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Abstract: The anisotropy and strain rate dependence of the mechanical response of short-fiber-
reinforced thermoplastics was studied using a straightforward micromechanical finite element
analysis of representative volume elements (RVEs). RVEs are created based on the fiber orientation
tensor, which quantifies the processing-induced fiber orientation distribution. The matrix is described
by a strain rate-dependent constitutive model (the Eindhoven glassy polymer (EGP) model), which
accurately captures the intrinsic response of amorphous polymers. The micromechanical results
indicate that the influence of strain rate and that of the loading direction on the yield stress are
multiplicatively decouplable, which confirms previous experimental observations. Moreover, it
is demonstrated that the yield stress, to a good approximation, can be directly linked to the fiber
orientation in the direction of loading. This leads to a new relation that uniquely links the rate
dependence of the yield stress to the fiber orientation in loading direction.

Keywords: short-fiber-reinforced thermoplastics; fiber orientation; strain rate dependence; anisotropy

1. Introduction

Due to their high specific strength, short-fiber-reinforced thermoplastics are currently
used in a multitude of load-bearing applications where structural integrity and long-term
reliability are key requirements, such as components used in automotive or aeronautic
applications [1]. Hence, the ability to accurately predict the mechanical performance
of such systems is of the utmost importance. Unfortunately, however, the accurate pre-
diction of the performance of short-fiber-reinforced thermoplastic components still faces
significant challenges.

One of these challenges is related to the fact that the yield strength of short-fiber-
reinforced thermoplastics is generally strongly anisotropic due to processing-induced fiber
orientation. During injection molding, the fibers are oriented during the flow of the molten
fluid into the mold [2,3]. Due to spatial variation of the flow conditions throughout the
mold, the material will display a marked variation in its anisotropic response on different
positions of the molded product [4]. This intrinsic coupling between flow conditions and
resulting mechanical properties makes the prediction of the mechanical performance of
the molded part challenging. An additional complexity is that experimental observations
clearly give evidence for a significant strain rate dependence of the yield strength on
fiber-reinforced polymer composites [5–8]. Since the reinforcing fibers generally remain
elastic until fracture [9], this dependence on strain rate is intrinsically related to the strain
rate dependence of the mechanical response of the thermoplastic matrix, which is directly
related to the influence of applied stress on chain mobility [10,11].

To adequately predict the strength of products based on fiber-reinforced thermoplas-
tics, both the processing-induced fiber orientation as well as the strain rate dependence of
the matrix must be considered. The difficulty in finding the optimal shape of a load-bearing
component lies in the fact that changes in shape (even small ones) directly influence local
flow conditions that subsequently alter the resulting fiber orientation distribution and
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the related anisotropic, time-dependent response. The inability to accurately predict the
local anisotropic, rate-dependent mechanical properties directly from the fiber orientation
distribution is the main cause that reliability of such products can only be warranted after
full-scale testing—a time-consuming and costly procedure which hampers optimization.

Results from a recent study in our group, however, have opened a new, promising pos-
sibility to directly link fiber orientation to the anisotropic time-dependent response [12,13].
In an extensive experimental effort, it was demonstrated that the rate-dependent, anisotropic
(yield) strength of short and long fiber-reinforced thermoplastics generally displays a mul-
tiplicative decoupling of the effects of strain rate and loading angle [12,13]. Additionally, it
was shown that, at a fixed strain rate, the yield strength appears to be uniquely coupled
to the average fiber orientation in the direction of testing [14]. This observation, in combi-
nation with the decomposition of the influence of strain rate and that of fiber orientation,
could lead to a novel, fast method to accurately predict the anisotropic rate-dependent
mechanical response for an arbitrary fiber orientation distribution.

The objective of the current manuscript was to further explore the experimentally
observed decoupling of the orientation and strain rate dependence by using a microme-
chanical approach. Micromechanical modeling, based on the spatial fiber orientation
distribution and the microscopic matrix behavior, is a method to intrinsically resolve the
yield mechanism of composite materials. Compared to mean-field composite stiffness
models, such as the Mori–Tanaka model [15,16] and pseudo-grain decomposition followed
by two-step homogenization [17–20] of composite structures, full field models, such as
that based on the finite element approach, are able to evaluate micro-level stress and the
effects of interaction between adjacent inclusions on the overall properties. Micromechan-
ical finite element analyses of representative volume elements of short-fiber-reinforced
composites [21–23] showed good agreement between experimental and simulation results
under some conditions, but the strain rate-dependent behavior of the composite was not
taken into consideration.

A proper rate-dependent constitutive model for polymers is essential to predict the
yield strength of the short-fiber-reinforced thermoplastics. A few researchers used a strain
rate-dependent constitutive model and extended its utilization for polymer-based com-
posites [24,25]. However, the constitutive model was developed based on the viscoplastic
deformation of metals, and lacks the deformation kinetics of the polymers. A landmark in
glassy polymer modeling was the pioneering work from Haward and Thackray [26], who
proposed a model that considers the contributions of inter-molecular interactions and the
molecular network to the mechanical properties. For a glassy polymer, the inter-molecular
interactions, as a visco-elastic contribution, determine the moderate strain behavior includ-
ing yield and strain softening. The molecular network, as a rubber-elastic contribution,
governs the strain hardening behavior at large strains. Based on this pioneering work,
further major developments were made by Boyce et al. (BPA model) [27–29], Buckley et al.
(OGR model) [30,31] and our group in Eindhoven (EGP model) [32,33].

In this article, a fine-scale micromechanical finite element model was developed based
on the rate-dependent Eindhoven glassy polymer (EGP) model for the thermoplastic matrix
of short-fiber-reinforced composites and the processing-induced orientation of elastic fibers.
This micromechanical model was used to investigate the anisotropic yield strength at the
different strain rates and fiber orientation distributions. The experimentally observed
multiplicative decoupling was proven in this study. Furthermore, a unique structure–
property relation between the fiber orientation distribution and the anisotropic mechanical
properties was found.

2. Micromechanical Modeling Approach

In this section, details of the micromechanical model for evaluating the anisotropic and
rate-dependent behavior of short-fiber-reinforced thermoplastics are discussed. An E-glass
short-fiber-reinforced polycarbonate material was considered. The anisotropic behavior
was captured through finite element analyses (FEA) of representative volume elements
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(RVEs) at different loading angles. The rate-dependent behavior of the thermoplastic matrix
was described with the Eindhoven glassy polymer (EGP) model. The fibers are modeled as
isotropic elastic with a Young’s modulus of 7.2 GPa and a Poisson’s ratio of 0.22. Fibers and
matrix are assumed to be perfectly bonded. A schematic work flow of the micromechanical
model is shown in Figure 1.

Figure 1. A schematic work flow for investigating the anisotropic and rate-dependent behavior of
short-fiber-reinforced thermoplastics.

2.1. Representative Volume Elements

To quantify the fiber orientation distribution, the fiber orientation tensor [34] was
introduced. The second order fiber orientation tensor p is defined as the average of the
dyadic product of orientation vectors for a number of m fibers [34]:

p =
1
m∑m

i=1
−→q i⊗−→q i, (1)

with −→q i the orientation vector of an individual fiber and where the trace of the fiber
orientation tensor p is equal to 1.

For investigating the anisotropic behavior of a microstructure, the fiber orientation
tensor is rotated by different angles relative to the global coordinate system. The rotated
fiber orientation tensor p′ is given by

p′ = R · p · RT , (2)

where R is a rotation tensor. To conduct the finite element simulations of the E-glass
short-fiber-reinforced polycarbonate, representative volume elements (RVEs) correspond-
ing to different rotation angles which are generated using software package Digimat-FE
2018.1 [35], ensuring a geometric periodicity of the RVEs. This means that if a fiber passes
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one boundary, the remaining part of that fiber continues at the opposite side of the RVE.
Consequently, if these RVEs are periodically stacked, a geometrically continuous structure
is obtained. Due to computational limitations, an RVE with a low weight fraction and
aspect ratio was considered in this paper. A total of 18 fibers with a weight fraction of
10% (volume fraction 5%), diameter of 0.02 mm and aspect ratio of 12 were distributed
according to the fiber orientation tensor p′. Based on this geometric information, the RVE
size was determined at 0.3× 0.3× 0.3 mm3. Consistent results were obtained for the RVE
size of 0.3× 0.3× 0.3 mm3 and prove the RVE size to be sufficiently large enough. The
fibers were assumed to be cylindrical without intersection or contact. In addition, the
fibers were separated as far as possible to avoid clustering effects through tuning the
nearest neighboring distance. The representative volume elements are finally meshed with
80× 80× 80 linear hexahedral solid elements.

In this article, a transversely isotropic E-glass short-fiber-reinforced polycarbonate
was considered with the third direction as the symmetry axis. Therefore, the diagonal
components of the 3 by 3 fiber orientation tensor must satisfy p11 = p22 = (1− p33)/2,
and the non-diagonal components are 0. Three transversely isotropic fiber orientation
distributions, with p33 = 0.94, p33 = 0.82 and p33 = 0.55 were, respectively, introduced to
represent three microstructures. Each microstructure is used to study the corresponding
anisotropic behavior. Because of the limited number of fibers in a representative volume
element, the desired transversely isotropic fiber orientation tensor p is approximated with
a tolerance of 0.05 in each of its components.

Rotated microstructures are created based on the rotated fiber orientation tensors
p′, as shown in Figure 2. In order to simplify the description of the fiber orientation, a
fiber orientation factor pσσ is extracted from the rotated fiber orientation tensor p′ and it
represents the fiber orientation along the loading direction. When pσσ = 1, all fibers are
aligned with the loading direction and when pσσ = 0, all fibers are perpendicular to the
loading direction. In the results section, the orientation of the fiber is indicated by pσσ.

Figure 2. Microstructures 1, 2 and 3 are rotated at various angles with respect to the loading direction.
At each angle, the fiber orientation factor pσσ corresponding to loading in the z direction is illustrated.
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2.2. Periodic Boundary Condition

Periodic boundary conditions were applied to the periodic RVEs to homogenize the
response of the heterogeneous materials [36]. The periodic boundary conditions ensure
that the deformed shapes of two opposing faces remain identical. For this purpose, the
boundary of the representative volume element is split into six boundary faces, here
denoted as Γ4873, Γ1562, Γ1584, Γ2673, Γ5678 and Γ1234 (see Figure 3). The periodicity can then
be formulated in terms of the displacements u of the nodes in the boundary faces and
corner nodes:

−→u Γ2673 −
−→u Γ1584 = −→u 2 −−→u 1, (3a)

−→u Γ4873 −
−→u Γ1562 = −→u 4 −−→u 1, (3b)

−→u Γ5678 −
−→u Γ1234 = −→u 5 −−→u 1. (3c)

Figure 3. The definition of the boundary corners and surfaces. The red markers represent the corner
nodes 1–8. The left and right boundary surfaces are Γ1584 and Γ2673. The top and bottom boundary
faces are Γ4873 and Γ1562. The front and back boundary faces are Γ5678 and Γ1234.

The RVE is loaded with a uniaxial strain at a macroscopically constant strain rate ε̇ by
prescribing the displacement of corner node 5 as

u5,z = L0(exp(ε̇t)− 1), (4)

where L0 is the initial length of the RVE in the z direction. Additionally, the displacement
of corner node 1 is suppressed in the x, y and z direction, the displacement of corner node 5
is suppressed in the x direction, the displacement of corner node 2 is suppressed in the
z direction and the displacement of corner node 4 is suppressed in the y direction. The
macroscopic first Piola–Kirchhoff stress tensor PM is obtained as

PM =
1

V0
∑i=1,2,4,5

−→
f

e
i⊗
−→x 0i , (5)

where
−→
f

e
i is the reaction force and−→x 0i is the position vector of the corner nodes i = 1, 2, 4, 5

in the reference state. V0 is the volume of the RVE in the reference state. The corresponding
macroscopic Cauchy stress σM is then given by

σM =
1

det(FM)
PM · FT

M, (6)

where FM is the macroscopic deformation gradient, which is obtained as

FM =
1

V0

∫
Γ0

−→x ⊗−→n 0dΓ0, (7)

with −→n 0 the outward normal of the boundary Γ0 in the initial state.
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2.3. The Strain Rate-Dependent EGP Model

The rate dependence of the E-glass short-fiber-reinforced polycarbonate stems from
the rate-dependent polycarbonate matrix. The EGP model can accurately describe the
strain rate-dependent visco-elastic regime, yield stress, strain softening and hardening of
amorphous polymers and is used here to describe the polycarbonate matrix. The small
strain behavior, including yield and strain softening, is determined by the inter-molecular
interactions as a visco-elastic contribution. The larger strain behavior with the strain
hardening is governed by the molecular network as a rubber-elastic contribution. Based on
these two contributions, the total Cauchy stress σ is split into an elasto-viscoplastic driving
stress σs and an elastic hardening stress σr:

σ = σs + σr. (8)

The elastic and plastic parts of the total deformation are defined through a multiplica-
tive decomposition of the deformation gradient tensor F:

F = Fe · F p (9)

where the subscripts e and p refer to the elastic and plastic parts of the deformation, respectively.
For polycarbonate, two relaxation processes α and β exist. However, since the material

is tested at room temperature and the strain rates are lower than 100 s−1, the β process,
which dominates at higher strain rates, is ignored [37]. Therefore, in order to save valuable
computation time, the driving stress σs only represents the α process:

σs = ∑n
k=1GkB̂

d
ek
+ κ(J − 1)I, (10)

where subscript k denotes the individual modes; n is the total number of modes; κ is the
constant bulk modulus; J = det(F) = det(Fe) is the volume change ratio; I is the second-

order unit tensor. Gk and B̂
d
ek

are, respectively, the shear modulus and the deviatoric part
of the isochoric elastic left Cauchy–Green deformation tensor, which is defined as

B̂ek = F̂ek · F̂
T
ek
= J−2/3Fek · F

T
ek

. (11)

The relation between the driving stress and the plastic rate of deformation is described
by using a non-Newtonian flow rule:

Dpk =
σs,k

2ηk(T, τ, p, S)
, (12)

where a scalar viscosity η depends on the absolute temperature T, equivalent stress τ,
pressure p and the state parameter S:

ηk = η0k

τ/τ0

sinh(τ/τ0)
exp

(
4H
RT

)
exp

(
µp
τ0

)
exp(S), (13)

where η0k is the initial viscosity associated with mode k,4H is the activation enthalpy, R is
the universal gas constant, and µ is the pressure dependence. τ0 is the characteristic shear
stress, defined as

τ0 =
kBT
V

, (14)

where V is the shear equivalent activation volume associated with Boltzmann’s constant
kB. The stress and temperature dependency are based on the Eyring theory. The equivalent
stress and pressure p are defined as

τ =

√
1
2

σd
s : σd

s ; p = −1
3

tr(σs). (15)
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The state parameter S, which incorporates the description of the intrinsic strain
softening in a glassy polymer, can be written as a function of the equivalent plastic strain γp:

S(γp) = SaRγ(γp), (16)

where the initial state parameter Sa represents the thermo-mechanical (aging) history of
the material. Intrinsic strain softening is described by a modified version of the Carreau–
Yasuda function Rγ:

Rγ(γp) =

[
1 + (r0exp(γp))

r1

1 + rr1
0

] r2−1
r1

, (17)

with fit parameters r0, r1 and r2.
The elastic hardening stress is obtained using the neo-Hookean expression:

σr = GrB̂
d
, (18)

where Gr is the strain hardening modulus and B̂
d
= J−

2
3 F · FT .

All micromechanical simulations are conducted in Marc.Mentat 2014.0.0. The EGP
model is implemented in a user-defined subroutine HYPELA2. The material parame-
ters for the polycarbonate matrix are adopted from a previous study [33] (see Table A1
Appendix A). In Table A2 Appendix A, the reference spectrum for the polycarbonate
matrix is shown with 17 modes.

3. Results and Discussions

Using direct finite element simulations, the homogenized stress–strain responses of
RVEs, generated from specific fiber orientation tensors, are obtained. The RVE is meshed
with 512,000 linear elements, and the FEA of the RVE is conducted with eight CPUs
and 52 GB RAM. The computational running time until the yield point depends on the
loading angle, since a finer time increment is required at lower loading angles for better
convergence. In general, the computational running time until the yield point is 3 days at
lower loading angles and less than 1 day at higher loading angles. To investigate the effect
of different RVEs with identical orientation distributions, four RVEs were generated with
p33 = 1 (see Figure 4a). The simulated stress–strain curves of these RVEs are presented
in Figure 4b for loading angles of 0◦ and 90◦ at a strain rate of 10−1 s−1. The yield point
is obtained as the maximum stress of the stress–strain curve, which is presented as the
marker in Figure 4b. The observed variation is clearly small; for the 90◦ loading angle, the
stress–strain curves for the different RVEs are almost indistinguishable as they are on top
of one another. In the 0◦ direction, where changes in fiber placement may be expected to
have a larger influence, the yield stress variation is still very small, 88.7 MPa ± 1.8 MPa,
i.e., a variation of little more than 2%. These small variations between RVEs are a strong
indication that the RVE size is large enough and can indeed be regarded as representative.

To investigate the influence of fiber orientation on the mechanical response, further
simulations were performed at a strain rate of 10−1 s−1 for different values of the principal
fiber orientation p33 and various loading angles. The RVEs used were presented in Figure 2.
Illustrative examples of the simulated stress–strain curves are shown in Figure 5, where
it is clear that the fiber orientation, as well as the loading angle both markedly influence
the mechanical response. Upon a decrease in value of p33, a gradual decrease in the yield
stress and elastic modulus is observed in the 0◦ loading direction. A similar change in
stress–strain response is observed when the loading angle increases gradually from 0◦ to
90◦, where it should be noted that the value of the principal fiber orientation p33 has almost
no influence on the response in the 90◦ loading direction. Even in the moderate case studied
here, a composite with a fiber loading of 10% weight fraction, a clear orientation-induced
anisotropy is observed.
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(a) (b)

Figure 4. (a) Four different RVEs containing 10% weight fraction of glass fibers with an aspect ratio
of 12 and a principal fiber orientation p33 = 1; (b) simulated stress–strain curves for each RVE for
loading angles of 0◦ and 90◦ at a strain rate of 10−1 s−1. Markers indicate yield stress.

Figure 5. Simulated stress–strain curves for a strain rate of 10−1 s−1, using RVEs with principal fiber
orientations p33 of 1, 0.94, 0.82 and 0.55. For each principal fiber orientation, the stress–strain curve is
obtained for various loading angles. Markers indicate yield stress.

Since the matrix material displays a significant dependence on the applied strain rate,
the results of simulations at various strain rates on a representative volume element with
p33 = 0.94 are presented in Figure 6, for various loading angles. Some curves end earlier
because their simulations were manually terminated earlier after the yield (maximum)
stress was reached. Meanwhile, some simulations indeed stop earlier due to the non-
convergence, especially at lower loading angles. The resulting yield stresses at the different
strain rates were determined and are presented in Figure 7a in a semi-log representation
of yield stress versus the logarithm of strain rate. Figure 7a visualizes the pronounced
influence of loading angle on the value of the yield stress. Additionally, the results seem
to indicate that the strain rate dependence of the yield stress, here quantified as the slope
of the lines (guides to the eye), also displays a variation with the loading angle. To study
this effect in more detail, extra simulations were performed on RVEs with p33-values of
0.09, 0.47, 0.71, 0.82, 0.94 and 1.00, for a loading angle of 0◦ (pσσ = p33). The resulting yield
stress values, at various strain rates, are presented in Figure 7b, where the response of the
unfilled matrix is also added. With the larger range in fiber orientation, its influence on the
strain rate dependence of the yield stress is clearly more pronounced. The trend becomes



Fibers 2021, 9, 44 9 of 16

clearer when the values of the simulated strain rate dependence are ranked with respect
to increasing pσσ, the fiber orientation in the direction of loading. These are presented in
Table 1, which shows that, initially, up to a pσσ of 0.5, the slope only changes marginally,
and stays more or less constant. At larger fiber orientations, there is a marked increase in
the strain rate dependence with increasing pσσ. A similar trend is observed in the yield
stress which also shows a marked increase at larger pσσ values.

The observed trends appear in good agreement with experimental observations of
glass fiber-reinforced polycarbonate [10,12–14]. In these experimental studies, it was
demonstrated that the influence of loading angle/fiber orientation and strain rate depen-
dence are, to a good approximation, factorizable—implying that the influence of the strain
rate and that of the loading angle are actually decoupled. This was shown by plotting the
yield stress data versus strain rate in a double logarithmic plot. This procedure yielded
parallel lines, demonstrating that the influence of fiber orientation and that of strain rate
can be separated in a multiplicative manner. This factorizability was not only observed for
the low fiber weight fraction used in this study, but also for other fiber-reinforced systems
with fiber weight fractions and aspect ratios over the entire range commercially available.

Figure 6. Illustration of the strain rate dependence observed in an RVE with a principal fiber
orientation p33 = 0.94. Figures present simulated stress–strain curves in various loading directions
and for strain rates. Markers indicate yield stress.

(a) (b)

Figure 7. (a) Semi–log plot of the strain rate dependence of the simulated yield stress of an RVE
with a principal fiber orientation p33 = 0.94 for different loading angles; and (b) semi–log plot of the
strain rate dependence of the simulated yield stress of RVEs with various fiber orientation pσσ and
the unreinforced matrix. Markers are simulation results; lines represent guides to the eye.
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Table 1. Simulated values of yield stress and rate dependence of the yield stress in a semi-log plot for different
fiber orientations.

Principal Orientation
p33 (-)

Loading Angle θ
(◦)

Orientation in Loading
Direction pσσ (-)

Rate Dependence of Yield
Stress (MPa/Decade)

Yield Stress@10−2 s−1

(MPa)

matrix isotropic - 2.39 59.82
1 90 0 2.73 65.52

0.94 90 0.03 2.70 65.21
0.82 90 0.09 2.74 65.25
0.94 69 0.10 2.70 64.64
0.55 90 0.23 2.62 64.29
0.94 46 0.42 2.72 65.40
0.55 25 0.47 2.73 67.53
0.55 0 0.55 2.77 68.56
0.82 41 0.63 2.72 68.03
0.94 28 0.71 2.82 70.72
0.82 6 0.79 3.30 76.07
0.82 0 0.82 3.38 76.78
0.94 0 0.94 3.42 80.41

1 0 1 3.95 84.29

As shown in Figure 8a,b, presenting the double logarithmic versions of the semi-log
plots presented in Figure 7a,b, a similar observation can be made. For different fiber orien-
tations, the strain rate dependence of the simulated yield stresses, to a good approximation,
is also transformed to a set of parallel lines. Remarkably, the simulated response of the
unreinforced matrix seems to fit this trend well, clearly witnessing that the polymer matrix
is the origin of the observed rate dependence, and that the effect of fiber-reinforcement
and orientation merely shifts the response—a geometrical effect which can be identified by
micromechanical simulations.

(a) (b)

Figure 8. (a) Log–log plot of the strain rate dependence of the simulated yield stress of an RVE with a
principal fiber orientation of p33 = 0.94 for different loading angles; and (b) log–log plot of the strain
rate dependence of the simulated yield stress of RVEs with various fiber orientation pσσ. Markers are
simulation results; lines are perfectly parallel and represent guides to the eye. Black line and markers
correspond to the response of the unreinforced matrix.

In practical terms, the results presented in Figure 8 imply that the dependence of the
yield stress σy on strain rate ε̇ and loading angle θ can be expressed as

σy(ε̇, θ) = f (ε̇) · g(θ). (19)

For a logarithmic stress-axis, the multiplicative decoupling transforms into:

log
(
σy(ε̇, θ)

)
= log( f (ε̇)) + log(g(θ)), (20)
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where f (ε̇) = σy(ε̇, θre f ) represents the strain rate dependence of the yield stress for a
chosen reference state, the loading angle θre f , which is generally chosen to be 90◦. To obtain
a suitable expression for g(θ), the Hill equivalent stress, based on the well-known Hill
yield function [38] is used. To simplify the expression, a plane stress state was assumed, in
which case:

g(θ) =
(

F(1− 2cos2θ)2 + Gcos4θ + Hsin4θ + 2Lsin2θcos2θ
)− 1

2 , (21)

with:

F =
1
2

(
1

R2
22

+
1

R2
33
− 1

R2
11

)
, (22a)

G =
1
2

(
1

R2
11

+
1

R2
33
− 1

R2
22

)
, (22b)

H =
1
2

(
1

R2
11

+
1

R2
22
− 1

R2
33

)
, (22c)

L =
3

2R2
23

, (22d)

where the constants R11, R22 and R33 are ratios of the yield stress in different principal
material orientations to the reference yield stress σy,re f . The value of R23 is the ratio of

the shear yield stress to the reference shear yield stress τy,re f =
σy,re f√

3
. In our specific case,

it should be noted that the R-values are all independent of strain rate. Since strain rate
and loading angle dependence are decoupled, the latter are determined at an (arbitrarily
chosen) strain rate. An example of the application of the Hill equivalent stress approach
is shown in Figure 9, which presents the loading angle dependence at a strain rate of
1× 10−1 s−1 for a principal fiber orientation p33 of 0.55, 0.84 and 0.94. The solid lines are
fits with Equations (19) and (21), taking the yield stress at 90◦ as a reference yield stress. It
is clear that the Hill function adequately represents the observed loading angle dependence.
The Hill parameters obtained from the fit are presented in Table 2.

Figure 9. Loading angle dependence of the yield stress at a strain rate of 10−1 s−1 for different
principal fiber orientations. Markers are simulation results; lines are fits using the Hill yield function.

Table 2. Hill parameters obtained from Figure 9.

p33 (-) σy,re f (MPa) R11 = R22 (-) R33 (-) R23 (-)

0.55 66.84 1 1.07 1.04
0.82 67.95 1 1.18 1.03
0.94 67.85 1 1.24 1.03
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Figure 9 clearly demonstrates the strong influence of fiber orientation on local anisotropy;
a different fiber orientation distribution clearly reflects marked changes of the load angle
dependence. Of course, in a realistic situation, where a complex shaped component is
injection-molded, the variation in the flow conditions over the product shape will lead
to a pronounced spatial variation of the local fiber orientation throughout the product.
Simultaneously, this implies that the anisotropic mechanical response will demonstrate
a similar spatial variation. This variation of properties throughout the product, and
its complex relation to processing conditions, product geometry, flow and mechanical
characteristics of the fiber-reinforced polymer is one of the major challenges encountered in
the design of load-bearing fiber-reinforced polymer components today. The usual approach
is to address the problem in a two steps; firstly, a simulation of the processing step, in which
the designer can obtain information on the local fiber orientation distribution throughout
the component. Methods to achieve this were developed over the years [34,39,40], and are
readily available in various commercial software packages dedicated to injection molding.
The second step is the translation of the local fiber orientation distribution to the resulting,
local, anisotropic mechanical response. This step is complex, since it usually involves either
a mean-field homogenization such as Mori–Tanaka model or a full-field homogenization
through the FEA of RVEs. The mean-field homogenization was able to rapidly provide
the overall response and is commonly used for actual product simulations. Meanwhile,
the full-field homogenization provides a better accuracy and is used in the current study.
From these, the local parameters of a suitable macroscopic constitutive model must be
determined, leading to a set of parameters that may vary from element to element.

The results from our simulations, however, also reveal the possibility of an alternative
route. From Figure 8a, it became evident that, as mathematically defined in Equation (19),
the dependence of the yield stress on strain rate and loading angle are multiplicatively
decoupled. This implies that the rate dependence can be characterized on a reference
orientation of choice. Figure 8b additionally evidences that the same rate dependence is
actually applicable over a great variety of pσσ(p, θ), obtained from different orientation dis-
tributions tested in various loading directions. Hence, it appears interesting to investigate
how the value of pσσ(p, θ) influences the value of the yield stress at a single strain rate. The
result is presented in Figure 10a, for a strain rate of 10−1 s−1, and demonstrates that the
yield stress is intimately related to the fiber orientation in loading direction pσσ. A similar
observation was also experimentally made on a polycarbonate composite system with 20%
weight fraction of short glass fibers, although in the experimental case, the range of fiber
orientations was more limited (0.3 < pσσ < 0.75) [14]. The observed trend is described
well by

σy(ε̇re f , pσσ) = cp pq
σσ + σy(ε̇re f , pσσ,re f ), (23)

where ε̇re f is the reference strain rate chosen (10−1 s−1 in this case), pσσ,re f is the reference
orientation chosen to determine the rate dependence (most obvious choice pσσ,re f = 0),
and cp and q are parameters to be determined by fitting. As can be observed in Figure 10a,
a satisfactory fit is obtained with cp = 20.8 MPa and q = 3.

Equivalent to Equation (19), it is convenient to rewrite Equation (23) to

σy(ε̇re f , pσσ) = h(pσσ)σy(ε̇re f , pσσ,re f ), (24)

where, following Equation (23):

h(pσσ) =
cp pq

σσ

σy(ε̇re f , pσσ,re f )
+ 1, (25)

and σy(ε̇, pσσ,re f ) can be described using an Eyring expression, in the isothermal case
simplified to:

σy(ε̇, pσσ,re f ) = σ0sinh−1
(

ε̇

ε̇0

)
, (26)
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which provides the linear relationship between the yield stress and the logarithm of strain
rate that is generally observed over large ranges of strain rate and temperature [10]. On a
log base 10 scale, the slope of the reference orientation can be expressed as

4σ (pσσ,re f ) =
dσy(ε̇, pσσ,re f )

dlog(ε̇)
= σ0,re f · ln(10). (27)

Of course, with increasing fiber orientation, the slope dσy(ε̇, pσσ)/dlog(ε̇) will also
gradually increase, and from Equation (24), it can easily be deduced that this can be
expressed as

4σ (pσσ) =
dσy(ε̇, pσσ)

dlog(ε̇)
= h(pσσ) · σ0,re f · ln(10), (28)

with h(pσσ) defined by Equation (25). With all the parameters required determined from
Figure 10a, Figure 10b presents a direct comparison between the measured slopes4σ for
different pσσ, listed in Table 1, and the trend that is predicted by Equation (28). Overall, the
deviations are in the order of 5%, except for the perfectly aligned case.

(a) (b)

Figure 10. (a) Simulated yield stress at 10−1 s−1 (markers), plotted versus the fiber orientation
in the direction of loading pσσ. Each color represents the results obtained for a specific principal
fiber orientation under different loading angles. Lines are fits according to Equation (23), using
the parameters listed in the text; (b) simulated slope (rate dependence of yield stress) at 10−1 s−1

(markers) versus the fiber orientation in the direction of loading pσσ. The line is the prediction from
the reference orientation through Equation (28).

The results in Figure 10 suggest that, with adequate material characterization, expres-
sions can be found that conveniently link the yield stress and its strain rate dependence to
the fiber orientation in the direction of loading. Such a relation can be employed to create
direct analytical links between the local fiber orientation distribution (as obtained from
injection molding simulations) and the parameters required for the characterization of its
anisotropic macroscopic response (Hill parameters, rate dependence).

4. Conclusions

In this study, we employed a straightforward micromechanical modeling approach to
study the anisotropy in the strain rate dependence of the mechanical response of a short
(glass) fiber-reinforced polycarbonate. The matrix response was captured using the EGP-
model, which was shown earlier to accurately represent the rate-dependent mechanical
response of polycarbonate [33], and the glass fibers were modeled as linear elastic solids.
RVEs were generated based on several transversely isotropic orientation distributions of
short glass fibers with fixed length. The results of the simulations demonstrate that the
influence of the loading direction and that of the strain rate can be regarded independently
(factorizable), and that they are multiplicatively decoupled. This implies that the rate
dependence of the system can be fully characterized in a single (reference) loading angle
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and the dependence on loading direction at a single strain rate. Moreover, the results also
clearly demonstrate that the yield stress, to a good approximation, can be directly linked to
the fiber orientation in the direction of loading. This leads to a new relation that uniquely
links the rate dependence of the yield stress to the fiber orientation pσσ in the loading
direction. We expect that the observed multiplicative decoupling can be the basis of a novel
method to rapidly estimate the anisotropic mechanical response of short-fiber-reinforced
thermoplastics on the basis of fiber orientation distribution. Such a method would be
invaluable with respect to the development of new predictive methodologies that can
take processing-induced fiber orientation into account in the very early stages of design of
load-bearing components.

For future work, the micromechanical modeling in this study could be extended from
an amorphous to a semicrystalline polymer matrix, since a considerable amount of polymer
composites are based on semicrystalline polymers. It has been shown that the modular
set-up of the EGP model provides a versatile tool that can also be successfully applied to
semicrystalline polymers [41].
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Appendix A

Table A1. Material parameters for polycarbonate matrix [33].

Gr (MPa) κ (MPa) τ0 (MPa) Sa (-) µ (-) r0 (-) r1 (-) r2 (-)

26 3750 0.7 28 0.08 0.965 50 −3
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Table A2. Reference spectrum for polycarbonate matrix [33].

Modes Gk (MPa) η0,k,re f (MPa · s)

1 3.52× 102 2.10× 1011

2 5.55× 101 3.48× 109

3 4.48× 101 2.95× 108

4 4.12× 101 2.84× 107

5 3.50× 101 2.54× 106

6 3.20× 101 2.44× 105

7 2.75× 101 2.20× 104

8 2.43× 101 2.04× 103

9 2.07× 101 1.83× 102

10 1.81× 101 1.68× 101

11 1.54× 101 1.51× 101

12 1.36× 101 1.40× 10−1

13 1.19× 101 1.27× 10−2

14 9.80× 100 1.10× 10−3

15 1.04× 101 1.23× 10−4

16 2.11× 100 2.62× 10−6

17 1.64× 101 2.14× 10−6
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