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Abstract: The interaction between single- or double-charged anions of bromocresol purple (BP) and cyanine
cations (quinaldine blue, QB, or quinaldine red, QR) at concentrations of dyes 5.0·10−7–4.0·10−5 mol/L has
been investigated by vis-spectroscopy. The thermodynamic constants of dissimilar associations (Kas)
have been studied. Comparison of the values of lg Kas shows that QB− associates of BP− are more
stable (6.61 ± 0.07) than QR associates (4.84 ± 0.06); a similar phenomenon is observed for associates of
the BP2− anion. Semi-empirical calculations (PM3 method) are in agreement with the vis-spectroscopy
data and indicate that the association of dye into an associate is possible. The standard enthalpies of
formation of associates (∆fHo) and energy diagrams have been determined. The ∆fHo data indicate that
the formation of an associate between dye ions is an energetically favourable process. The gain in energy
significantly exceeds the systematic error of semi-empirical calculations and increases from 157 kJ/mol
(associate ”BP− + QB+”) to 729 kJ/mol (associate “BP2− + QR+”). The most probable structures of
dissimilar associates are presented. The study of the dissimilar association develops the concept of
intermolecular interactions in solutions.

Keywords: bromocresol purple; dissimilar association; vis-spectroscopy; enthalpy of formation;
semi-empirical method

1. Introduction

Sulfonephthalein dyes have a wide range of applications, from acid–base or met-
allochromic indicators to analytical reagents for spectral determination of a number of
organic substances [1–3]. The bromine derivatives attract attention due to favorable specific
features, such as the stability of protolytic forms, weak dimerization, good diversity of
absorption bands of single- and double-charged anions, and high contrast of color reac-
tions [3,4]. In particular, they are used in technologies for determining the acidity of pure
and natural waters [5–7] and are also the basis of sensitive elements of optical pH sensors,
fiber optic biosensors, and chips [8–11]. Quantitative determination of components in bio-
and pharmaceuticals is one of the most promising areas of their application as analytical
reagents: Antimicrobial, antihistamines, bactericidal, antidepressants, and others [12–26].

The effective use of 3,3′-dimethyl-5,5′-dibromophenolsulfonephthalein (BP) in tech-
nologies is expanding [27–49]. It includes sensitive gas sensors [27,28], electrochemical
DNA biosensors to the antitumor drug [39], highly efficient extraction of heavy metals
from industrial effluents by adsorption on a modified zeolite surface [40], lysine decar-
boxylase analysis [41], the adsorption of hydrophobic molecules on the membrane of
erythroleukemia cells [42], and evaluation of the properties of serum albumin [38,43–48]
and extracellular lactase [49]. It is noteworthy that many applications are based on the
formation of dissimilar associates between the anionic form of sulfonephthalein and the an-
alyte. In some cases, associates are able to be extracted into the organic phase (chloroform,
dichloromethane [12,13,15–19,21,24,26]).

Studies of the dissimilar association of sulfonephthaleines and other dyes are becom-
ing practical. They provide information on the nature of physicochemical interactions and
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the role of both chromophore fragments and functional groups. For example, it was found
that the “dye + counterion” associates and the binding of each of them with biochemical
receptors (with DNA [50,51] or proteins [52–54]) affect the action of medicinal agents; this
problem has also been studied in the interaction of antibiotics with aromatic molecules
(polyphenols, methylxanthines such as caffeine, etc.) [55]. Therefore, the dissimilar associ-
ation is directly related to improving the effectiveness of pharmaceuticals. The analysis
of publications indicates the need for in-depth study of cation–anionic interactions that
cause the formation of associates, which include anions (HAn−, An2−) of BP or other
sulfonephthalein dyes.

Various instrumental methods are used to study the association. At concentrations of
interacting particles of 1·10−5 mol/L or more, it is known to use conductometry; however,
this method is suitable for media with low dielectric constants. The most “sensitive”
method is vis-spectroscopy (fluorimetry), which makes it possible to study the interactions
of colored particles at concentrations 1·10−7–1·10−4 mol/L.

The facts of the interaction of sulfonephthalein anions with cations (Ct+) of some dyes
(rhodamines, cyanines) have been discussed previously [56–58]. However, the most proba-
ble structure of BP associates and their energy characteristics, in particular, the standard
enthalpy of formation (∆fH◦), have not been studied. In this report, using the results of
spectrophotometric measurements and quantum chemical calculations, we analyzed the
cation–anion interactions that lead to the formation of stoichiometric associations between
single or double-charged anions of BP and single-charged cations of polymethine dyes.

A systematic study of association in aqueous solution implies the use of such dyes
that have satisfactory solubility and the ability to change light absorption upon association.
Among the “standard” dyes that meet these requirements, attention is drawn to quina-
dine blue (QB) and quinadine red (QR). QB has a developed vibrational structure and a
three-band absorption spectrum in water or organic solvents. Even a slight effect on the
chromophore system, which has a counterion, changes its spectrum. A redistribution of
the intensities of the absorption bands occurs, and frequency shifts appear. Such unique
spectral properties have found application in methods for the qualitative and quantitative
determination of a number of metals, in the study of the properties of polyelectrolytes,
DNA, surfactants, and metal complex systems [3]. The observed spectral changes can also
be linked to a certain type of formed particles in the process of heterogeneous association.
However, the disadvantage of QB is the instability of its aqueous solutions. On the contrary,
QR is more stable, although it does not have a developed vibrational structure. The advan-
tage of QR is also the possibility to study the association in a wide range of concentrations
since it is not as prone to self-association as QB.

Note that these cations have been used previously under the study of the processes of
anionic dye association [57–59].

2. Materials and Methods

Disodium salts of sulfonephthaleins were used: QB was in the form of chloride salt,
and QR was in the form of iodide salt (trademark “Merck KGaA”, Darmstadt, Germany;
the content of the basic component was not less than 95%). The proper qualification of the
chemical purity of the preparations of each of the dyes was verified spectrophotometrically,
taking into account the known values of the molar absorption coefficient (εmax, L/(mol·cm))
and the maximum absorption band (λmax) for the most intensely colored of protolytic form.
The acidity of the medium was created with phosphate, borate, acetate buffer solutions,
and in some cases, hydrochloric acid or sodium hydroxide. Additional observations have
shown that the addition of buffer solutions does not significantly affect the light absorption
of dyes and association processes. The pH was monitored with a glass electrode. The
ionic strength (I) of the solutions did not exceed 0.004 mol/L. Distilled water was used to
prepare the solutions with an electrical conductivity of no more 4·10–6 S. The values of the
optical density, which are the basis for the calculations of the equilibrium constants of the
association (Kas), were checked for compliance with the basic law of light absorption. The
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absorption spectra were measured on the upgraded spectrophotometer “Hitachi U3210”,
Hitachi, Inc., Tokio, Japan (at room temperature) with an error value in determining
the absorption wavelength of no more than ± 0.5 nm. It is experimentally verified that
temperature fluctuations within 2–3 degrees practically do not affect the spectral properties
of the studied dyes.

The methods of preparation of mixtures of dyes and the calculation of spectral and
equilibrium characteristics of associates are covered in [56–58]. To calculate the standard
enthalpies of the formation of dye ions and their associates, as well as to establish their
structure, the semi-empirical quantum chemical method PM3 was used. The method is
integrated into the software packages “HyperChem 8.0”, Hupercube, Inc., New York, NY,
USA (evaluation version) and “MOPAC 2009”, Stewart Computational Chemistry, Colorado
Springs, CO, USA. The principles of calculations for the structures of dyes and their ionic
associates have been described in more detail previously [3,56,59,60].

3. Results
3.1. Dyes in the Aqueous Solution

Under the study of the interaction of HAn− (or An2−) with Ct+, we adhered to the
acidity of the solution, which would ensure the coexistence of the corresponding ionic
forms (Figure 1). Otherwise, the interpretation of spectral changes is difficult due to
possible interactions involving mixtures of proprietary dye forms.
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Figure 1. The relative content of protolytic forms of dyes depending on the pH of the aqueous so-
lution. 

Upon creating the optimal acidity of the solution, the values of рKа1 and рKа2 were 
taken into account (see Table 1; the characteristics of BP and cyanine dyes are given for I 
→ 0 according to [61,62]; the error of рKа values is ±(0.03–0.08); the values of рKа1 for QB 
and QR refer to the process of dissociation of the HCt2+ cation). 

Figure 1. The relative content of protolytic forms of dyes depending on the pH of the aqueous solution.

Upon creating the optimal acidity of the solution, the values of pKa1 and pKa2 were
taken into account (see Table 1; the characteristics of BP and cyanine dyes are given for
I→ 0 according to [61,62]; the error of pKa values is ±(0.03–0.08); the values of pKa1 for
QB and QR refer to the process of dissociation of the HCt2+ cation).
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Table 1. Spectral and protolytic characteristics of dyes.

Dye

pKa1
(λmax, nm

HAn−
or Ct+)

pKa2
(λmax, nm

An2−)

3,3-bis(3-bromo-4-hydroxy-5-methylphenyl)-
3H-2,1λ6-benzoxathiole-1,1-dione (BP)

CAS 115-40-2
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3.2. Spectral Properties of the Dyes

Features of BP and the cyanines are the following: (1) Dyes form stable protolytic
forms in aqueous solutions; (2) dyes are able to associate at concentrations not exceeding
their solubility in water; (3) ionic forms have a sufficient color intensity and the ability to
significantly change the light absorption during association, which allows the study of
quite small concentrations of interacting particles.

Interpretation of spectral changes from the standpoint of the equilibrium approach (us-
ing the law of active masses) implies compliance with the basic law of light absorption by
protolytic forms of interacting dyes. The absorption spectra of aqueous BP solutions were
investigated in the concentration range of 4.96·10−6 to 4.96·10−5 mol/L using a buffer solu-
tion and without the addition of salt additives or an organic solvent. The Savitsky–Goley
procedure was used to smooth the electronic spectra [63,64]. The dependence of Aλ on
the BP concentration for λmax = 431 nm is a line passing through the origin. The linear
regression equation has the form:

A431 = 0.00047(0.0043) + 24798.1(139.8) × CBP.

The correlation coefficient is equal to 0.99, and its standard deviation is 0.0038. The
free term of the regression equation (in parentheses) is statistical zero. This nature of the
dependence obeys the basic law of light absorption and gives one reason to believe that in
the studied range of concentrations, the single-charge BP anion is not prone to dimerization.
It is experimentally set that this also applies to the double-charged ion BP.

Sulfonephthalein dyes are characterized by a number of protolytic transformations:
H3An+ � H2An0 � HAn−� An2−. Cationic and neutral protolytic forms exist only in a
strongly acidic environment. Anions, especially An2−, have the most intense color; the light
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absorption bands of HAn− and An2- forms are well spectrally spaced (λmax (HAn−) = 430 nm,
λmax (An2−) = 588 nm with molar absorption coefficients εmax (HAn−) = 24,900 L/(mol·cm),
εmax (An2−) = 67,200 L/(mol·cm)). This contributes to the experimental study of the ionic
association of dyes at particle concentrations at the level of 5·10−6 mol/L. It is noteworthy
that the coefficient of the linear regression equation practically coincides in value with the
given εmax (HAn−). This indicates that only one protolytic form of BP exists at a certain
acidity of the solution in the aqueous solution. In turn, significant differences in the values
of pKa1 and pKa2 (see Table 1) allow for regulating the acidity of the solution to create
conditions under which the existence of only a single- or double-charged anion is possible.

The linear regression equation has the form in the concentration range of
1.0·10−6–1.0·10−4 mol/L for QR [59]:

A528 = −0.0038(0.015) + 3.37·104
(324) × CQR.

The correlation coefficient is equal to 0.99(0.03). The value of the free regression term is
statistical zero as in the case of BP anions.

For QB, in contrast to other dyes, the basic law of light absorption is fulfilled only at
relatively low (not more than 3·10-6 mol/L) concentrations because QB is very prone to
self-association [65]. It is spectrally manifested by a weakening of the absorption of the
α-band and an increase in the intensity of the β-band (see Table 1).

Aqueous solutions of single-charged cyanines are markedly discolored due to the pro-
cesses of protonation (the formation of HCt2+ particles in acidic conditions) and hydrolysis
(the occurrence of CtOH and the appearance of turbidity in an alkaline solution).

4. Discussion
4.1. Spectral and Equilibrium Properties of Dissimilar Associates

A significant decrease in the intensity of the light absorption bands is a characteristic
feature of the formation of cation–anionic associates. It is most clearly observed if increasing
amounts of BP are added to the constant content of cyanine dye and the light absorption
is measured against a solution containing the same concentration of BP as in the dye
mixture. An analysis of changes in the electronic absorption spectra of mixtures of Ct+

with HAn− and Ct+ with An2− leads to the conclusion that the principle of additivity
of light absorption is violated. The absorption intensity (A) of the mixture of interacting
counterions becomes less than the total light absorption of individual dye ions. This
phenomenon occurs regardless of the initial concentrations of anions or cations (in the
above ranges), as shown in Figures 2 and 3. The intensity of the α-band is greater than the
β-band for QB in Figure 2. However, the situation is the opposite (see Figure 3), where
the concentration of QB is much more (“Ct+ + An2−” system). Such spectral shifts of
the absorption bands in the absence of new or the splitting of existing bands suggest a
solvate-separated type of dissimilar associate structure (in accordance with the general
features of spectral shifts for dye associate systems [3,66]).
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Using methods for estimating the stoichiometric composition (similar to
studies [12,13,56,60]), it was found that under certain conditions (such as initial concentra-
tions of counterions and their molar ratios), anions of BP can form Ct+ associates of the
composition Ct+·HAn− and (Ct+)2·An2−. From the experimental data, it can be concluded
that for dissimilar associates of BP, the stoichiometric ratio of QB: counterion is 1:1 for
the case of the anion HAn−, and it is 2:1 for the case of An2−. For equilibria of type
jCt+ + Anj− � (Ct+)j·Anj−, the association constants (Kas) were calculated taking into
account the ratios of the stoichiometric coefficients. The concentration constant of the asso-
ciation Kconc.

as practically does not differ from the thermodynamic one Kthermod.
as because

I ≤ 0.004 in all experiments:

Kthermod.
as = Kconc.

as =
[ (Ct+

)
j·Anj−]

(CCt+ − j× [ (Ct+
)

j·Anj−])
j × (CAnj− − [ (Ct+

)
j·Anj−])

,
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where CCt+ is the initial molar concentration of the cationic dye (which does not change
within the series); CAn

j− is the initial molar concentration of the anion; [(Ct+)j·Anj−] is the
equilibrium molar concentration of the associate (as):

[ (Ct+
)

j·Anj−] =
CCt × εCt × l + CAn × εAn × l − A

(j× εCt+εAn − εas)× l
.

The last value was calculated on the principle of additivity of optical density A of a
mixture of colored particles in the solution by the equation:

A = ACt + AAn + Aas at a fixed wavelength λ.
ACt = [Ct]×εCt×l = (CCt − j×[(Ct+)j·Anj−])×εCt×l,
AAn = [An]×εAn×l = (CAn − [(Ct+)j·Anj−])×εAn×l,
Aas = [(Ct+)j·Anj−]×εas×l,

where l is the thickness of the absorbing layer, cm.
For l = 1 cm, it turns out:

[ (Ct+
)

j·Anj−] =
CCt × εCt + CAn × εAn − A

j× εCt + εAn − εas
.

In general, it is possible to use different ratios of cation and anion concentrations.
However, when one of the dyes is susceptible to dimerization, then it is necessary to
measure the optical density of the mixture at a constant concentration of this dye (for
example, QB) and a varying concentration of the second dye (BP). In fact, the cationic dye
is “titrated” by the anion, and then CCt × εCt × l = const. If the absorption bands of the
cation and the anion are well separated (∆λmax = |λmax Ct − λmax An| ≥ 80 . . . 100 nm),
then the light absorption of the anion, AAn, at the selected wavelength λmax Ct barely differs
from zero, since εAn ~ 0. Then:

[ (Ct+
)

j·Anj−] =
CCt × εCt − A
j× εCt − εas

,

where A is the measured value of the optical density of the dye mixture.
Data for Kas were obtained at CCt+ ≈ 6·10–7 mol/L for several CAn

j− values and at
three wavelengths (see Table 2).

Table 2. The lg Kas values of BP associates.

Cation
lg Kas

Ct+·HAn− (Ct+)2·An2−

QB 6.61 ± 0.07 11.16 ± 0.11

QR 4.84 ± 0.06 8.29 ± 0.05

The obtained data on the logarithmic values of the association constant are in good
agreement with the values of Kas, which were defined earlier by us [59] (QB:
6.67 ± 0.05 (Ct+·HAn−), 11.07 ± 0.10 ((Ct+)2·An2−); QR: 4.78 ± 0.06 and 8.23 ± 0.04,
respectively) for slightly different concentration ranges of Ct+ and BP. This fact confirms
the validity of considering the indicated stoichiometry of a dissimilar association from the
position of an equilibrium model. However, it should be noted that turbidity may appear
in more concentrated solutions of mixtures of dyes. This phenomenon indicates the for-
mation of associates of more complex stoichiometry, which are sparingly soluble in water:
(Ct+)j·Anj− + kAnj− (Ct+)j·(Anj−)k+1. Thus, it is possible to form associates of complex
composition by a cooperative mechanism, when the counterion interacts not only with the
dye, but with the dissimilar associate. Similar facts were set earlier for tetraphenylborate
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anion by spectrophotometrically [67] and for “daunomycin + ethidium bromide” [68] or
“acridine orange + caffeine” [69] by 1H NMR spectroscopy.

Comparison of the values of lg Kas (see Table 2) show that QB associates of BP
are more stable than QR associates. This is probably due to the lower hydrophobicity
of QR compared to QB. The octanol–water partition ratio is the most common way of
expressing the hydrophobicity of a compound (P), and it is defined as the ratio of the
concentration of a solute in a water-saturated octanolic phase to its concentration in an
octanol-saturated aqueous phase. The correlation between hydrophobicity and activity
has provoked the extensive use of the octanol–water partition ratio, among others, as a
descriptor in quantitative structure–activity/property relationships [70–73]. The higher
the P parameter, the more hydrophobic the molecule is. Indices of hydrophobicity are log
PQR = 5.15 ± 0.12 and log PQB = 5.69 ± 0.12 according to [74]. So, the manifestation of
hydrophobic interactions in QR associates is reduced. In addition, the positive charge is
localized mainly on the heteroatom of the nitrogen-containing heterocycle in QR, while the
positive charge is delocalized in QB.

The formation of associates in solutions is more characteristic for dyes with a flat
molecule shape and developed π-electronic fragments, which enhances the component of
noncovalent interactions. Such properties have some thiacyanines, porphyrins, spiropyrans
and squaraines [75–78]. However, sulfonephthaleins do not have a flat structure in contrast
to these structures. However, the cation–anionic interactions for BP are significantly
expressed as they follow from the determined values of Kas. Based on experimental data on
stoichiometry, it can be assumed that the polymethine cation coordinates with the single-
charge BP anion (or two cations coordinate with one double-charged BP anion). Using
quantum chemical calculations, we considered the energy state (value of the standard
enthalpy of formation, ∆fHo) of each of the counterions and associates in more detail, and
also determined their most probable structure.

4.2. Energy and Structural Properties of Dissimilar Associates

The semi-empirical PM3 method was used to estimate ∆fHo values of ions and dissim-
ilar associates. The parameters of this method most correctly reproduce the experimental
values of ∆fHo of organic compounds. It should be noted that ∆fHo calculations for or-
ganic molecules by non-empirical methods lead to errors exceeding 100 kJ/mol even
for small molecules, while the average error of the PM3 method in calculating ∆fHo is
only 25 kJ/mol [79,80]. In advance, the geometry of all structures was optimized by the
method of molecular mechanics MM+ (by the minimum value of the total energy E). This
significantly simplified the further determination of ∆fHo by the semi-empirical method.

It is important to find the global energy minimum from a set of local minima to
obtain the correct values of ∆fHo. To do this, we tested several different starting locations
(more often 5–6) of counterions in the associate. From the received calculated set of energy
minima, the smallest was chosen; the energy of this structure corresponded to the global
energy minimum. For example, Figure 4 shows three variants of the initial location of the
two-charged ion in the association of An2− with two cations of QR.

Different (1 and 2) starting positions of ions in an associate can lead to practically
identical optimized values of E. However, in comparison with curve 3, this indicates that
only a local energy minimum has been achieved, since in case 3 the energy results in
being even lower. Thus, curve 3 corresponds to the variant with the energy of the global
minimum E = 123 kJ/mol.
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Table 3 shows the dependence of ΔfHo on RMS values, as well as changes in the 
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Figure 4. Energy dependences on the RMS value for three variants (1–3) of different locations of ions
in the (Ct+)2·An2− associate.

Note that the total energy gradient is calculated as a root mean square (RMS, kJ/(mol·Å))
value. The gradient is the rate of change (first derivative) of total energy (E) with respect
to the displacement of each atom in the x, y, and z directions; the local minimum of the
potential energy of the structure is considered reached when RMS = 0. The process of
finding the optimized variant of the associate structure was considered complete when the
E or standard enthalpy of formation ∆fHo ceased to depend on the RMS values. This is
indicated by the flatness of the area of the corresponding graphical dependence (Figure 5).
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Figure 5. Changes in ∆fHo from RMS values for Ct+·HAn− associate of BP with QB, PM3 method.

Table 3 shows the dependence of ∆fHo on RMS values, as well as changes in the
location of ions during the optimization process (the numbers on the curve, Figure 5,
correspond to the location of dyes from initial 1 to final 5 state; stereo images are presented,
and 1, 2, 3 are the directions of the coordinate axes; the position of BP (BP is over) is
conditionally fixed for clarity).
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Table 3. Dependence of ∆fHo on RMS values and change of mutual arrangement of BP and QR dyes
in Ct+·HAn− associate.

State Arrangement of BP and QB Ions

1
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The values of ∆fHo 980.8 . . . 968.7 kJ/mol and−584.5 . . . −609.6 kJ/mol correspond to Ct+

and HAn− ions. Their algebraic sum (Σ) can take values from 980.8− 584.5 = 396.3 kJ/mol to
968.7 − 609.6 = 359.1 kJ/mol, that is it varies within 396.3 − 359.1 = 37.2 kJ/mol (level 1).
The values of ∆fHo for the Ct+·HAn– associate (level 2) are 220.4 . . . 202.4 kJ/mol, that is
these values differ by 18.0 kJ/mol (level 2). The differences between levels 1 and 2 are from
359.1 − 220.4 = 138.7 kJ/mol to 396.3 − 202.4 = 193.9 kJ/mol, which significantly exceeds
the above systematic error of semi-empirical calculations. In this case, the relative error (δ)
of the ∆fHo estimate is no more than (193.9− 138.7)·100%/193.9≈ 28%. These data indicate
that the formation of an associate between dye ions is an energetically favorable process.

The ∆fHo and δ values are given for all dissimilar associates in Table 4 (rounded values).

Table 4. Values of ∆fHo, Σ − ∆fHo and δ for BP dissimilar associates.

An Associate Σ, kJ/mol ∆fHo, kJ/mol Σ − ∆fHo, kJ/mol/δ, %

QB+·BP− 359 202 157/28

QR+·BP− 303 107 194/14

(QB+)2·BP2− 1367 703 664/6

(QR+)2·BP2− 1254 525 729/7

The analysis of the results leads to an important conclusion. The value of ∆fHo for as-
sociates of bromine-containing dyes is systematically higher in comparison with associates
that do not contain bromine. For example, in the case of an associate of cresolsulfoneph-
thalein (CS) with these polymethines, the lg Kas values are 4.59 ± 0.03 (associate QB+·CS−)
and 10.96 ± 0.10 (associate (QB+)2·CS2−), and in the case of thymolsulfonephthalein (TS)
they are 4.1 ± 0.1 (associate QR+·TS−) and 5.9 ± 0.1 (associate (QR+)2·TS2−) [57,60]. Obvi-
ously, bromine atoms, located in the plane of benzene rings, have virtually no effect on the
geometry of BP, but significantly enhance the non-Coulomb component of intermolecular
interactions, primarily the hydrophobicity of the molecule [81,82]. Thus, the introduction
of halogen atoms into the structure of sulfonephthalein promotes the formation of cation
–anionic associates between dyes.
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5. Conclusions

The interaction between single- or double-charged anions of BP and cyanine cations
has been investigated at dye concentrations of 5.0·10−7–4.0·10−5 mol/L. The obtained
results indicate that the processes of dye association are accompanied by a rather complex
combination of different interactions, including non-Coulomb and π-electronic. The study
of these processes is appropriate in terms of comparing the results of spectrophotometric
measurements with computer simulation data.

Semi-empirical PM3 simulations are in agreement with the spectrophotometric data
and indicate that the association of dye into an associate is possible and accompanied by a
significant gain in energy. The study of the cation–anion association develops the concept
of intermolecular interactions in solutions and creates a basis for further practical use of
the spectral and equilibrium properties of associates.

Further study of the dissimilar association of dyes is aimed at finding the relationship
between the structure of the dye and its ability to associate with organic ions. There is a
need to develop theoretical provisions on the basis of which it would be possible to predict
the stability (Kas values) of associates and their spectral properties based on the structure
of interacting ions. Dye associates can be very useful for chemical analysis; the regulation
of the completeness of the association can be considered an effective means of changing
the absorption characteristics of solutions.
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