
fibers

Article

Influence of Milled Glass Fiber Fillers on Mode I &
Mode II Interlaminar Fracture Toughness of Epoxy
Resin for Fabrication of Glass/Epoxy Composites

Kannivel Saravanakumar 1, Vellayaraj Arumugam 2, Rotte Souhith 2 and Carlo Santulli 3,*
1 Department of Aerospace Engineering, SRM Institute of Science & Technology, Kattankulathur,

Chennai 603203, Tamil Nadu, India; saravanakumarspacetechnology@gmail.com
2 Department of Aerospace Engineering, MIT Campus, Anna University, Chennai 600001, India;

arumugam.mitaero@gmail.com (V.A.); souhith123rotte@gmail.com (R.S.)
3 School of Science and Technology, Università di Camerino, Geology Section, 62032 Camerino, Italy
* Correspondence: carlo.santulli@unicam.it; Tel.: +39-380-652-2232

Received: 28 May 2020; Accepted: 9 June 2020; Published: 11 June 2020
����������
�������

Abstract: The present work is focused on improving mode I and mode II delamination resistance of
glass/epoxy composite laminates (50 wt.% of glass fibers) with milled glass fibers, added in various
amounts (2.5, 5, 7.5 and 10% of the epoxy weight). Including fillers in the interlayer enhances the
delamination resistance by providing a bridging effect, therefore demanding additional energy to
initiate the crack in the interlaminar domain, which results in turn in enhanced fracture toughness.
The maximal increase of mode I and mode II fracture toughness and of flexural strength was obtained
by the addition of 5% milled glass fiber. The mechanism observed suggests that crack propagation is
stabilized even leading to its arrest/deflection, as a considerable amount of milled glass fiber filler
was oriented transverse to the crack path. In contrast, at higher filler loading, tendency towards
stress concentration grows due to local agglomeration and improper dispersion of excess fillers in
inter/intralaminar resin channel, causing poor adhesion to the matrix, which leads to reduction in
fracture toughness, strength and strain to failure. Fractured surfaces analyzed using scanning electron
microscopy (SEM) revealed a number of mechanisms, such as crack deflection, individual debonding
and filler/matrix interlocking, all contributing in various ways to improve fracture toughness.

Keywords: interlaminar fracture toughness; milled glass fibers; glass/epoxy laminates; stable
crack propagation

1. Introduction

Fiber reinforced plastic (FRP) composites are extensively used in aerospace, automobile, marine,
civil construction and wind turbine industries, where they are competitive for some properties, such
as in-plane strength-to-weight ratio and fatigue resistance, with conventional metals. However,
mechanical properties in FRP are controlled by their fiber direction [1]. As a consequence, composite
laminates are usually weak when subjected to out-of-plane loading, due to the lack of fiber reinforcement
in the through-thickness direction [2]. Hence, interlaminar failure, usually referred to as delamination,
occurs as key failure mechanism within the interplay–resin domain, which is activated by out-of-plane
stresses [3,4]. Several techniques, such as through-thickness stitching (TTS), Z-pinning, 3D weaving,
were employed to enhance the strength of the interlaminar region. However, these techniques may on
the other side cause a reduction in in-plane mechanical properties, fiber volume loss, and also cause
increased production cost [5–7].

An alternative approach to improve the out-of-plane properties of FRP composites is to modify
the resin interlayer domain [8]. The fracture toughness of epoxy resin employed in FRP composites can
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be enhanced by adding microsized fillers [9–12]. Similarly, the use of carbon nanofibers (CNFs) and
carbon nanotubes (CNTs) has attracted a considerable attention as a possible strategy for improving
the interlaminar fracture toughness of FRP composites, because of their high stiffness, strength, specific
surface area and aspect ratio [13–17]. The presence of CNTs promotes percolation at low volume
fraction, enhances the contact area and adhesion with the epoxy, introducing energy dissipation
mechanisms, such as fiber debonding, pullout, crack bifurcation, crack arresting and/or nanocrack
toughening [12]. However, in practice, the modulus and fracture toughness of FRP composites is not
always increased by adding these nanofillers, since it is difficult to control their uniform dispersion in
FRP composites [18–21]. For this reason, the controlled introduction of defects in the interface has been
proposed, together with methods, such as ion implantation, able to modify the characteristics of the
filler [22]. However, it is an expensive and challenging process to implement the introduction of these
nanofillers in FRP composites for large-scale structural applications.

On the other side, the waste materials generated by the FRP industries usually end up in landfill due
to the difficulties in recycling thermosetting polymer matrices [23]. In the particular case of fiberglass,
as reported by Pickering et al. [24], mechanical recycling of glass fibers offers significant environmental
and economic advantages and the recovered fibrous/powdered products can be reincorporated either
as reinforcement or filler in new composite materials. This represents an opportunity, provided that
the structural modifications involved for practical use of these fillers do not entail excessive costs, an
aspect very critical for the recycle of fiberglass, as it is discussed in [25]. If this is the case, therefore they
are employed as close as possible to the as-received state after grinding, recycled milled glass fibers
can be employed to reinforce the polymeric materials, as an alternative to commercial particles/fillers,
therefore enhancing their mechanical properties.

This paper focuses on improvement of mode I and mode II delamination resistance by employing
milled glass fiber fillers as filler particles in glass/epoxy composite laminates, discussing the effect of
interface modification by appropriate microscopic observation and linking it to the flexural behavior of
laminates. This is a challenging task, especially when it comes to determining empirically toughness,
since it requires an accurate control over the experimental dimensions and the measurements, which
brought also to innovative ways to measure toughness on nanocomposites [26]. This has been reached
after fine-tuning the experiment over a number of previous investigations. In this work, Mode I
(DCB) and Mode II (ENF) tests have been performed to evaluate the fracture toughness of glass/epoxy
composites. The specific objective of this work lies in the idea of giving insight on the possibility to
improve these properties of glass/epoxy composites by using definite amounts of the filler, suggesting
that the potential of this introduction is strictly linked with the fracture mechanism, as it is demonstrated
also by scanning electron microscope (SEM) micrographs.

2. Materials and Methods

2.1. Material and Fabrication

The glass fiber reinforced plastic (GFRP) composite laminates of dimension 300 × 300 mm2 were
fabricated with a stacking sequence of [0◦]16 by hand lay-up technique. The glass fibers UD 200 with
mass density of 220 g/m2 and Araldite LY556 epoxy resin with Aradur HY951 hardener were used
for fabrication. The cured epoxy had a final density equal to approximately 1.25. A non-adhesive
insert (Teflon) with 13 (±0.5) microns thickness was introduced as a pre-crack in the mid-plane of the
laminate. The mass proportion of glass fiber and epoxy was taken as 50:50. The curing process was
initiated by adding the hardener to the epoxy in a ratio of 1:10 by weight, and then accurately stirring
the mixture for at least 5 min. The epoxy resin was allowed to impregnate the fibers with the aid of
rollers. Further, to maintain a uniform thickness a spacer plate of ±4.5 mm was placed between the flat
molds. For some testing (end notch flexure) also neat epoxy samples of the same dimensions have
been fabricated.
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Other than the control GFRP laminate with no milled glass fiber filler, the other laminates were
fabricated with different mass proportions (2.5, 5, 7.5 and 10 wt. %, taking 100 as the epoxy weight) of
filler, which consisted of end-of-life milled glass fibers from disposal, very likely to have preserved also
traces of their sizing agent (silane), so that the bulk density of the milled glass fibers was measured
as being around 2.4. In Table 1, the percentages in weight and volume are presented for comparison.
Milled glass fibers had an average length and diameter of 150 micron and 10 microns, respectively.
These milled fibers were employed as fillers in the interfacial resin domain between the four layers at the
mid-plane to evaluate the mode I and mode II interlaminar fracture toughness. In the case of laminates
containing milled glass fiber filler, the epoxy resin mixture added with fillers was mechanically stirred
and sonicated until the latter were uniformly dispersed; following this, the hardener was added during
fabrication to ease proper mixing and distribution [27–29]. The resin-filler mixtures were degassed
before being used for fabrication. All the laminates were cured at room temperature for 24 h.

Table 1. Weight (wt.) and volume (vol.) % of milled glass fibers, taking epoxy resin as equal to 100.

Wt.% Vol.%

2.5 1.3
5 2.6

7.5 3.9
10 5.2

2.2. Experimental

2.2.1. End Notch Flexural Test

End Notch Flexure (ENF) specimens with dimension of 140× 25 mm were removed using water-jet
cutting. ENF specimens were loaded in three-point flexure under displacement control regime, as
illustrated in Figure 1a, with the indication of the displacement being taken directly from the universal
testing machine (UTM). Care was taken to ensure that the pre-crack (Teflon) insert was present at the
edge of the specimen, so that it would act as an external crack, as indicated in Figure 1b. The initial
crack length (a) in the sample was approximately 25 mm, which is marked at the sides. The pre-crack
was located midway between one support and the loading point. The specimen was tested with a span
length of 100 mm. The tests were conducted in 100 kN Tinius Olsen UTM at a cross-head speed of
1 mm/min. Six repetitions of test were performed for each category of samples.

The single-edge notched bending (SENB) tests were performed to determine the mode I fracture
toughness or critical strain energy release (GIC) of the polymer composites. The strain energy release
rate (GIC) value is measured by evaluating the area under the load–displacement curve obtained
during SENB test. The area under the curve is calculated by using trapezoidal rule i.e., numerical
integration method in MATLAB software. The (GIC) value is determined by the estimated fracture
energy divided by the area of the fractured surface created.

The load–displacement curve was obtained for calculation of mode II critical strain energy release
rate GIIC [30,31], where GIIC can be expressed as (1):

GIIc =
9a2Pδ

2B(2L3 + 3a3)
(1)

where P is the critical load at which the crack propagates, B is the width of the specimen, L is the span
length, δ is the displacement and a is the initial crack length.
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Figure 1. (a) End notch flexure (ENF) sample in three-point bending fixture. (b) Schematic illustration
of glass/epoxy sample layup.

2.2.2. Mode I Testing Procedure

Mode I interlaminar fracture toughness tests were carried out on Double Cantilever Beam (DCB)
samples of glass/epoxy laminates using a 100 kN Tinius Olsen universal testing machine (UTM).
The dimensions of DCB samples are 200 mm in length and 25 mm in width: the initial crack length
created (ao) is 50 mm. The samples were cut with diamond saw with edges finely polished so to locate
the Teflon tape termination. The piano hinges were bonded to the surface of DCB samples using a
commercial epoxy resin with a curing process completed in 24 h. The Mode I testing was performed
under displacement controlled regime at a crosshead speed of 1 mm/min, thereby assisting steady
crack propagation and data recording. The load (P), displacement (δ) and the delamination length (a)
were simultaneously recorded in order to evaluate the Mode I fracture toughness of the composite
laminates. The delamination crack length (a) was monitored using DSLR Canon D1300 and Celestron
digital microscope. The mode I (DCB) samples have the same schematic layup configuration, which is
represented in Figure 1b. The experimental test set-up for DCB testing is depicted in Figure 2. Mode I
fracture toughness was evaluated based on the American Society for Testing and Materials (ASTM)
D5528-94a [32], using the following expression (2):

GIc =
3Pδ

2b(a + ∆)
(2)

In (2), the correction factor ∆ accounts for crack tip rotation, to be empirically determined using a
least square plot of cubic root of compliance (C1/3) versus delamination length (a). The compliance
(C = δ/P) can be evaluated from the recorded load–displacement plot. The need for adding a correction
factor may arise in case that the accuracy of the experimental measurement of the crack length proves
limited [33].
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Figure 2. Experimental test set-up for Double Cantilever Beam (DCB) testing.

2.2.3. Three-Point Flexural Testing

The glass/epoxy samples with different filler loading were tested in three-point bending fixture
under displacement control regime. The tests were performed at a cross-head speed of 1 mm/min in a
100 kN Tinius Olsen universal testing machine. The specimens were cut in dimension of 150 × 25 × 4.5
mm, according to ASTM D790-17. The span length of flexural test was kept equal to 100 mm. Four
repetitions were performed for each category of samples to determine the flexural properties. The
flexural strength σf was calculated from Equation (3):

σ f =
3Pl

2wt2 (3)

where P is the maximum load, l the span length, w the width and t the thickness of the sample.

2.2.4. Fourier Transform Infrared Spectroscopy (FTIR)

Fourier Transform Infrared spectroscopy (FTIR) was used to examine the interface condition
between the milled glass fiber filler and the epoxy resin. FTIR spectra of the samples were therefore
taken in Bruker RFS 27 FTIR spectrometer from Sophisticated Analytical Instrument Facility at IIT
Madras. The mid-infrared region in the interval between 4000 and 400 cm−1 was investigated, because
the absorption radiation of most organic compounds and inorganic ions are within this region.

2.2.5. Scanning Electron Microscopy (SEM) Morphological Study

The morphological study of fracture surfaces was carried out using a Carl Zeiss MA15/EVO 18
Scanning Electron Microscope (SEM). The samples were gold sputtered prior to observation.

3. Results and Discussion

3.1. Epoxy Resin With and Without Milled Glass Fibers

3.1.1. FTIR Characterization

Infrared spectroscopy is a technique to determine the structure of molecules based on the
characteristic absorption of infrared radiation. The different functional groups and structural features
in the molecule absorb radiation at characteristic frequencies. The spectrum at different wave numbers
indicates the different type of bonds and the width of each peak signifies the intensity of interaction. In
particular, the wave numbers of common bonds and their interpretation methodologies were reported
by Coates [34]. In the specific case of this study, FTIR has been used with the purpose to evaluate the
interaction of epoxy resin with milled glass filler. Due to the results obtained above, it was considered
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more crucial to evaluate the situation as far as 5 wt.% filler introduction is concerned. Figure 3 shows
the FTIR spectra of the epoxy with and without milled glass fiber filler.

Figure 3. FTIR Spectrum of neat epoxy and 5 wt. % filler modified samples.

The neat epoxy sample shows the absorption peaks at 2855 cm−1 and 2920 cm−1 corresponding to
C–H stretching in epoxy. The symmetrical stretching (or) ring breathing frequency was also observed
between 1000–1300 cm−1, which corresponds to the C–O stretches indicating the characteristic of the
epoxy ring. The peaks observed between 810 cm−1–950 cm−1 indicate the asymmetric ring stretching
in which C–C stretches during contraction of the C–O bond. The bands at 1358 cm−1 and 1456 cm−1

are characteristics of (–CH3) & (–CH2) symmetric stretching. Also, the absorption band with a broad
peak at 3329.41 cm−1 corresponds to (–OH) stretching which indicates the hydrogen bonding [35].

The spectrum of the filler modified epoxy sample shows that the silica in the filler, especially due
to silane coating, reacts with epoxy, reaction represented by the intense broad peak at 1000–1100 cm−1

which attribute to asymmetric stretching of Si–O–Si, Si–OH and Si–O–C bonds [36–38]. However, the
neat epoxy samples showed narrow and less intense corresponding absorption peaks. The absorption
band in the range between 1750 and 1625 cm−1 corresponds to aldehyde C=O stretch, which was
absent in neat epoxy samples. Also, the intensity of the peak between (917 to 914 cm−1) was observed
to be wide/broad (greater) in the filler modified epoxy sample which is attributed to effective bonding
strength of intermolecular interactions between filler/epoxy. Consequently, the absorption peaks
around 1130–1360 cm−1 and 1590–1650 cm−1 correspond to C–N and N-H bonds, which are related to
the cross-links in the epoxy group. Also, the peak at 2920 cm−1 is the C–H stretching while the broad
spectrum at 3276 cm−1 is the characteristic O–H stretching for hydroxyl group, which becomes broader
and less intense.

From the spectra, the peaks are reduced by the same amount in intensity, which signifies the
reduction in cross-links/bonding interactions of the epoxy content in the samples. Also, repetition
of the same functional groups leads to a larger and intense peak. The filler modified epoxy showed
absorption shifts in the frequency of C–H bonds compared to neat epoxy samples. This denotes the
change in the interaction of C–H chain present in the polymer. However, no severe changes were
observed in the intermolecular interactions due to the presence of filler in the epoxy matrix, which
suggests no change in the sample composition as far as the chemical bonds are concerned. Therefore,
the FTIR spectra showed that the presence of silane-treated fillers in the epoxy matrix has constrained
the polymer chain mobility (restricting the motion), resulting in less intense absorption bands compared
to the neat epoxy samples. Conversely, the milled glass fiber fillers facilitate good chemical bonding
at the filler/matrix interfacial region. Therefore, such bonding attributes to the effective load transfer
between matrix and filler, and improvement in mechanical properties.
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3.1.2. GIC Fracture Toughness

The study of GIC fracture toughness, as indicated in Figure 4, was initially performed on pure
epoxy, to see which effect the addition of milled fibers has on it. Toughness was found to increase
steadily with higher amount of filler up to 5 wt. %, whereas, when filler content exceeds this amount,
some decrease is reported, though toughness is still maintained at a level considerably higher than
the epoxy matrix with no filler. This decrease above 5 wt. % was tentatively attributed to more
limited inter-particle spacing and interference of milled glass particles with matrix cross-links, resulting
in stress concentration spots, with premature crack initiation and/or easier crack propagation. It is
expected therefore that the use of optimal filler content would allow higher strain energy absorption
through toughening mechanisms, particularly crack pinning mechanisms and in the long run, filler
debonding/pullout offering some contribution towards increasing fracture toughness [39].

Figure 4. (a) Load–displacement curve from single-edge notched bending (SENB) tests on pure epoxy
filled with milled fibers; (b) Critical strain energy release (GIC) for pure epoxy loaded with different
amounts of filler.

To try to clarify the effect of milled fibers filler on toughness of neat epoxy, SEM image of neat epoxy
in Figure 5 is compared with the ones with the optimal amount of filler, which is, as suggested above, 5
wt. %, depicted in Figure 6a,b. The pure matrix exhibits higher resistance to plastic deformation and
low fracture toughness due to highly cross-linked molecular network resulting though in the brittleness
of the matrix: in practice, the resistance to fracture is offered by cohesive strength. Moreover, in an
epoxy matrix the limitation to plastic deformation and local stress concentration may initiate crack,
causing spontaneous failure, especially if the dimensions of the fibrous reinforcement is considerable,
such as it is in the present case [40]. The single edge notch bending (SENB) test introduces slow crack
propagation ahead of the crack tip with inelastic deformation, while fast crack growth may occur
away from the crack tip. There is no significant difference in slow and fast propagation region in neat
epoxy, so that their fracture characteristics are a relatively smooth surface with oriented fracture lines
at the crack growth sites. In practice, Figure 4 indicates that the fractured samples exhibit featureless
smooth/glossy surface with occasional river/scarp lines possibly attributed to low fracture toughness.
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Figure 5. Scanning electron microscope (SEM) image of the fractured surface of neat epoxy samples.

Figure 6. SEM images of fracture surface under SENB tests of 5 wt.% filler-loaded samples: (a) Details
of cohesive failure (b) Appearance of shear bands and relevant features.

In contrast, SEM micrographs in Figure 6 reveal that crack propagation was hampered by the
rigid milled glass fiber fillers present on the crack path direction. Incorporation of fillers into the epoxy
matrix has appreciably improved the modulus/rigidity of the polymer composite, an effect that can be
attributed to the constrained/limited polymer chain mobility. Filler appears uniformly dispersed in the
epoxy matrix, being therefore able to effectively deflect the crack. This is demonstrated by the fact
that the fracture surface of filler-loaded epoxy appears unevenly rough and coarse with a distorted
and perturbed/tortuous crack path. As the consequence, the crack deflection mechanism changes
the stress state from mode I to mixed mode, diverting the crack out of the initial propagation plane
either by tilting/twisting, thus consuming a higher amount of energy [41]. Moreover, the presence of
filler bridges the crack front and the strong interfacial interaction between filler and matrix requires
additional energy to propagate the crack further, causing the filler to break through, therefore possibly
increasing the material toughness [28,42]. The ensuing cohesive failure with matrix fragments attached
to the filler particles indicates strong adhesion at the filler/matrix interfaces, as suggested in Figure 6a,
which indicates the possibility of additional energy dissipation before fracture through toughening
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mechanism, such as filler debonding/pullout. Also, fractured surfaces of the filler-loaded samples
shows dilation/shear bands formation and intensive scarps/river lines (Figure 6b), directly related to
the plastic zones attributing to matrix shear yielding followed by a debonding process. Although
precise measurement of plastic zone was not always possible, preliminary indications can be supplied
by the extent of the heavily deformed matrix connected to intensive scarps/river lines, which resulted
in matrix fragmentation. It is obviously possible that fragments are dispersed on a wider area than
the one correlated to fracture, but as a cautionary indication, their disposition does represent the
maximum diameter of plastic zone: in the case of Figure 6b, this is around 45 microns. More accurate
measurements, along the lines of what suggested in [43], and correlating energy release rate with it,
will be performed in further studies.

3.1.3. Mode II Fracture Toughness

Mode II interlaminar fracture resistance curves for pure glass/epoxy and modified glass/epoxy
composite laminates with different loadings of milled glass fiber fillers, expressed by weight percent
of epoxy, are summarized in Figure 7, where the highest result for each type of laminates is plotted,
whereas relevant standard deviations are reported in Figure 8. The incorporation of filler offered
generally better results, significantly improving the mode II fracture toughness by sustaining higher
crack initiation load, than it was the case with baseline glass/epoxy samples. The failure in the end
notch flexural (ENF) tests occurs by interlaminar shear in the mid-plane of the laminate, due to the
presence of the Teflon pre-crack, so that crack propagates parallel to the fiber direction.

Figure 7. Fracture resistance curves for end notch flexure (ENF) test (a) Load vs. displacement curve
and (b) Mode II interlaminar fracture toughness (GIIC) plot.

Whenever the amount of milled glass fiber fillers introduced is not excessive, the fracture toughness
is considerably improved by effective crack pinning, bridging, and crack deviation mechanism [28].
In practice, the failure initiates within the matrix resin as microcrack and propagated towards the
interface. Thus, the matrix possessing relatively high fracture toughness can withstand nucleation of
microcracks, not allowing their progression. The subsequent stronger adhesion between fiber and
matrix results in high interlaminar fracture toughness during mode II testing by resisting the nucleation
of microcracks by additional energy dissipation mechanisms, such as debonding, crack hindrance or
deflection and filler/matrix interlocking. In other words, crack propagation between the interlayer
domains is interrupted by the presence of milled glass fiber fillers, assisting in generation of plastic
zone near the crack tip, which in turn results in an improvement in fracture toughness [44].



Fibers 2020, 8, 36 10 of 18

Figure 8. Influence of filler wt. % on Mode II fracture toughness (improvement on neat epoxy).

3.2. Glass/Epoxy Laminates with and without Milled Glass Fibers

3.2.1. Mode I Double Cantilever Beam (DCB) Tests

Figure 9a shows the typical load–displacement curve exhibited during Mode I testing on DCB
samples. It was observed that incorporation of milled glass fiber fillers at different wt.% showed
an increase in peak load compared to the samples without filler. Correspondingly, the presence of
fillers in the interlaminar resin rich domain requires an additional load to drive the crack along the
mid-plane. Initially, the load–displacement behavior of Mode I loading was linear until the point of
crack initiation. Later, nonlinearity occurred due to the stick-slip cracks growth mechanism, which was
predominant in the samples without filler. In contrast, steady crack growth mechanism was observed
in the filler-loaded samples. The damage process of the delamination event can be assessed through
the critical strain energy release rate (GIC). GIC was determined based on the modified beam theory
which is frequently used as per ASTM D5528-94a, as in [7,9,32]. Figure 9b shows the R-curve behavior
of baseline (no filler) and filler-added composite samples. The Mode I interlaminar fracture toughness
as a function of crack growth is termed as R-curve (Resistance curve). Typically, the GIC Initiation
fracture toughness was measured from the point where the crack was observed to develop/propagate
from the pre-crack & GIC propagation fracture toughness was measured from the plateau region of the
R-curve associated to the steady-state crack growth. It was observed that Mode I critical strain energy
release rate increases with the extending crack.

From Figure 9c, the interlaminar fracture toughness was found to increase consistently with
increasing filler content. The presence of filler in the interlaminar resin rich zone ahead of the crack
tip requires additional energy to initiate and propagate the crack farther. Thus reduces the stress
intensity at the crack tip, which results in an enhanced fracture toughness. The GIC initiation fracture
toughness was observed to decrease with increasing filler content beyond 5 wt.%. This phenomenon
was attributed to the settling of milled glass fiber fillers at the crack tip region resulting in premature
failure due to stress concentration [28]. However, the presence of excess fillers in the interlaminar
domain causes additional energy dissipation through filler debonding/pullout resulting in greater
GIC Propagation fracture toughness. As additional information, Figure 9d shows the percentage
improvement in GIC initiation and GIC propagation fracture toughness, which are both enhanced
significantly due to the presence of fillers.
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Figure 9. Experimental results for Mode I test of glass/epoxy composite Double Cantilever Beam (DCB)
samples: (a) load–displacement response (b) R- curve (c) GIC Initiation & GIC Propagation fracture
toughness (d) % Improvement in GIC.

Usually, any deviation from the linear response of the curve indicates the critical load and
displacement, which shows the delamination crack propagation from the tip of the Teflon film. Also,
the onset of fracture was smoother and undulated near the resin-rich zone ahead of the crack tip.
However, the crack propagation occurs through the interface by a sudden drop in load. Subsequently,
fiber bridging was observed away from the crack tip which occurs through fiber debonding and
pull-out from the adjacent plies, as shown in Figure 10. This fiber bridging causes an increase in
fracture toughness since pullout fibers from the matrix will arrest the crack propagation.

The interply fiber orientation in the mid-plane was observed to guide the crack propagation at the
interfaces. The baseline samples exhibited smooth crack propagation without any deviation, which
contributed to low fracture toughness [7]. This is due to the inherent brittleness of epoxy matrix.
However, inclusion of different percentages of filler promotes better interfacial adhesion, intensive
fiber bridging, and energy dissipation mechanisms like filler/matrix debonding, and filler pullout
which resulted in improved GIC initiation and GIC propagation fracture toughness. This can be seen
from the Figure 10, where the filler-loaded samples (5 wt.%) show rough fracture surface with a vast
area of fiber bridging. In contrast, the baseline samples without filler exhibit smooth fracture surface
with more resin rich zone indicating brittle fracture and minor fiber bridging.
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Figure 10. Fracture surfaces of Double Cantilever Beam (DBC) samples (a) Delaminated view of 5 wt.%
filler samples; Closer view of: (b) No-filler sample; (c) 5 wt.% filler sample.

3.2.2. Morphological Observation of the Effect of Filler into Glass/Epoxy Composite

As discussed above, fillers present in the interlaminar domain act as crack arrestors/inhibitors
hindering the crazing cracks by dissipating more energy through toughening mechanism such as crack
deflection, filler debonding and filler interlocking, such as shown in Figures 11 and 12. The term
“crazing” mentioned here denotes “Developing network of microcracks” during mode II shear failure
and not the toughening phenomenon which enhances the fracture toughness in thermoplastics like
PS, PMMA, and polycarbonates. However, literature showed thermosetting epoxies reinforced with
amido-amine-functionalized multi-walled carbon nanotubes (A-MWNTs) exhibited crazing, which
improved fatigue resistance [45]. It is suggested that milled fibers, depending on their amount, could
produce a similar effect, in practice this implies that the fracture toughness and ductility of epoxy, which
is inherently brittle, would be significantly enhanced by crazing. Importantly, these enhancements in
fatigue resistance and toughness are achieved with no material softening, so that Young’s modulus
of the nanocomposite was 30% higher, while its average hardness was 45% higher than the baseline
(pristine) epoxy. This effect was related to heterogeneous curing of the epoxy, which results in localized
pockets of non-cross-linked epoxy that are trapped (or frozen) at the nanotube–matrix interfaces [46].
These localized regions of high molecular mobility can evolve (or coalesce) when the material is
mechanically loaded to generate conditions that are favorable for crazing.

The void content in this case appeared generally very low, as observable from SEM micrographs
in Figures 11–13, slightly higher in the case of 10 wt.% (Figure 13) than in 5 wt.% filler laminates
(Figures 11b and 12), possibly due to air trapped around milled glass fiber fillers. As concerns the
baseline sample with no filler, Figure 11a illustrates a smooth fracture surface exhibiting brittle fracture.
Hackle patterns are also visible due to shear deformation experienced in mode II loading, which
results in coalescence of microcracks in the matrix interface [47]. The exposed fiber surfaces show the
occurrence of adhesive failure, which evidences the poor bonding between the fiber/matrix interfaces
(crack propagated easily between the interfaces, resulting in low fracture toughness) [48]. On the other
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side, Figure 11b shows the fracture surface of the 5% wt. filler modified samples with rough fracture
surface indicating ductile failure. The presence of the filler arrests/deflects the crack propagation
preventing the expansion of microcracking in the matrix via the formation of large hackles, therefore
improving the interlaminar fracture toughness. In general terms, toughening mechanisms, such as
crack deflection, debonding and interlocking of filler/matrix interface, require additional energy to
initiate/propagate the crack which contributes to enhanced fracture toughness, as suggested in [49].
This was proved in the case of the introduction of low amounts of fillers, such as 5 wt.%, and has been
also related to uniform dispersion of the filler in the composite.

Figure 11. Fractured surfaces of (a) baseline glass/epoxy samples (b) 5% wt. filler modified glass/epoxy
samples. To the right, two insets of (b) showing close-up of the marked regions.

Figure 12. Effect of filler distribution in 5 wt.% composite at different magnifications: (a) 50x, (b) 100x.
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Figure 13. Agglomeration effects in 10 wt.% composite at different magnifications: (a) 20x, (b)100x.

Here too, the uniformity of dispersion of filler in the composite, achieved by mechanical mixing
and sonication, is apparent in Figures 11b and 12: here, fracture is indicated in the resin domain
by individual debonding and crack diversion, hence resulting in enhanced fracture toughness. The
incorporation of filler apparently leads to newly created surface area by debonding, while before
fracture they were providing effective interlocking and bridging. Filler in the fracture surface was
observed to be aligned perpendicular to the crack, hence typically absorbing more energy and exhibiting
higher fracture toughness [50].

However, minor local agglomeration was observed as filler concentration increases, such as in
Figure 13. In particular, it is observed that a kind of “bundled fibers” debonding occurred due to the
local agglomeration of fillers in the resin-rich domain [51], which subsequently resulted in difficulty
in processing, due to increased resin viscosity. Also, at higher filler loading, these excess fillers get
aligned parallel to the crack growth and agglomerates locally in the intralaminar resin channel, which
is likely to result in more difficult adhesion. Thus, a decrease in interlaminar fracture toughness was
observed due to scarcity of resin in the domain where filler accumulation would act as a stress raiser,
hence leading to early failure.

3.2.3. Flexural Tests Results

Figure 14a shows the load–displacement behavior of glass/epoxy samples with various filler
loading. The neat glass/epoxy (baseline) samples without fillers show lower flexural strength due
to the presence of a large resin rich interlayer domain, making the laminate more brittle. However,
inclusion of filler into the glass/epoxy laminates provided a good improvement to the bending stiffness
of the composites.

Moreover, the crack propagation becomes stable due to the presence of filler; therefore they act as
a crack deflector/arrestor. From Figure 14b, it can be seen that the incorporation of filler has improved
the flexural performance significantly. Here again, the highest properties were measured on the 5 wt.%
filler added composite, while further increase in filler loading beyond 5 wt.% resulted in reduction of
flexural properties. This is likely to be due to agglomeration and settling of fillers in the intralaminar
channel subsequently increasing the viscosity of the matrix exhibiting improper fiber impregnation and
difficulty in processing [10]. It is also likely that addition of filler above 5% decreases the degree of cross
linking of resin system, as observed whenever a high degree of stress concentration is reported [28].
The filler distribution was uniform for samples loaded with content of filler limited to 5 wt. %. In
other words, increasing the filler concentration would result in delamination and microbuckling on
compressive side due to poor interlaminar adhesion [52]. The consequence outcome would be a
significant scale effect on the toughness curves, due to the difficult control of filler disposition and
size [53].



Fibers 2020, 8, 36 15 of 18

Figure 14. (a) Typical load–displacement plot; (b) Influence of different filler loading on flexural
strength and flexural modulus.

4. Conclusions

Experimental investigation of Mode I and Mode II interlaminar fracture toughness test on
glass/epoxy samples were performed with various loading of recycled milled glass fiber filler (2.5, 5,
7.5 and 10% by weight of epoxy matrix). This work was accomplished with insight of implementing
low cost, economic, and recycled filler to have a sustainable substitute over the commercially available
expensive fillers.

The main conclusions can be drawn as follows:

1. The addition of 5 wt.% milled glass fibers have improved the mode I (GIC) and mode II fracture
toughness (GIIC) significantly by 102% and 175%, respectively. This observation is attributed to
the good filler/matrix interfacial strength and high energy dissipation mechanism through crack
deflection, filler/matrix debonding and interlocking.

2. The inclusion of milled glass fibers in the interlaminar domain has significantly improved the
flexural strength which was attributed to enhanced load transfer at lower filler loading. In
contrast, higher filler loading leads to local agglomeration of excess fillers in the inter/intralaminar
resin channel and poor adhesion (insufficient resin), which result in reduction of strength and
fracture toughness.

Therefore, inclusion of milled glass fibers has substantially improved the interlaminar fracture
toughness of the glass/epoxy laminates without affecting the flexural properties. The conclusion
is that milled fibers, despite their simplicity of recovery from end-of-life composites, can represent
alternative fillers for composites laminates to be efficiently used in limited amounts—not exceeding a
few percentage points—before agglomeration issues arise.
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