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Abstract: This study investigated the effect of acid hydrolysis of cellulose on its dissolution un-
der mild conditions in ionic liquid, 1-butyl-3-methylimidazolium acetate/N,N-dimethylacetamide
(BMIMAc/DMAc). Acid hydrolysis of high molecular weight (MW) cotton cellulose (DP > 4000)
was carried out to produce hydrolyzed cotton (HC) samples for dissolution. The HC samples were
characterized using gel permeation chromatography (GPC), Fourier transform infrared spectroscopy
(FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), and the dissolution process
was monitored using polarized light microscopy (PLM). It was found that the drastic decrease of the
MW of cellulose did not result in improvement of its dissolution at room temperature. As compared
to original cotton cellulose, the high amount of undissolved fibers in HC solutions led to unstable
rheological behavior of HC solutions. Agglomeration and inhomogeneous dispersion of HC, and
increased crystallinity, in this case, likely made the diffusion of BMIMAc/DMAc more difficult to
the inside of the polymeric network of cellulose at ambient temperature, thereby hindering the
dissolution. However, increasing the temperature from room temperature to 35 ◦C and 55 ◦C, led to a
significant improvement in cellulose dissolution. This phenomenon implies that reducing the MW of
cellulose might not be able to improve its dissolution under certain conditions. During the dissolution
process, the physical properties of cellulose including fiber aggregation status, solvent diffusivity,
and cellulose crystallinity may play a critical role compared to the MW, while the MW may not be an
important factor. This finding may help further understand the mechanism of cellulose dissolution
and seek better strategies to dissolve cellulose under mild conditions for industrial applications.
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1. Introduction

Cellulose, the most abundant renewable resource in the world with an annual yield
of 1.5 × 1012 ton, is a homopolymer composed of repeating units of β-D glucopyranose
linked together by 1→4 glyosidic bonds. A single cellulose polymer chain is comprised of
several hundreds to over ten thousand repeating glucose units. Because of the extensive
intra- and interchain hydrogen bondings and van der Waals forces, cellulose chains are
assembled into highly crystalline micro-fibrils [1–3]. Cellulose is a promising candidate
as a raw material for the preparation of various “green” materials such as fibers, films,
food casing, membranes, and sponges, which are currently predominantly prepared from
petroleum based synthetic polymers. Cellulose possess many desirable properties such
as biocompatibility, renewability, and versatility [2,4]. Materials prepared from cellulose
have the potential to meet the expectation of environmental friendliness while being eco-
nomically viable at the same time [5–11]. However, unlike most of its synthetic polymer
counterparts, cellulose cannot be melted without degradation. Melting is the most com-
mon route for processing many synthetic polymers. The dissolution of cellulose offers an
alternative way to melting and is, generally, the only viable option for processing cellu-
lose to prepare materials for non-conventional applications such as films and fibers, and
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efficient chemical modification as well. Because of the complex polymeric network of
cellulose, high molecular weight and extended non-covalent interactions among molecules,
cellulose is often recalcitrant to chemical processing. The dissolution process of cellulose
generally requires rigorous conditions (relatively harsh solvents, elevated temperatures
and prolonged dissolution time) [12–14]. Therefore, although studied for a long time,
efficient dissolution of cellulose under low-cost and mild conditions has persistently been
pursued by scientists and engineers in this field. Besides wood, cotton is a major source
of cellulose. Even though cotton is mostly used as a raw textile fiber in manufacturing of
various textile products, significant amount of cotton (low quality cotton fibers) is wasted
in the textile industry. Such low-quality cotton could be utilized as a premium source of
cellulose in the preparation of value-added cellulose derived products after dissolution.
However, the dissolution of cotton cellulose feedstock, in energy efficient, cost effective
and environmentally friendly manner is more challenging compared to wood based cellu-
lose (wood pulp and microcrystalline cellulose, MCC). Numerous studies have reported
that the MW of cellulose is one of the key factors governing its dissolution. As the MW
increases, the dissolution significantly decreases [15–18]. Inverse relationship between
the MW of a polymer and its solubility in a solvent is attributed to the decrease in the
entropic driving force contribution with increasing MW of the polymer in the dissolution
process [16,19]. Studies have sought to enhance the dissolution of cellulose substrates by
reducing the MW. Yang et al. reported that the dissolution of wood pulp was enhanced
by a pretreatment with dilute H2SO4 (3 wt%) in NaOH/urea/water system as a result
of a decrease in the MW of the wood pulp [17]. In other studies, cellulose was treated
with more concentrated solutions of mineral acids (concentration of acid up to 37 wt%)
and hydrolyzed cellulose samples of significantly lower MWs were obtained. Improved
dissolution of hydrolyzed cellulose samples in NaOH/urea/ water system was attributed
to the decrease in MW in hydrolyzed celluloses [20,21]. When cellulose is treated with
mineral acids, its MW is reduced as a result of selective hydrolysis of the amorphous
regions leaving crystalline regions intact. In the acid hydrolysis process, the degree of poly-
merization (DP) of cellulose decreases rapidly until it reaches the so-called “levelling-off”
or “limiting” degree of polymerization (LODP) [22]. In general, drastic decrease of the
MW of cellulose due to acid hydrolysis, especially when carried out to LODP might be
disadvantageous because a decrease of molecular weight will result in a decrease in the
mechanical strength of regenerated cellulosic materials (e.g., films and aerogels). However,
achieving improved dissolution (in terms of time and concentration) of otherwise hard to
dissolve cotton cellulose, by decreasing its molecular weight might still be beneficial to
prepare regenerated cellulosic materials which do not require to be very high in strength
for some specific application. Furthermore, improving the dissolution of cellulose by de-
creasing the molecular weight might be particularly a smart strategy when the dissolution
is applied as a pretreatment to enhance enzymatic catalysis for biofuel production [23]. In a
previous study, we showed that high MW cotton cellulose (DP > 4000) at a concentration
as high as 3 wt% could be dissolved within 24 h using an ionic liquid based solvent system,
BMIMAc/DMAc at ambient condition [24]. However, relatively shorter dissolution time is
desirable to make the process competitive for potential industrial application. Therefore, in
this study, we investigated the improvement in cellulose dissolution in terms of reduced
time and higher concentration of high MW cotton cellulose using the same solvent system
at ambient condition. Acid hydrolysis of cotton cellulose was carried out. The effect of
hydrolysis on the MW and material properties of cotton cellulose was studied. Finally,
the dissolution of hydrolyzed cotton was investigated using polarized light microscopy
and rheological studies of solutions were also performed.

To the best of our knowledge, although there are numerous studies focused on im-
proving cellulose dissolution by applying various pretreatments, studies on the dissolution
of cotton cellulose especially of high MW are scant. Furthermore, the effect of hydrolysis
on the dissolution of high MW cellulose (DP > 4000) such as raw cotton fibers at ambient
temperature has not been reported. Waste or cotton fibers of low quality (from textile ap-
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plication perspective) were the source of cellulose used in this study. Significant amount of
such inferior quality cotton along with waste is discarded in the textile industry. This study
may further help elucidate the mechanism of the dissolution of cellulose, and it may lead
to a new avenue for energy-saving conversions of low quality cotton as a cost effective
source of cellulose as a raw material for the preparation of cellulose based-materials for
nonconventional uses.

2. Materials and Methods
2.1. Materials

Raw cotton (cotton fiber waste) was obtained from the Fiber and Biopolymer Research
Institute, Texas Tech University (Lubbock, TX, USA). Conventional scouring and bleaching
treatments were applied to the raw cotton fibers to obtain purified cellulose [25]. The weight
average MW of the purified cellulose was estimated to be 6.725 × 105 (DP~4150) using
Gel Permeation Chromatography (GPC Viscotek TDAmax Model 305, Malvern, UK).
Sulfuric acid (H2SO4, LC2555503, 96%) was purchased from LabChem (Zelienople, PA,
USA). Other chemicals: N,N-dimethylacetamide (DMAc, 746460 Aldrich) and 1-Butyl-3-
methylimidazolium acetate (BMIMAc, 39952 Aldrich) were purchased from Sigma Aldrich
(St. Louis, MO, USA). No further purification was done and all the chemicals were used
as received.

2.2. H2SO4 Hydrolysis

Scoured and bleached cotton was ground in a Wiley mill (Wiley Mini Mill 3383-L10:
115 V, 60 HZ, Thomas Scientific, Swedesboro, NJ, USA) to pass 20-mesh sieve. Hydrolysis
of cotton was performed based on adapted standard procedures in the literature [6]. In
brief, 11 g of purified and ground cotton was added in 100 mL of 63.5% H2SO4. The hy-
drolysis reaction was carried out at 45 ◦C for 1 h, 2 h, and 3 h, and afterwards the reaction
was quenched by adding a large excess of DI water. Each mixture from corresponding
reaction time was subsequently centrifuged at 3000 rpm for 15 min several times. The clear
supernatant was decanted, and the pellet was re-dispersed by adding DI water before each
successive centrifugation until the pellet and the clear supernatant could not be separated.
Then, both the supernatant and the pellet were collected together and re-dispersed. The
suspension was subsequently neutralized with 3M aqueous solution of KOH and dialyzed
against DI water for at least three days. The DI water of the dialysis bath was changed
several times in a day. The resultant suspension was ultrasonicated for 5 min and freeze-
dried (FreeZone R Plus, Freeze Dry Systems, Labconco, Kansas City, MO, USA). After
freeze drying, hydrolyzed cotton samples with sulfuric acid hydrolysis time of 1, 2, and 3 h
were labelled as HC-1, HC-2, and HC-3 respectively. Freeze-dried (FD) hydrolyzed cotton
cellulose was immediately used for dissolution with no further treatment.

2.3. Material Characterization
2.3.1. Gel Permeation Chromatography (GPC)

To perform GPC measurements, samples were first dissolved in DMAc/LiCl (8% LiCl,
w/v). In a typical process, 20 mL DMAc was heated at 110 ◦C for 30 min and then cooled to
80 ◦C. Then, 100 mg (0.5%, w/v) of freshly freeze-dried cellulose was added with gentle
stirring and heated for 30 min. Then, 1.6 g of oven-dry LiCl was added. Cellulose in
DMAc/LiCl solution was heated under gentle stirring at 80 ◦C for another 3 h followed
by cooling to 50 ◦C. The sample was maintained at 50 ◦C for 2 days to ensure complete
dissolution. Next, the solution was diluted by adding 10 mL of DMAc. Dissolved samples
were filtered into 1.5 mL sterile glass vials (Malvern, UK). PTFE disposable membrane
filters with pores of 0.20 µm were used (Millex- FG, Millipore, Germany). Chromatographic
analysis was performed using a GPC system (Model 305, Viscotek, Houston, TX, USA)
equipped with an autosampler (Model VE 201, Viscotek, Houston, TX, USA). The GPC
system contained a series of detectors namely: Refractive Index, viscometer, right angle
light scattering, and low angle light scattering. Anhydrous DMAc/LiCl (5%, w/v) was used
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as a mobile phase. The flow rate was 1 mL/min. The injection volume was 100 µL and
the elution was carried out at 50 ◦C. Data analysis was performed using OmniSEC GPC
software version 5.00 (Malvern, UK).

2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR Spectrum-400 equipped with a universal attenuated total reflectance (UATR)
accessory (Perkin Elmer, Waltham, MA, USA) was employed to acquire the spectra of the
samples over the spectral range of 650 to 4000 cm−1. The spectral resolution was 4 cm−1

and 32 co-add scans were used to generate a spectrum. Optimum contact between the
samples placed on the ZnSe-Diamond crystal stage and the incident infrared beam was
maintained by using a “pressure arm” to hold the sample. Prior conditioning of samples
was performed in an environment of 65 ± 2% relative humidity and 21 ± 1 ◦C for at
least 48 h before the test. Perkin-Elmer software was used for baseline correction and
normalization of the spectra.

2.3.3. X-ray Diffraction (XRD)

SmartLab XRD (Rigaku Corporation, Model HD 2711N) was used to perform wide
angle X-ray scattering of the samples. X-rays of CuKα radiation (λ = 0.15406 nm) were
generated at 40 kV and 44 mA. Scanning of the samples was performed between 10◦ and
50◦ two-theta in 2◦/min stepwise. The crystallinity index (C.I.) was calculated using peak
fitting method (Equation (1)). Fitting of the XRD patterns was performed using a peak
fitting program (PeakFit v4.12, https://systatsoftware.com). Gaussian functions were
assumed for each peak. Four crystalline peaks were assumed and one broad peak ~20 two
theta was assigned as amorphous peak [26]. R2 of the fit above 95% was considered as
good fit in all cases [27].

C.I. =
∑(Area o f crystalline peaks)

∑(Area o f crystalline and amorphous peaks)
×100%, (1)

2.3.4. Thermogravimetric Analysis (TGA)

Investigation of thermal stability of the samples was performed using a Pyris1TGA
(PerkinElmer Shelton, CT, USA). Samples were heated under a N2 gas flow. Samples were
burned in the heating range of 37 to 600 ◦C. The heating rate was 10 ◦C/min and a gas flow
of 20 mL/min was maintained. Prior conditioning of samples was performed at 65 ± 2%
relative humidity and 21 ± 1 ◦C for at least 48 h before the test. Pyris software was used
to calculate the first derivatives of the thermograms (DTG) along with the weight loss
percentages, and the decomposition temperatures of the samples.

2.4. Dissolution of Hydrolyzed Cotton Cellulose

Dissolution experiments in the BMIMAc/DMAc solvent system were carried out
according to previously published method [24]. In a typical process, hydrolyzed cotton
cellulose at a specified concentration (wt%) was slowly added to the solvent in a vial
(BMIMAc/DMAc molar ratio: 1 to 1.4) under manual stirring. Then, the cellulose-solvent
mixture was kept on the benchtop at ambient conditions (T~25 ◦C). Parafilm was used to
seal the vials to prevent moisture absorption. The maximum time for the dissolution was
limited to 24 h. For HC-1, three different concentrations (1, 3, and 5%) were used while for
HC-2 and HC-3 only one concentration (1%) was used.

The dissolution at higher temperatures (35 and 55 ◦C) was carried out by placing the
dissolution vials in the oven maintained at specific temperature after mixing cellulose with
BMIMAc/DMAc.

2.5. Monitoring the Dissolution of Hydrolyzed Cotton Cellulose in BMIMAc/DMAc

PLM images of hydrolyzed cotton cellulose solutions with different concentrations in
BMIMAc/DMAc were obtained using Nikon Eclipse LV 100 microscope (Nikon Corpora-

https://systatsoftware.com


Fibers 2021, 9, 5 5 of 14

tion, Tokyo, Japan) at different time intervals after the start of the dissolution process. To
acquire an image of a sample at a given time, in a typical method, a drop of the sample
was placed on a glass slide and covered with a cover slip, and the sample was observed
under PLM at ambient temperature.

2.6. Rheological Study

AR 2000EX rheometer (TA Instruments, New Castle, Delaware, USA) with a Peltier
temperature control system was used to investigate the rheological properties of mixtures of
cellulose and BMIMAc/DMAc. 50-mm circular plate geometry was used and the working
gap between the plates was 5 mm. The temperature ramp test was performed between
25 and 90 ◦C. The temperature was increased at a rate of 5 ◦C/min while maintaining a
constant shear rate of 4 s−1. For the steady state flow test, a range of shear rate between
0.1 and 200 s−1 at 25 ◦C was applied. Both tests were performed after 24 h from the start of
the dissolution process. All measurements were performed at least in triplicates.

3. Results and Discussion
3.1. Effect of H2SO4 Hydrolysis on the MW of Cotton Cellulose

In order to understand the effect of H2SO4 hydrolysis on the MW, molecular weight
distributions (MWDs) of the original cotton cellulose and HC samples were determined
(Figure 1). Cotton cellulose exhibits a broad MWD while all hydrolyzed samples exhibit
narrow MWDs, which shift to significantly lower MW. Irrespective of the hydrolysis time,
all HC samples display similar MWDs. The degree of polymerization (DP) of cellulose
decreased ~10 times (from ~4150 to ~450) as a result of acid hydrolysis. Prolonged hy-
drolysis time (2 h and 3 h) had no impact on the MW compared to hydrolysis for 1 h
(Table 1). These results are consistent with reported trends in the literature [28]. The ob-
served relatively constant DP of ~450 for hydrolyzed cotton cellulose samples irrespective
of the duration of the hydrolysis (1 h, 2 h, and 3 h) suggests that the LODP has been reached
in our case.
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Table 1. Molecular weight (MW) and degree of polymerization (DP) of cotton and hydrolyzed
cotton samples.

Sample Weight Average Molecular Weight (MW), Da Degree of Polymerization (DP)

Cotton 672,500 ± 25,300 4152 ± 156
HC-1 73,900 ± 4100 456 ± 26
HC-2 73,5004 ± 4200 454 ± 26
HC-3 71,600 ± 2900 442 ± 18

3.2. FTIR Characterization of Hydrolyzed Cotton Samples

The effect of H2SO4 hydrolysis on the chemical composition of cotton cellulose was
investigated using FTIR. Figure 2 shows the FTIR spectra of cotton prior to hydrolysis
and the HC samples for different period of time. The spectrum of the original cotton
cellulose (not hydrolyzed) is similar to the spectra of HC samples, which clearly indicates
that the chemical structure of cotton cellulose was not impacted by acid hydrolysis. The
vibration 897 cm−1, assigned to β-linkage in cellulose and designated as amorphous
band in cellulose [29,30], becomes broader and decreases in intensity for all hydrolyzed
cotton samples. These results indicate that the amorphous regions in cotton cellulose were
removed and thus the crystallinity was increased during hydrolysis. Additional vibration
812 cm−1, visible in all HC samples, corresponds to the C-O-S vibration and is due to
inevitable sulfonation via esterification during hydrolysis [30].
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Figure 2. FTIR spectra of cotton and hydrolyzed cotton samples: (i) Cotton, (ii) HC-1, (iii) HC-2, (iv) HC-3.

3.3. XRD Characterization

To obtain further information on the crystalline structure of H2SO4 hydrolyzed cot-
ton cellulose samples, X-ray diffraction (XRD) was performed (Figure 3). The diffraction
patterns show typical diffraction peaks at 2θ = 14.7, 16.5, 22.7, and 34.5◦ corresponding to
the crystal lattices 110, 110, 200, and 004 in native cellulose (Iβ) respectively [24,27,31,32].
The increased intensity of the diffraction peaks at 2θ = 14.7, 16.5, and 22.7◦ in HC samples
compared to the original cotton indicates increased crystallinity in HC samples. These
results corroborate the observation from FTIR that the crystallinity is increased due to
the hydrolysis of the amorphous regions and cellulose crystal type is not changed in hy-
drolyzed cotton samples. Furthermore, crystallinity indices (C.I.) were calculated using
peak deconvolution method [11]. The C.I. increased from 81% in the original cotton cel-
lulose to 85, 93, and 85% in HC-1, HC-2, and HC-3, respectively. The lower value of C.I.
of the HC-3 than the HC-2 (Table 2) suggests that there were some amorphous regions
left after 1 h hydrolysis and those remnant amorphous regions were greatly removed
after hydrolysis for 2 h leading to further increase in crystallinity of HC. However, ex-
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tended hydrolysis after 2 h could cause peeling-off of crystalline sheets, thus leading to
decreased C.I. in HC-3 as compared to HC-2. Despite higher crystallinity of the HC samples,
TGA results showed that their thermal stability was decreased from ~370 ◦C to ~320 ◦C
(Figure S2, Table S1) as compared to the original cotton cellulose due to the surface sulfate
groups inevitably introduced during the hydrolysis reaction [33]. The sulfate groups have
been reported to lower the activation energies of the degradation of cellulose nanocrystals
prepared via H2SO4 hydrolysis of native cellulose [34].
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Figure 3. XRD patterns of cotton and hydrolyzed cotton samples: (i) Cotton, (ii) HC-1, (iii) HC-2,
(iv) HC-3.

Table 2. Crystallinity indices (C.I.) of cotton and hydrolyzed cotton samples.

Sample Crystallinity Index (C.I.), %

Cotton 81
HC-1 85
HC-2 93
HC-3 85

3.4. Dissolution of Hydrolyzed Cotton Cellulose over Time at Ambient Conditions

The dissolution of HC samples in BMIMAc/DMAc was investigated using PLM.
Figure 4 shows representative PLM images of HC at various concentrations in BMI-
MAc/DMAc at different times after the start of the dissolution process at ambient con-
ditions. As the images below show, there is an effect of time and concentration on the
dissolution of HC (Figure 4). For a specific concentration, less fibers become visible over
time as the dissolution progresses. The comparison of images of different concentrations
shows that as the concentration decreases, few fibers are visible at 7 h and 24 h (Figure 4,
images: a-c). Regardless of the hydrolysis time (1 h, 2 h, and 3 h), all hydrolyzed samples
display similar dissolution behavior (Figure 4, images: c-e) at a specific concentration (1%).
This is consistent with the results of MW and material characterization. All HC samples
did not exhibit significant differences in their DP values (~450), MWDs (Figure 1, Table 1),
and material properties especially the crystalline structure (Figure 3). These parameters are
the most important factors influencing cellulose dissolution.
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Results from our previous study showed that high MW cotton cellulose in BMI-
MAc/DMAc up to 3% concentration is completely dissolved within 24 h at ambient
conditions [24]. Figure 5 shows representative PLM images of the original cotton (not hy-
drolyzed) at 5% concentration in BMIMAc/DMAc at different times after the start of the
dissolution process in identical dissolution conditions. As the images show when com-
pared to the same concentration of hydrolyzed cotton (HC-1, Figure 4a), it is obvious that
the dissolution of hydrolyzed cotton is not improved. Since the MW of HC samples is
~10 times lower than the original cotton, improvement in dissolution due to acid hydrolysis,
with respect to kinetics and concentration, compared to the original cotton was expected.
However, fiber clumps even at 1% concentration, although significantly smaller than after 1
and 7 h dissolution, are still visible after 24 h for HC samples (Figure 4). This indicates that
improvement in dissolution of high MW cotton cellulose might not be achieved by using
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acid hydrolysis in BMIMAc/DMAc solvent system at ambient conditions. Despite drastic
decrease in MW of cotton cellulose, and thus favorable entropic gain for dissolution in a
solvent, after hydrolysis, the solubility of HC samples could not be improved compared to
raw cotton (not hydrolyzed). This could be due to a number of reasons. Acid hydrolyzed
cellulose generally leads to low MW cellulose products, such as cellulose nanocrystals
(CNCs). It is well known that HC, such as CNCs, has a strong tendency to self-assemble
and strongly agglomerate after drying [35]. Homogenous re-dispersion of HC without
aggregation, after drying, has been reported to be extremely difficult [36]. Surface modifi-
cation of HC is usually exploited to facilitate their dispersion in a solvent [37]. It is clearly
evident from Figure 4 that HC fibers have agglomerated (l h) contrary to the mesh of long
individual fibers in the solvent for original cotton at identical time after the start of the
dissolution process (Figure 5). Agglomeration and inhomogeneous dispersion of HC, in
this case, likely made the diffusion of BMIMAc/DMAc more difficult to the inside of the
polymeric network of cellulose at ambient temperature, thereby hindering the dissolution.
Moreover, HC is mostly crystalline due to the removal of amorphous regions unlike the
original cotton cellulose. The amorphous regions are more accessible to solvents and
chemicals at the beginning and solvent molecules subsequently slowly diffuse to the inside
of the entire polymeric network [38]. Therefore, it is logical to assume that the entropic gain
for dissolution due to decreased DP for hydrolyzed cotton cellulose is possibly offset by
increased crystallinity at ambient condition, because solvent molecules have lower kinetic
energy and are unable to penetrate the crystalline regions in the HC at ambient conditions.
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3.5. Rheological Behavior of Hydrolyzed Cotton Solutions in BMIMAc/DMAc

Temperature ramp and steady flow measurement were performed to study the rheolog-
ical properties of samples (different HC/solvent solutions). The temperature dependence
of the viscosity of hydrolyzed cotton cellulose solutions are shown in Figure 6. For all
samples with higher cellulose content (HC-1, 3% and HC-1, 5%), the viscosity continuously
decreases as the temperature increases. This behavior is a typical rheological response
of polymeric suspensions, solutions, and melts. Increased mobility of cellulose polymer
chains at higher temperature results in a decrease in the viscosity of the solutions [39].
However, no decrease in viscosity is observed for samples with lower concentration of
cellulose (all HC samples, 1% concentration). There is also high fluctuations among data
points. The observed phenomena for HC samples of 1% concentration could possibly be
due to very limited polymer chain entanglements in the solution as a result of limited
dissolution. As Figure 6 shows, the viscosity of the solution increases as the concentration
of HC in the solvent increases. It is due to the increase in entanglements of the cellulose
polymer chains with increasing concentration. Figure 7 shows the viscosity as a function of
shear rate both in logarithmic scale for different hydrolyzed cotton solutions along with
the original cotton cellulose solutions. Data for the lower shear rate is not shown as the
observed instabilities of flow curves at lower shear rates could arise from instrumental
effect not from the behavior of the solution [40]. It can be observed that the original cot-
ton cellulose solutions at each concentration display resemblance to pseudo-plastic fluid,
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a typical behavior of polymer solutions or melts [41]. However, for HC solutions, the flow
curves are largely flat with no or negligible change in viscosity with increasing shear rate
which could be indicative of less cellulose polymer chain entanglements due to limited
dissolution. This explanation is consistent with results obtained from PLM observation,
which shows the presence of certain amount of undissolved cellulose fibers in the solution
of hydrolyzed cotton even at 1% concentration after 24 h dissolution while our previous
study showed the absence of undissolved cellulose fibers in cotton cellulose solutions (con-
centration ≤3%) indicating that the dissolution of hydrolyzed cotton was not improved in
BMIMAc/DMAc as compared to the original cotton at ambient conditions [24].
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3.6. Dissolution of Hydrolyzed Cotton Cellulose over Time at Increased Temperature

The above results showed that the decrease in MW did not facilitate the dissolution
of hydrolyzed cotton cellulose as compared to the original cotton cellulose at ambient
conditions in BMIMAc/DMAc. We attributed the observed phenomena to increased crys-
tallinity of the hydrolyzed cotton samples and their agglomeration after drying, both of
which contribute to the hindrances in diffusion of the BMIMAc/DMAc to the interior of
the polymeric network of cellulose especially at ambient conditions. If that is the case,
when the mobility of the solvent molecules is increased, enhanced dissolution is expected.
To test this hypothesis, we investigated the dissolution of hydrolyzed cotton cellulose
(HC-1) at 5% concentration at increased temperatures. Figure 8 shows representative PLM
images of hydrolyzed cotton (HC-1) at 5% concentration in BMIMAc/DMAc at different
times after the start of the dissolution process at 35 ◦C. It is evident from the images that the
dissolution of hydrolyzed cellulose is greatly enhanced especially after 7 h and 24 h at 35 ◦C
compared to the dissolution at ambient temperature (Figure 4). Further increase of the dis-
solution temperature to 55 ◦C leads to a pronounced enhancement in the dissolution of hy-
drolyzed cotton cellulose as almost no undissolved cellulose is visible after 1 h dissolution
(Figure 9). Taken together, these results corroborate our hypothesis that improving the
physical properties of cellulose including fiber aggregating status and solvent diffusivity
in the bulk cellulose in the solution, and cellulose crystallinity are critical compared to
reducing the MW of cellulose for improving the dissolution of high molecular weight
cellulose under mild conditions. Therefore, disrupting cellulose fiber agglomeration and
reducing its crystallinity should be good strategies to dissolve high molecular weight cellu-
lose under mild conditions when acid hydrolysis pretreatment is applied. Additionally,
using aqueous based solvents might also be a good strategy. When aqueous based solvents
are used (e.g., NMMO), the need for drying of hydrolyzed cellulose is eliminated, and thus
agglomeration of hydrolyzed cellulose during drying can be avoided [42].
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4. Conclusions

Sulfuric acid hydrolysis of high MW cotton cellulose (DP > 4000) was carried out to
obtain hydrolyzed cotton cellulose (HC) samples. The effect of acid hydrolysis on the MW
and material properties of cotton cellulose was studied using GPC, FTIR, XRD, and TGA,
respectively. The dissolution process of HC samples in BMIMAc/DMAc solvent system
under mild conditions was illustrated and the rheological properties of HC solutions
were also studied. The acid hydrolysis of cotton cellulose significantly resulted in the
reduction of its MW by 10 times, while the crystallinity of HC samples was increased.
It was found that the reduction of the MW of cellulose did not lead to an improvement
of the dissolution at room temperature. However, increasing the dissolution temperature
to 35 ◦C and 55 ◦C led to a significant improvement in the dissolution of HC samples.
This result indicates that the physical properties of cellulose play an important role in the
dissolution of cellulose under mild conditions compared to the MW. Fiber agglomeration
and increased crystallinity of HC samples may hinder the solvent diffusion. When the
dissolution temperature increases, the thermal mobility of the solvent molecules increases
and the fiber aggregation is disrupted, the diffusion of the solvent inside the polymeric
network of cellulose is accelerated, which leads to improvement in dissolution. Therefore,
improvements in the dissolution of high molecular weight cellulose under mild conditions
using acid hydrolysis should minimize the agglomeration and increase the re-dispersion of
hydrolyzed cellulose (e.g., surface modification).
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ton, (ii) HC-1, (iii) HC-2, (iv) HC-3. Table S1: Weight loss and cellulose decomposition temperature of
cotton and hydrolyzed cotton samples.
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