerably
stronger compared with the intercalative (threading) mode and exhibited a very high bind-
ing affinity for dsDNA in the minor groove recognition mode (∆G◦ = −9.42 kcal/mol;
∆G◦ = −8.74 kcal/mol, respectively) (Table 2). Basically, many H bonds were effective
in Amaranth’s snug fit to the minor groove, while a large number of hydrophobic pi–pi
contacts and a small amount of H bonds played a role in the intercalation mode (Table 2).
While sulfonate, hydroxyl groups and naphthalene rings in its molecular structure played
a significant role in the minor groove binding mode of Amaranth, sulfonate and naphthalene
rings were effective in the intercalative binding mode (Figures 3o,p and 5c,d). Amaranth can
bind to DNA as shown by UV–vis experiments in which a distinct isosbestic point at 297 nm
was observed, suggesting binding of the dye to the DNA [51]. Additionally, Amaranth
induced chromosomal damage (specially chromatid breaks) in Chinese hamster fibroblast
cell line and increased single-strand DNA breakage in Saccharomyces cerevisiae in the comet
assay [15,51]. These results are in agreement with our docking study, because Amaranth
formed highly stable complexes with both intact dsDNA and the dsDNA carrying an inter-
calation gap. However, the type of dsDNA damage that may occur (single- or double-strand
DNA breaks) depends highly on the cell cycle phase in which Amaranth interacts with
cellular DNA.



Colorants 2022, 1 248Colorants 2022, 1, FOR PEER REVIEW 14 
 

 

 
Figure 5. Two-dimensional interaction diagrams of genotoxic azo dyes with dsDNA in two distinct 
conformations (with and without an intercalation gap). dsDNA structures and ligands are depicted 
in stick mode. 

Figure 5. Two-dimensional interaction diagrams of genotoxic azo dyes with dsDNA in two distinct
conformations (with and without an intercalation gap). dsDNA structures and ligands are depicted in
stick mode.



Colorants 2022, 1 249

In the docking simulation of Allura Red, minor groove recognition was more favorable
than the intercalative binding mode, and it exhibited a very favorable binding affinity for
dsDNA (∆G◦ = −8.80 kcal/mol; ∆G◦ = −8.19 kcal/mol, respectively) (Table 2). While H
bonds were mainly active in the conformational fit of Allura Red to the minor groove, a
large number of hydrophobic pi–pi contacts and a small amount of H bonds played role in
the intercalation mode (Table 2). The sulfonate, azo and naphthalene ring-bound hydroxyl
groups in the molecular structure played the main role in Allura Red’s minor groove
recognition, while the planar rings of naphthalene and methoxy phenyl were effective in
the intercalative binding mode (Figures 3r,s and 5e,f). It has been reported that Allura Red
significantly increased DNA fragmentation (single-strand DNA breaks) between 1250 and
5000 microgram/mL concentrations (at 37 ◦C) compared with the control in the comet assay
of Saccharomyces cerevisiae [15]. The dsDNA binding affinity of Allura Red in the docking
simulation correlate with the reported formation of experimental DNA breaks. Allura red
forms very stable complexes with dsDNA in both the minor groove and intercalative
binding modes, and these complexes are able to induce DNA strand breaks which could be
due to changes in DNA conformation or DNA torsional tension.

In the docking simulation of C.I. Disperse Blue 291 (CIDB291), intercalation (thread-
ing), which is the primary dsDNA binding mode, was more potent than the major groove
binding mode (∆G◦ = −7.39 kcal/mol; ∆G◦ = −6.90 kcal/mol, respectively) (Table 2).
In the intercalative binding mode of CIDB291, H bonds were mainly active along with hy-
drophobic pi–pi and pi–alkyl contacts, while H bonds and a small number of hydrophobic
pi–pi and pi–alkyl interactions played a role in the major groove binding mode (Table 2).
In the intercalative (threading) binding mode of CIDB291, the phenyl ring and the bromine
atom attached to it, as well as the amide and methoxy groups attached to the second phenyl
ring played significant role, while the phenyl ring, nitro groups, bromine atom and amide
group were effective in the major groove binding mode of this dye (Figures 3t,u and 5g,h).
According to our docking results, although CIDB291 has the capacity to bind tightly to
dsDNA in its native conformation (most probably via intercalation), acetylated hydrox-
ylamines, which are formed as a result of the metabolic process of CIDB291 by nitro
reductase and o-acetyl transferases, have been reported to interact with DNA and pose a
mutagenic effect [52]. In addition, it has been reported that genotoxic intermediates of this
dye may also occur as a result of the metabolism of -OCH3 and -N(CH2CH3)2) substituents
by cytochrome P450 [52]. Therefore, in addition to its native conformation, electrophilic
nucleophiles (metabolites) that occur as a result of its metabolism in the host organism play
the primary role in the genotoxic effect of CIDB291.

In the docking simulation of Amido Black 10B (AB10B), minor groove recognition, the
primary dsDNA binding mode, was highly more potent than the intercalative (threading)
mode (∆G◦ = −9.23 kcal/mol; ∆G◦ = −8.30 kcal/mol, respectively) (Table 2). In the minor
groove binding mode of AB10B, many H bonds as well as hydrophobic pi–pi T-shaped
contacts were active, while hydrophobic pi–pi stacking interactions and small number of H
bonds played role in the intercalative binding mode of AB10B (Table 2). In the minor groove
binding mode of AB10B, the nitrophenyl ring, the naphtalene moiety with bound amino
and hydroxyl groups, as well as the second phenyl ring of the molecule played significant
role, while the phenyl ring, azo, nitro and amine groups were effective in the intercalative
binding mode of this agent (Figures 3v,w and 5i,j). In a recent experimental study, it
was reported that AB10B increased his+ revertants in Salmonella TA98 strain in a dose-
dependent manner, while significantly increasing single-/double-strand DNA breaks and
micronucleus and nuclear bud formation in human liver HepG2 cell line [12]. These results
are in good agreement with our docking study. AB10B can induce single- and double-strand
breaks due to its strong affinity to dsDNA (∆G◦ = −9.23 kcal/mol in the minor groove
binding mode), and these breaks give positive results in the comet and micronucleus test.
The simultaneous induction of single and double strand breaks by AB10B indicates that
this azo dye can induce DNA strand breaks in both G1 and S phases of the cell cycle.
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However, according to our docking results, it is also possible for AB10B to induce DNA
damage by binding to dsDNA in the intercalation mode (∆G◦ = −8.30 kcal/mol).

In the docking simulation of C.I. Disperse Red 1 (CIDR1) against dsDNA, it was deter-
mined that minor groove recognition was the primary DNA binding mode and was energeti-
cally more favorable than the intercalative (threading) binding mode (∆G◦ = −7.67 kcal/mol;
∆G◦ =−6.94 kcal/mol, respectively) (Table 2). In the minor groove binding mode of CIDR1,
H bonds were predominant, while hydrophobic pi–pi stacking interactions and one H
bond were effective in the intercalative (threading) binding mode of CIDR1 (Table 2). In the
minor groove binding mode of CIDR1, the nitrophenyl moiety and phenyl aminoethanol
moiety carrying a hydroxyl group played significant role, while only the phenyl group
of the nitrophenyl moiety was effective in the intercalative binding mode of this agent
with dsDNA (Figures 3x,y and 5k,l). The DNA-damaging mechanism of CIDR1 is still
unknown; however, it is thought that the native molecule of this commercial dye as well as
the electrolytic oxidation and reduction products affect the double-helix structure of DNA,
causing conformational changes and subsequent genomic damage [53,54]. This hypothesis
is also consistent with our docking results, as CIDR1 can form a very tight binding com-
plex (∆G◦ = −7.67 kcal/mol) with dsDNA in the minor groove recognition mode, which
could lead to DNA breaks in either the G1 or S phase (single- and double-strand breaks,
respectively) of the cell cycle. Consistent with this hypothesis, it was found that CIDR1
significantly increased the rate of micronucleated polychromatic erythrocytes (MNPCE) in
Swiss mice bone marrow cells and primary DNA damage in the comet assay compared
with the control [13].

In the molecular docking simulation of Disperse Orange 1 (DO1), performed with two
different dsDNA conformations, minor groove recognition and intercalation (threading)
binding modes were found to be energetically close to each other and both were favorable
(∆G◦ = −8.23 kcal/mol; ∆G◦ = −8.18 kcal/mol, respectively) (Table 2).

In the minor groove binding mode of DO1, H bonds were predominant, while nu-
merous hydrophobic pi–pi stacking interactions and few H bonds were effective in the
intercalative (threading) binding mode of DO1 (Table 2). In the minor groove binding mode
of DO1, the nitro group bound to nitrophenyl moiety played significant role, while the pla-
nar phenyl ring of the same moiety was effective in the intercalative binding mode of DO1 to
dsDNA (Figures 3z,z' and 6a,b). Consistent with our docking study, in a UV–vis spectropho-
tometric study, it was reported that DO1 and its electrolysis product predominantly bound
to the immobilized dsDNA via intercalation mode and damaged the biomolecule [53].
Researchers have reported that local structural changes, such as unwinding of the double
helix and lengthening of the DNA strand, are the basis of this damage, which, in turn, lead
to retardation or inhibition of transcription and replication [53].

When the docking affinities of the last ligand, Disperse Red 13 (DR13) were compared
against two different dsDNA conformations, it was determined that the minor groove
recognition mode was energetically slightly more favorable than the intercalative (thread-
ing) binding mode (∆G◦ = −7.68 kcal/mol; ∆G◦ = −7.27 kcal/mol, respectively) (Table 2).
In the minor groove binding mode of DR13, H bonds were effective, while numerous
hydrophobic pi–pi stacking, pi–alkyl and pi–sigma interactions as well as one H bond were
effective in the intercalative (threading) binding mode of DR13 (Table 2). The nitro group
bound to chloro-nitrophenyl moiety and the hydroxyl of phenyl-aminoethanol moiety
played significant role in the minor groove binding mode of DR13, while the two phenyl
rings of chloro-nitrophenyl and phenyl-aminoethanol moieties were effective in the inter-
calative binding mode of DR13 to dsDNA (Figures 3z'',z''' and 6c,d). Although there is
no mechanistic study of the DNA binding mechanism of DR13, it has been reported that
chlorinated DR13 increases DNA damage in the comet test performed with human liver
HepG2 cells in a dose-dependent manner [14]. Although the result obtained from this study
is also in agreement with our docking study on the basis of DNA reactivity, additional
binding studies are needed regarding the actual DNA interaction mode of DR13. In this
study, the entire calculated binding affinities of 14 azo dyes by AutoDock Vina 1.2.0 and the
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structural differences (RMSD—root mean square deviation) between these binding poses
against each DNA conformation can be found in the Supplementary Materials Table S1.
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3.3. dsDNA Sequence Selectivity of Top-Ranked Azo Dye Conformations

In this docking study, the determined sequence selectivities (versus two different
dsDNA conformations) of the 14 azo dyes in their dominant dsDNA recognition modes are
given in Table 3. It has been determined that molecules exhibiting intercalation or threading
intercalation mode among 14 azo dyes (p-aminoazobenzene, o-aminoazotoluene, Basic Red
51, CIDB291) preferentially show –CG– or –CGA– sequence selectivity on 20-nucleotide
double-stranded dsDNA (PDB ID: 1MKL) having an intercalation gap (Table 3). On the other
hand, the remaining 10 ligands with the minor groove binding mode being more favorable,
(p-dimethylaminoazobenzene, phenazopyridine, Acid Chrome Blue K, Basic Brown 17,
Amaranth, Allura Red, Amido Black 10B, CI Disperse Red 1, Disperse Orange 1, Disperse
Red 13) specifically and consistently recognized the –TCTGTGGTTG– sequence on the
52-nucleotide double-stranded DNA molecule (PDB ID: 1HJB) and showed –GT– sequence
selectivity (p-dimethylaminoazobenzene, phenazopyridine, Acid Chrome Blue K, Basic
Brown 17, Amaranth, Amido Black 10B) (Table 3). DNA regions rich in –GT– dinucleotides
have been reported as recombinational hotspots [55]. Furthermore, guanine 2-amino group
in DNA could be an important contributor in sequence (G-T)-selective DNA binding [56].

In addition, it has been suggested that –GT– sequences (which are more frequent in the
euchromatin), found in all eukaryotes, may play a role in the packaging and condensation
of DNA into chromosomes, which are supramolecular structures [57,58]. Therefore, DNA
regions rich in –GT– dinucleotides may be multifunctional sequences in that they are
located in intra- or inter-genic regions where recombination is triggered and they mediate
conformational changes of DNA. Binding of the azo dyes at these genomic regions explains
why they are able to induce frequent DNA strand breaks, because these dyes, which could
bind to DNA in G1 or S phase, induce single- or double-stranded DNA breaks as a result of
the collapse of replication fork [59].
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Table 3. dsDNA sequence selectivities of the most favorable binding modes of 14 azo dyes against
two different dsDNA conformations.

Dye (Ligand) Most Favorable
Binding Mode BFE (kcal/mol) dsDNA Sequence Selectivity

P-aminoazobenzene Intercalation −6.49
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Amaranth Minor groove −9.42 
 

Allura Red Minor groove −8.80 
 

C.I. Disperse Blue 291 
Threading 

intercalation −7.39 
 

Amido Black 10B Minor groove −9.23 
 

C.I. Disperse Red 1 Minor groove −7.67 
 

Disperse Orange 1 Minor groove −8.23 
 

Disperse Red 13 Minor groove −7.68 
 

BFE—binding free energy (kcal/mol). 

P-dimethylaminoazobenzene Minor groove −6.66
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20-nucleotide double-stranded dsDNA (PDB ID: 1MKL) having an intercalation gap (Table 
3). On the other hand, the remaining 10 ligands with the minor groove binding mode be-
ing more favorable, (p-dimethylaminoazobenzene, phenazopyridine, Acid Chrome Blue 
K, Basic Brown 17, Amaranth, Allura Red, Amido Black 10B, CI Disperse Red 1, Disperse 
Orange 1, Disperse Red 13) specifically and consistently recognized the –TCTGTGGTTG– 
sequence on the 52-nucleotide double-stranded DNA molecule (PDB ID: 1HJB) and 
showed –GT– sequence selectivity (p-dimethylaminoazobenzene, phenazopyridine, Acid 
Chrome Blue K, Basic Brown 17, Amaranth, Amido Black 10B) (Table 3). DNA regions 
rich in –GT– dinucleotides have been reported as recombinational hotspots [55]. Further-
more, guanine 2-amino group in DNA could be an important contributor in sequence (G-
T)-selective DNA binding [56]. 

Table 3. dsDNA sequence selectivities of the most favorable binding modes of 14 azo dyes against 
two different dsDNA conformations. 

Dye (Ligand) Most Favorable 
Binding Mode 

BFE 
(kcal/mol) 

dsDNA Sequence Selectivity 

P-aminoazobenzene Intercalation −6.49 
 

O-aminoazotoluene Threading 
intercalation 

−6.92 
 

P-
dimethylaminoazoben

zene 
Minor groove −6.66 

 

Phenazopyridine Minor groove −6.94 
 

Acid Chrome Blue K Minor groove −9.36 
 

Basic Red 51 Threading 
intercalation 

−6.94 
 

Basic Brown 17 Minor groove −8.79 
 

Amaranth Minor groove −9.42 
 

Allura Red Minor groove −8.80 
 

C.I. Disperse Blue 291 
Threading 

intercalation −7.39 
 

Amido Black 10B Minor groove −9.23 
 

C.I. Disperse Red 1 Minor groove −7.67 
 

Disperse Orange 1 Minor groove −8.23 
 

Disperse Red 13 Minor groove −7.68 
 

BFE—binding free energy (kcal/mol). 

Phenazopyridine Minor groove −6.94
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20-nucleotide double-stranded dsDNA (PDB ID: 1MKL) having an intercalation gap (Table 
3). On the other hand, the remaining 10 ligands with the minor groove binding mode be-
ing more favorable, (p-dimethylaminoazobenzene, phenazopyridine, Acid Chrome Blue 
K, Basic Brown 17, Amaranth, Allura Red, Amido Black 10B, CI Disperse Red 1, Disperse 
Orange 1, Disperse Red 13) specifically and consistently recognized the –TCTGTGGTTG– 
sequence on the 52-nucleotide double-stranded DNA molecule (PDB ID: 1HJB) and 
showed –GT– sequence selectivity (p-dimethylaminoazobenzene, phenazopyridine, Acid 
Chrome Blue K, Basic Brown 17, Amaranth, Amido Black 10B) (Table 3). DNA regions 
rich in –GT– dinucleotides have been reported as recombinational hotspots [55]. Further-
more, guanine 2-amino group in DNA could be an important contributor in sequence (G-
T)-selective DNA binding [56]. 

Table 3. dsDNA sequence selectivities of the most favorable binding modes of 14 azo dyes against 
two different dsDNA conformations. 

Dye (Ligand) Most Favorable 
Binding Mode 

BFE 
(kcal/mol) 

dsDNA Sequence Selectivity 

P-aminoazobenzene Intercalation −6.49 
 

O-aminoazotoluene Threading 
intercalation 

−6.92 
 

P-
dimethylaminoazoben

zene 
Minor groove −6.66 

 

Phenazopyridine Minor groove −6.94 
 

Acid Chrome Blue K Minor groove −9.36 
 

Basic Red 51 Threading 
intercalation 

−6.94 
 

Basic Brown 17 Minor groove −8.79 
 

Amaranth Minor groove −9.42 
 

Allura Red Minor groove −8.80 
 

C.I. Disperse Blue 291 
Threading 

intercalation −7.39 
 

Amido Black 10B Minor groove −9.23 
 

C.I. Disperse Red 1 Minor groove −7.67 
 

Disperse Orange 1 Minor groove −8.23 
 

Disperse Red 13 Minor groove −7.68 
 

BFE—binding free energy (kcal/mol). 

Acid Chrome Blue K Minor groove −9.36
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20-nucleotide double-stranded dsDNA (PDB ID: 1MKL) having an intercalation gap (Table 
3). On the other hand, the remaining 10 ligands with the minor groove binding mode be-
ing more favorable, (p-dimethylaminoazobenzene, phenazopyridine, Acid Chrome Blue 
K, Basic Brown 17, Amaranth, Allura Red, Amido Black 10B, CI Disperse Red 1, Disperse 
Orange 1, Disperse Red 13) specifically and consistently recognized the –TCTGTGGTTG– 
sequence on the 52-nucleotide double-stranded DNA molecule (PDB ID: 1HJB) and 
showed –GT– sequence selectivity (p-dimethylaminoazobenzene, phenazopyridine, Acid 
Chrome Blue K, Basic Brown 17, Amaranth, Amido Black 10B) (Table 3). DNA regions 
rich in –GT– dinucleotides have been reported as recombinational hotspots [55]. Further-
more, guanine 2-amino group in DNA could be an important contributor in sequence (G-
T)-selective DNA binding [56]. 

Table 3. dsDNA sequence selectivities of the most favorable binding modes of 14 azo dyes against 
two different dsDNA conformations. 

Dye (Ligand) Most Favorable 
Binding Mode 

BFE 
(kcal/mol) 

dsDNA Sequence Selectivity 

P-aminoazobenzene Intercalation −6.49 
 

O-aminoazotoluene Threading 
intercalation 

−6.92 
 

P-
dimethylaminoazoben

zene 
Minor groove −6.66 

 

Phenazopyridine Minor groove −6.94 
 

Acid Chrome Blue K Minor groove −9.36 
 

Basic Red 51 Threading 
intercalation 

−6.94 
 

Basic Brown 17 Minor groove −8.79 
 

Amaranth Minor groove −9.42 
 

Allura Red Minor groove −8.80 
 

C.I. Disperse Blue 291 
Threading 

intercalation −7.39 
 

Amido Black 10B Minor groove −9.23 
 

C.I. Disperse Red 1 Minor groove −7.67 
 

Disperse Orange 1 Minor groove −8.23 
 

Disperse Red 13 Minor groove −7.68 
 

BFE—binding free energy (kcal/mol). 

Basic Red 51 Threading
intercalation −6.94
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20-nucleotide double-stranded dsDNA (PDB ID: 1MKL) having an intercalation gap (Table 
3). On the other hand, the remaining 10 ligands with the minor groove binding mode be-
ing more favorable, (p-dimethylaminoazobenzene, phenazopyridine, Acid Chrome Blue 
K, Basic Brown 17, Amaranth, Allura Red, Amido Black 10B, CI Disperse Red 1, Disperse 
Orange 1, Disperse Red 13) specifically and consistently recognized the –TCTGTGGTTG– 
sequence on the 52-nucleotide double-stranded DNA molecule (PDB ID: 1HJB) and 
showed –GT– sequence selectivity (p-dimethylaminoazobenzene, phenazopyridine, Acid 
Chrome Blue K, Basic Brown 17, Amaranth, Amido Black 10B) (Table 3). DNA regions 
rich in –GT– dinucleotides have been reported as recombinational hotspots [55]. Further-
more, guanine 2-amino group in DNA could be an important contributor in sequence (G-
T)-selective DNA binding [56]. 

Table 3. dsDNA sequence selectivities of the most favorable binding modes of 14 azo dyes against 
two different dsDNA conformations. 

Dye (Ligand) Most Favorable 
Binding Mode 

BFE 
(kcal/mol) 

dsDNA Sequence Selectivity 

P-aminoazobenzene Intercalation −6.49 
 

O-aminoazotoluene Threading 
intercalation 

−6.92 
 

P-
dimethylaminoazoben

zene 
Minor groove −6.66 

 

Phenazopyridine Minor groove −6.94 
 

Acid Chrome Blue K Minor groove −9.36 
 

Basic Red 51 Threading 
intercalation 

−6.94 
 

Basic Brown 17 Minor groove −8.79 
 

Amaranth Minor groove −9.42 
 

Allura Red Minor groove −8.80 
 

C.I. Disperse Blue 291 
Threading 

intercalation −7.39 
 

Amido Black 10B Minor groove −9.23 
 

C.I. Disperse Red 1 Minor groove −7.67 
 

Disperse Orange 1 Minor groove −8.23 
 

Disperse Red 13 Minor groove −7.68 
 

BFE—binding free energy (kcal/mol). 

Basic Brown 17 Minor groove −8.79
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20-nucleotide double-stranded dsDNA (PDB ID: 1MKL) having an intercalation gap (Table 
3). On the other hand, the remaining 10 ligands with the minor groove binding mode be-
ing more favorable, (p-dimethylaminoazobenzene, phenazopyridine, Acid Chrome Blue 
K, Basic Brown 17, Amaranth, Allura Red, Amido Black 10B, CI Disperse Red 1, Disperse 
Orange 1, Disperse Red 13) specifically and consistently recognized the –TCTGTGGTTG– 
sequence on the 52-nucleotide double-stranded DNA molecule (PDB ID: 1HJB) and 
showed –GT– sequence selectivity (p-dimethylaminoazobenzene, phenazopyridine, Acid 
Chrome Blue K, Basic Brown 17, Amaranth, Amido Black 10B) (Table 3). DNA regions 
rich in –GT– dinucleotides have been reported as recombinational hotspots [55]. Further-
more, guanine 2-amino group in DNA could be an important contributor in sequence (G-
T)-selective DNA binding [56]. 

Table 3. dsDNA sequence selectivities of the most favorable binding modes of 14 azo dyes against 
two different dsDNA conformations. 

Dye (Ligand) Most Favorable 
Binding Mode 

BFE 
(kcal/mol) 

dsDNA Sequence Selectivity 

P-aminoazobenzene Intercalation −6.49 
 

O-aminoazotoluene Threading 
intercalation 

−6.92 
 

P-
dimethylaminoazoben

zene 
Minor groove −6.66 

 

Phenazopyridine Minor groove −6.94 
 

Acid Chrome Blue K Minor groove −9.36 
 

Basic Red 51 Threading 
intercalation 

−6.94 
 

Basic Brown 17 Minor groove −8.79 
 

Amaranth Minor groove −9.42 
 

Allura Red Minor groove −8.80 
 

C.I. Disperse Blue 291 
Threading 

intercalation −7.39 
 

Amido Black 10B Minor groove −9.23 
 

C.I. Disperse Red 1 Minor groove −7.67 
 

Disperse Orange 1 Minor groove −8.23 
 

Disperse Red 13 Minor groove −7.68 
 

BFE—binding free energy (kcal/mol). 

Amaranth Minor groove −9.42
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20-nucleotide double-stranded dsDNA (PDB ID: 1MKL) having an intercalation gap (Table 
3). On the other hand, the remaining 10 ligands with the minor groove binding mode be-
ing more favorable, (p-dimethylaminoazobenzene, phenazopyridine, Acid Chrome Blue 
K, Basic Brown 17, Amaranth, Allura Red, Amido Black 10B, CI Disperse Red 1, Disperse 
Orange 1, Disperse Red 13) specifically and consistently recognized the –TCTGTGGTTG– 
sequence on the 52-nucleotide double-stranded DNA molecule (PDB ID: 1HJB) and 
showed –GT– sequence selectivity (p-dimethylaminoazobenzene, phenazopyridine, Acid 
Chrome Blue K, Basic Brown 17, Amaranth, Amido Black 10B) (Table 3). DNA regions 
rich in –GT– dinucleotides have been reported as recombinational hotspots [55]. Further-
more, guanine 2-amino group in DNA could be an important contributor in sequence (G-
T)-selective DNA binding [56]. 

Table 3. dsDNA sequence selectivities of the most favorable binding modes of 14 azo dyes against 
two different dsDNA conformations. 

Dye (Ligand) Most Favorable 
Binding Mode 

BFE 
(kcal/mol) 

dsDNA Sequence Selectivity 

P-aminoazobenzene Intercalation −6.49 
 

O-aminoazotoluene Threading 
intercalation 

−6.92 
 

P-
dimethylaminoazoben

zene 
Minor groove −6.66 

 

Phenazopyridine Minor groove −6.94 
 

Acid Chrome Blue K Minor groove −9.36 
 

Basic Red 51 Threading 
intercalation 

−6.94 
 

Basic Brown 17 Minor groove −8.79 
 

Amaranth Minor groove −9.42 
 

Allura Red Minor groove −8.80 
 

C.I. Disperse Blue 291 
Threading 

intercalation −7.39 
 

Amido Black 10B Minor groove −9.23 
 

C.I. Disperse Red 1 Minor groove −7.67 
 

Disperse Orange 1 Minor groove −8.23 
 

Disperse Red 13 Minor groove −7.68 
 

BFE—binding free energy (kcal/mol). 

Allura Red Minor groove −8.80
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20-nucleotide double-stranded dsDNA (PDB ID: 1MKL) having an intercalation gap (Table 
3). On the other hand, the remaining 10 ligands with the minor groove binding mode be-
ing more favorable, (p-dimethylaminoazobenzene, phenazopyridine, Acid Chrome Blue 
K, Basic Brown 17, Amaranth, Allura Red, Amido Black 10B, CI Disperse Red 1, Disperse 
Orange 1, Disperse Red 13) specifically and consistently recognized the –TCTGTGGTTG– 
sequence on the 52-nucleotide double-stranded DNA molecule (PDB ID: 1HJB) and 
showed –GT– sequence selectivity (p-dimethylaminoazobenzene, phenazopyridine, Acid 
Chrome Blue K, Basic Brown 17, Amaranth, Amido Black 10B) (Table 3). DNA regions 
rich in –GT– dinucleotides have been reported as recombinational hotspots [55]. Further-
more, guanine 2-amino group in DNA could be an important contributor in sequence (G-
T)-selective DNA binding [56]. 

Table 3. dsDNA sequence selectivities of the most favorable binding modes of 14 azo dyes against 
two different dsDNA conformations. 

Dye (Ligand) Most Favorable 
Binding Mode 

BFE 
(kcal/mol) 

dsDNA Sequence Selectivity 

P-aminoazobenzene Intercalation −6.49 
 

O-aminoazotoluene Threading 
intercalation 

−6.92 
 

P-
dimethylaminoazoben

zene 
Minor groove −6.66 

 

Phenazopyridine Minor groove −6.94 
 

Acid Chrome Blue K Minor groove −9.36 
 

Basic Red 51 Threading 
intercalation 

−6.94 
 

Basic Brown 17 Minor groove −8.79 
 

Amaranth Minor groove −9.42 
 

Allura Red Minor groove −8.80 
 

C.I. Disperse Blue 291 
Threading 

intercalation −7.39 
 

Amido Black 10B Minor groove −9.23 
 

C.I. Disperse Red 1 Minor groove −7.67 
 

Disperse Orange 1 Minor groove −8.23 
 

Disperse Red 13 Minor groove −7.68 
 

BFE—binding free energy (kcal/mol). 

C.I. Disperse Blue 291 Threading
intercalation −7.39
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20-nucleotide double-stranded dsDNA (PDB ID: 1MKL) having an intercalation gap (Table 
3). On the other hand, the remaining 10 ligands with the minor groove binding mode be-
ing more favorable, (p-dimethylaminoazobenzene, phenazopyridine, Acid Chrome Blue 
K, Basic Brown 17, Amaranth, Allura Red, Amido Black 10B, CI Disperse Red 1, Disperse 
Orange 1, Disperse Red 13) specifically and consistently recognized the –TCTGTGGTTG– 
sequence on the 52-nucleotide double-stranded DNA molecule (PDB ID: 1HJB) and 
showed –GT– sequence selectivity (p-dimethylaminoazobenzene, phenazopyridine, Acid 
Chrome Blue K, Basic Brown 17, Amaranth, Amido Black 10B) (Table 3). DNA regions 
rich in –GT– dinucleotides have been reported as recombinational hotspots [55]. Further-
more, guanine 2-amino group in DNA could be an important contributor in sequence (G-
T)-selective DNA binding [56]. 

Table 3. dsDNA sequence selectivities of the most favorable binding modes of 14 azo dyes against 
two different dsDNA conformations. 

Dye (Ligand) Most Favorable 
Binding Mode 

BFE 
(kcal/mol) 

dsDNA Sequence Selectivity 

P-aminoazobenzene Intercalation −6.49 
 

O-aminoazotoluene Threading 
intercalation 

−6.92 
 

P-
dimethylaminoazoben

zene 
Minor groove −6.66 

 

Phenazopyridine Minor groove −6.94 
 

Acid Chrome Blue K Minor groove −9.36 
 

Basic Red 51 Threading 
intercalation 

−6.94 
 

Basic Brown 17 Minor groove −8.79 
 

Amaranth Minor groove −9.42 
 

Allura Red Minor groove −8.80 
 

C.I. Disperse Blue 291 
Threading 

intercalation −7.39 
 

Amido Black 10B Minor groove −9.23 
 

C.I. Disperse Red 1 Minor groove −7.67 
 

Disperse Orange 1 Minor groove −8.23 
 

Disperse Red 13 Minor groove −7.68 
 

BFE—binding free energy (kcal/mol). 

Amido Black 10B Minor groove −9.23
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20-nucleotide double-stranded dsDNA (PDB ID: 1MKL) having an intercalation gap (Table 
3). On the other hand, the remaining 10 ligands with the minor groove binding mode be-
ing more favorable, (p-dimethylaminoazobenzene, phenazopyridine, Acid Chrome Blue 
K, Basic Brown 17, Amaranth, Allura Red, Amido Black 10B, CI Disperse Red 1, Disperse 
Orange 1, Disperse Red 13) specifically and consistently recognized the –TCTGTGGTTG– 
sequence on the 52-nucleotide double-stranded DNA molecule (PDB ID: 1HJB) and 
showed –GT– sequence selectivity (p-dimethylaminoazobenzene, phenazopyridine, Acid 
Chrome Blue K, Basic Brown 17, Amaranth, Amido Black 10B) (Table 3). DNA regions 
rich in –GT– dinucleotides have been reported as recombinational hotspots [55]. Further-
more, guanine 2-amino group in DNA could be an important contributor in sequence (G-
T)-selective DNA binding [56]. 

Table 3. dsDNA sequence selectivities of the most favorable binding modes of 14 azo dyes against 
two different dsDNA conformations. 

Dye (Ligand) Most Favorable 
Binding Mode 

BFE 
(kcal/mol) 

dsDNA Sequence Selectivity 

P-aminoazobenzene Intercalation −6.49 
 

O-aminoazotoluene Threading 
intercalation 

−6.92 
 

P-
dimethylaminoazoben

zene 
Minor groove −6.66 

 

Phenazopyridine Minor groove −6.94 
 

Acid Chrome Blue K Minor groove −9.36 
 

Basic Red 51 Threading 
intercalation 

−6.94 
 

Basic Brown 17 Minor groove −8.79 
 

Amaranth Minor groove −9.42 
 

Allura Red Minor groove −8.80 
 

C.I. Disperse Blue 291 
Threading 

intercalation −7.39 
 

Amido Black 10B Minor groove −9.23 
 

C.I. Disperse Red 1 Minor groove −7.67 
 

Disperse Orange 1 Minor groove −8.23 
 

Disperse Red 13 Minor groove −7.68 
 

BFE—binding free energy (kcal/mol). 

C.I. Disperse Red 1 Minor groove −7.67
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20-nucleotide double-stranded dsDNA (PDB ID: 1MKL) having an intercalation gap (Table 
3). On the other hand, the remaining 10 ligands with the minor groove binding mode be-
ing more favorable, (p-dimethylaminoazobenzene, phenazopyridine, Acid Chrome Blue 
K, Basic Brown 17, Amaranth, Allura Red, Amido Black 10B, CI Disperse Red 1, Disperse 
Orange 1, Disperse Red 13) specifically and consistently recognized the –TCTGTGGTTG– 
sequence on the 52-nucleotide double-stranded DNA molecule (PDB ID: 1HJB) and 
showed –GT– sequence selectivity (p-dimethylaminoazobenzene, phenazopyridine, Acid 
Chrome Blue K, Basic Brown 17, Amaranth, Amido Black 10B) (Table 3). DNA regions 
rich in –GT– dinucleotides have been reported as recombinational hotspots [55]. Further-
more, guanine 2-amino group in DNA could be an important contributor in sequence (G-
T)-selective DNA binding [56]. 

Table 3. dsDNA sequence selectivities of the most favorable binding modes of 14 azo dyes against 
two different dsDNA conformations. 

Dye (Ligand) Most Favorable 
Binding Mode 

BFE 
(kcal/mol) 

dsDNA Sequence Selectivity 

P-aminoazobenzene Intercalation −6.49 
 

O-aminoazotoluene Threading 
intercalation 

−6.92 
 

P-
dimethylaminoazoben

zene 
Minor groove −6.66 

 

Phenazopyridine Minor groove −6.94 
 

Acid Chrome Blue K Minor groove −9.36 
 

Basic Red 51 Threading 
intercalation 

−6.94 
 

Basic Brown 17 Minor groove −8.79 
 

Amaranth Minor groove −9.42 
 

Allura Red Minor groove −8.80 
 

C.I. Disperse Blue 291 
Threading 

intercalation −7.39 
 

Amido Black 10B Minor groove −9.23 
 

C.I. Disperse Red 1 Minor groove −7.67 
 

Disperse Orange 1 Minor groove −8.23 
 

Disperse Red 13 Minor groove −7.68 
 

BFE—binding free energy (kcal/mol). 

Disperse Orange 1 Minor groove −8.23
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20-nucleotide double-stranded dsDNA (PDB ID: 1MKL) having an intercalation gap (Table 
3). On the other hand, the remaining 10 ligands with the minor groove binding mode be-
ing more favorable, (p-dimethylaminoazobenzene, phenazopyridine, Acid Chrome Blue 
K, Basic Brown 17, Amaranth, Allura Red, Amido Black 10B, CI Disperse Red 1, Disperse 
Orange 1, Disperse Red 13) specifically and consistently recognized the –TCTGTGGTTG– 
sequence on the 52-nucleotide double-stranded DNA molecule (PDB ID: 1HJB) and 
showed –GT– sequence selectivity (p-dimethylaminoazobenzene, phenazopyridine, Acid 
Chrome Blue K, Basic Brown 17, Amaranth, Amido Black 10B) (Table 3). DNA regions 
rich in –GT– dinucleotides have been reported as recombinational hotspots [55]. Further-
more, guanine 2-amino group in DNA could be an important contributor in sequence (G-
T)-selective DNA binding [56]. 

Table 3. dsDNA sequence selectivities of the most favorable binding modes of 14 azo dyes against 
two different dsDNA conformations. 

Dye (Ligand) Most Favorable 
Binding Mode 

BFE 
(kcal/mol) 

dsDNA Sequence Selectivity 

P-aminoazobenzene Intercalation −6.49 
 

O-aminoazotoluene Threading 
intercalation 

−6.92 
 

P-
dimethylaminoazoben

zene 
Minor groove −6.66 

 

Phenazopyridine Minor groove −6.94 
 

Acid Chrome Blue K Minor groove −9.36 
 

Basic Red 51 Threading 
intercalation 

−6.94 
 

Basic Brown 17 Minor groove −8.79 
 

Amaranth Minor groove −9.42 
 

Allura Red Minor groove −8.80 
 

C.I. Disperse Blue 291 
Threading 

intercalation −7.39 
 

Amido Black 10B Minor groove −9.23 
 

C.I. Disperse Red 1 Minor groove −7.67 
 

Disperse Orange 1 Minor groove −8.23 
 

Disperse Red 13 Minor groove −7.68 
 

BFE—binding free energy (kcal/mol). 

Disperse Red 13 Minor groove −7.68
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20-nucleotide double-stranded dsDNA (PDB ID: 1MKL) having an intercalation gap (Table 
3). On the other hand, the remaining 10 ligands with the minor groove binding mode be-
ing more favorable, (p-dimethylaminoazobenzene, phenazopyridine, Acid Chrome Blue 
K, Basic Brown 17, Amaranth, Allura Red, Amido Black 10B, CI Disperse Red 1, Disperse 
Orange 1, Disperse Red 13) specifically and consistently recognized the –TCTGTGGTTG– 
sequence on the 52-nucleotide double-stranded DNA molecule (PDB ID: 1HJB) and 
showed –GT– sequence selectivity (p-dimethylaminoazobenzene, phenazopyridine, Acid 
Chrome Blue K, Basic Brown 17, Amaranth, Amido Black 10B) (Table 3). DNA regions 
rich in –GT– dinucleotides have been reported as recombinational hotspots [55]. Further-
more, guanine 2-amino group in DNA could be an important contributor in sequence (G-
T)-selective DNA binding [56]. 

Table 3. dsDNA sequence selectivities of the most favorable binding modes of 14 azo dyes against 
two different dsDNA conformations. 

Dye (Ligand) Most Favorable 
Binding Mode 

BFE 
(kcal/mol) 

dsDNA Sequence Selectivity 

P-aminoazobenzene Intercalation −6.49 
 

O-aminoazotoluene Threading 
intercalation 

−6.92 
 

P-
dimethylaminoazoben

zene 
Minor groove −6.66 

 

Phenazopyridine Minor groove −6.94 
 

Acid Chrome Blue K Minor groove −9.36 
 

Basic Red 51 Threading 
intercalation 

−6.94 
 

Basic Brown 17 Minor groove −8.79 
 

Amaranth Minor groove −9.42 
 

Allura Red Minor groove −8.80 
 

C.I. Disperse Blue 291 
Threading 

intercalation −7.39 
 

Amido Black 10B Minor groove −9.23 
 

C.I. Disperse Red 1 Minor groove −7.67 
 

Disperse Orange 1 Minor groove −8.23 
 

Disperse Red 13 Minor groove −7.68 
 

BFE—binding free energy (kcal/mol). BFE—binding free energy (kcal/mol).

In line with our observations on the minor groove recognition by certain azo dyes,
it has been reported that the azo dye “carmoisine” showed specific affinity for the DNA
minor groove and bound to the AT-rich region in an experimental study using various
biophysical techniques [60]. The sequence of DNA used in that study is not identical to the
sequence of intact DNA (1hjb) that we selected in our docking study. Thus, the sequence
specificity resulting from binding to the minor groove of DNA may differ in DNAs with
different nucleotide sequences.

Finally, we think it would be useful to mention the following regarding the docking
calculations we employed in our study: in this study, a “rigid receptor–flexible ligand”
docking protocol was applied; therefore, a certain degree of flexibility was allowed on the
rotatable bonds of azo dyes during docking, while no conformational plasticity could be
simulated in two different dsDNA receptors. Therefore, conformational changes in dsDNA
before or upon ligand binding could not be taken into account in this study. For this reason,
the docking protocol we used can be considered as a representation of the initial static
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interactions between the azo dyes and dsDNA receptors. In other words, target flexibility
should also be provided (e.g., molecular dynamics) in order to more clearly explain the
role of structural features of DNA, such as twist, rise or groove width, in ligand binding,
and to determine the time-dependent evolution and stability of resulting DNA–ligand
interactions [24,61].

4. Conclusions

Azo dyes have very attractive vivid colors and are the most widely used and structurally
diverse group of commercial organic dyes [62]. Approximately more than 2000 azo dyes
are used today which are colorants of materials such as synthetic and natural textile
fibers, plastic, leather, hair dyes, waxes and certain petroleum products [63]. In this
computational docking study investigating the dsDNA binding interactions and affinity
of 14 genotoxic azo dyes—which have been previously known to negatively interact with
dsDNA—we showed that most of these dyes are preferentially minor groove binders;
however, intercalative binding is also an effective dsDNA recognition mode of a small
number of these azo dyes. We determined that the molecular moiety of these dyes that
play a primary role in the most favorable binding conformations with dsDNA are the azo,
nitro, hydroxyl, ammonium, sulfonate, naphthalene, methoxyphenyl, bromine, nitrophenyl,
imidazole, amino-phenylethanol and chloro-nitrophenyl groups. These dyes, which exhibit
binding energies ranging from −6.35 kcal/mol to −9.42 kcal/mol against the dsDNA
molecule, show specific affinity for GT-rich regions (Tables 2 and 3). The ring structures
in the molecular scaffolds of these 14 dyes, which have the ability to form tight binding
complexes with dsDNA, as well as some polar groups (such as the hydroxyls and sulfonates)
are the critical features for genotoxic dsDNA binding. We are of the opinion that these
genotoxic azo dyes, which are frequently used in industrial, health and cosmetic fields,
may be banned or non-genotoxic congeners should be immediately produced by further
molecular optimization.
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