
fibers

Article

Large Normal Dispersion Mode-Locked
Erbium-Doped Fiber Laser

Mincheng Tang 1 , Geoffroy Granger 2, Fabien Lesparre 1, Hongjie Wang 1, Kai Qian 1,
Caroline Lecaplain 3, Jean-Louis Oudar 4, Yves Jaouen 5, Renaud Gabet 5, Dmitry Gaponov 6 ,
Mikhail Likhachev 7, Thomas Godin 1 , Sébastien Février 2,* and Ammar Hideur 1,*

1 CORIA UMR 6614, Normandie Université—CNRS-Université et INSA de Rouen, 76800 Saint Etienne
du Rouvray, France; tangm@coria.fr (M.T.); f.lesparre@fibercryst.com (F.L.); hongjie.wang@coria.fr (H.W.);
kaiqian@sjtu.org (K.Q.); thomas.godin@coria.fr (T.G.)

2 XLIM UMR 7252, Université de Limoges—CNRS, 87000 Limoges, France; geoffroy.granger@xlim.fr
3 College of Optical Sciences, University of Arizona, 1630 E. University Boulevard, Tucson, AZ 85721, USA;

clecaplain@optics.arizona.edu
4 C2N-CNRS, Route de Nozay, 91460 Marcoussis, France; jean-louis.oudar@c2n.upsaclay.fr
5 Telecom ParisTech, CNRS UMR 5141, 46 Rue Barrault, 75013 Paris, France;

yves.jaouen@telecom-paristech.fr (Y.J.); renaud.gabet@telecom-paristech.fr (R.G.)
6 Novae, ZI du Moulin Cheyroux, 87700 Aixe sur Vienne, France; d.gaponov@novae-laser.com
7 Fiber Optics Research Center of the Russian Academy of Sciences, Moscow 119333, Russia;

likhachev@fo.gpi.ru
* Correspondence: sebastien.fevrier@unilim.fr (S.F.); hideur@coria.fr (A.H.)

Received: 7 October 2019; Accepted: 1 November 2019; Published: 5 November 2019
����������
�������

Abstract: We report on a passively mode-locked oscillator based on an erbium-doped dual concentric
core fiber combining high normal dispersion and large mode area. This large normal dispersion laser
generates long pulses with 30 ps duration and 0.17 nm spectral width at 1530 nm wavelength. The
source delivers an average power of 64 mW at a repetition rate of 16 MHz, corresponding to 4 nJ
energy. This concept opens up new degrees of freedom in the design of mode-locked fiber lasers.
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1. Introduction

Ultrafast lasers based on optical fibers are increasingly exploited in scientific and industrial
applications. This success is primarily based on the unique features inherent to optical fiber technology
such as the good spatial beam quality, compactness, stability, and ease of use. Stimulated by several
industrial and scientific applications, the performance of ultrashort pulse fiber laser systems has grown
phenomenally over the last decade. This outstanding growth mainly concerned ytterbium-doped fiber
lasers operating at 1 µm. The extension of these developments to the spectral region of ocular safety
centered at 1.5 µm could find new opportunities in industry, metrology, and medicine.

One of the advantages of lasers operating at wavelengths below 1.3 µm is that the dispersion
of silica fibers is normal, thus allowing a better management of nonlinear effects which constitute a
fundamental issue in the ultrashort-pulse regime. Indeed, it is now well-established that nonlinear pulse
propagation in normal dispersion fibers favors energy scaling. This is the case of self-similar pulse lasers
characterized by the generation of parabolic pulses, which are more resistant to nonlinearities [1]. In
particular, the performances of these sources have been significantly improved by exploiting all-normal
dispersion (ANDI) cavities, leading to the generation of highly-chirped dissipative solitons [2–4]. The
implementation of ANDI lasers using low nonlinearity large mode area fibers combined with a strong
mode-locking mechanism resulted in the generation of ultrashort pulses with multi-MW peak powers
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and more than 1 µJ energy [5–8]. The implementation of this concept with erbium-doped fiber lasers
operating around 1.55 µm has allowed energies of more than 20 nJ with sub-picosecond pulses to be
reached [9–14]. Unfortunately, commercially available normal dispersion active fibers exhibit a small
effective area for moderate dispersion values, thus limiting the energy scaling potential of this concept.

However, the theoretical analysis of ultrashort pulse propagation in normal dispersion gain media
indicates that energy scaling is governed not only by the fiber nonlinearity, which should be lowered,
but also by the magnitude of its second-order dispersion [15,16]. Thus, the development of active
fibers with large normal dispersion and large mode area constitutes an interesting alternative for
energy scaling in mode-locked lasers, which has not yet been explored. It worth noting that fibers with
W-profile cores, also known as dual concentric core fibers (DCCF), have been studied early in the 1970s,
mostly for dispersion compensation purposes [17]. However, it is also well-known that a W-profile can
act as a low-pass filter. Indeed, in contrast to conventional step-index fibers, the fundamental mode of
a W-type fiber can exhibit a nonzero cutoff. Revealed theoretically in the 1980s [18], this untypical
feature has been largely exploited for laser applications using rare-earth doped DCCFs [19,20]. The
enhanced dispersion tailoring capabilities of DCCFs allow positive or negative dispersion to be reached
at almost any wavelength in the transparency window of glass [21]. Indeed, the use of a passive DCCFs
with anomalous dispersion has permitted the realization of a soliton ytterbium fiber laser at 1 µm
wavelength where standard fibers exhibit normal dispersion [22]. Moreover, normal dispersion DCCFs
are routinely used to manage dispersion in high-energy dissipative soliton oscillators delivering several
nanojoules of energy [9,12]. Thus, the development of active DCCFs with engineered dispersion
properties is very promising for energy scaling in mode-locked lasers.

In this paper, we reported a passively mode-locked oscillator exploiting an active DCCF designed
to provide a large normal dispersion around 1530 nm for the first time to our knowledge. Robust
and self-starting mode-locking was achieved by combining nonlinear polarization evolution with a
semiconductor saturable absorber mirror (SESAM). The laser subsequently generated 4 nJ pulses at 16
MHz repetition rate.

2. Materials and Methods

2.1. Fiber Structure and Dispersion Properties

Very large dispersion, in excess of −1800 ps/nm/km at 1550 nm wavelength, can be achieved with
the triple-clad fiber design, also referred to as dual concentric core fiber (DCCF) [23]. However, such a
large value comes at the cost of (a) reduced bandwidth, and therefore large third-order dispersion, and
(b) ultra-small mode area about 10 µm2, which are detrimental to energy scaling in the mode-locked
regime. Guided by numerical simulations, we selected a set of opto-geometrical parameters that lead
to a tradeoff between normal dispersion, dispersion slope, and effective mode area. Then, a fiber
was fabricated by the modified chemical vapor deposition process associated to the solution-doping
process for Er3+ doping. The refractive index profile (RIP) of the fiber is shown in Figure 1a.

The RIP incorporated a single-mode central core surrounded by a broad high-index ring. By
properly tailoring the thicknesses and refractive indices of the fiber, electromagnetic coupling between
the fundamental modes of the two isolated cores yielded two supermodes with bent effective index
curves around the phase-matching wavelength, as shown by numerical simulation in Figure 1b. As
dispersion is related to the second derivative of the effective index versus wavelength, these two
supermodes, labelled SM1 and SM2, exhibited large second-order dispersion with opposite signs
(see Figure 1c, dashed lines). As this fiber is inherently bimode, the overall behavior depends on the
weights of the super-modes, which depend on the launching conditions [24,25]. In the following, we
considered that light was launched into and collected from the central core of the DCCF by means
of standard single-mode fibers (SMF) according to the schematic shown in inset to Figure 1c. Under
these conditions, light was preferentially launched into SM1 at short wavelengths, while SM2 was
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predominantly excited at long wavelengths (see spatial distributions of light in both modes in insets to
Figure 1b).
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Figure 1. (a) Index profile of the dual concentric core fiber and electric field distribution of the first
supermode of the structure computed at 1530 nm. (b) Effective index curves versus wavelength
computed for the refractive index profile shown in (a). Insets show the electric field distributions
for the two supermodes (SM1 and SM2). (c) Chromatic dispersion curve of the device shown in
inset. Green dot shows the value measured by means of the optical low coherence interferometry at
1550 nm. (d) Overlap factor between the field distributions of the two supermodes with the gain region.
The preferred spectral range for laser oscillation is shown in grey and is centered on 1530 nm. SMF:
Single-mode fiber; DCCF: Dual concentric core fiber; OLCR: Optical low coherence reflectometry.

The chromatic dispersion of the DCCF (inserted between two centered SMFs) has a characteristic
symmetric shape and changes its sign when increasing the wavelength, as shown in Figure 1c.
Therefore, it retains the features of both supermodes: large normal dispersion at short wavelengths
and large anomalous dispersion at long wavelengths (see Figure 1c, thick black line). The computed
chromatic dispersion of the device was expected to be large and negative (−85 ps/nm/km) at 1543 nm.
The fabricated fiber consisted in a high-index inner core with a diameter of 5 µm, surrounded by a
broad lower-index ring with a radius of 15 µm. Then, the chromatic dispersion of the device was
measured at 1550 nm by the optical low coherence interferometry technique described in [26]. A value
of −80 ps/nm/km was measured, which was in excellent agreement with the computation. In the
fabricated fiber, the central core was doped with Er3+ to reach core absorption of 23 dB/m at 976 nm.
The overlap factors between the electric field distribution of both supermodes and the doped region
were computed and plotted in Figure 1d. These computations confirmed that the supermode SM1
with large normal dispersion will experience higher gain at short wavelengths. Despite the inherent
bimodal nature of the system, laser oscillation should occur on the fundamental supermode with large
normal dispersion in the wavelength range highlighted by the grey box in Figure 1d. In particular,
lasing on the first supermode was expected around 1530 nm a wavelength, which was untypical and
more difficult to generate from mode-locked erbium fiber lasers. Furthermore, the effective area of the
SM1 was relatively large (73 µm2 at 1530 nm) and comparable to that of standard single-mode fiber at
this wavelength. This large effective area would allow the generation of high-energy ultrashort pulses
in the C-band.
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2.2. Laser Experimental Setup

The experimental setup of the mode-locked oscillator based on the active dual concentric core fiber
is schematically depicted in Figure 2. The basic structure was a σ-cavity, of which the unidirectional
transmission of light was guaranteed by a polarization sensitive isolator (PS-ISO). A resonant-type
semiconductor saturable absorber mirror (R-SAM) was used to ensure mode-locking [9]. The R-SAM
absorption band was centered at 1543 nm, with a bandwidth of 40 nm. Its nonlinear characteristics
were measured using a commercial laser delivering 1.2 ps pulses at 1550 nm. At this wavelength, the
R-SAM presented a low-intensity reflectivity of 14%, a modulation depth of 40%, and a saturation
fluence of 1 µJ/cm2. Time-resolved pump-probe experiments revealed a relaxation time of 5 ps [27]. The
nonlinear polarization evolution (NPE) effect was also employed to assist mode-locking by inserting
waveplates into the cavity. The 10-m-long Er-doped DCCF was pumped through a 976/1550 WDM by a
laser diode emitting at 980 nm. A 10/90 coupler was used to extract the signal from the cavity through
the 90% port. The fiber segments of the WDM and coupler in the cavity were 0.5 m Nufern 980 fiber
and 1 m standard singlemode fiber (SMF28), respectively. The group velocity dispersion (GVD) of these
fibers was 8.6 ps/nm/km and 17 ps/nm/km, respectively. The total length of the cavity, including the
free space, was about 13.5 m, corresponding to a free spectral range of 16 MHz. Stable mode-locking
regimes could be retrieved by properly setting the focus on the SESAM and by adjusting the waveplates
angles. The single-pulse operation of the oscillator was confirmed by temporal measurements using a
fast oscilloscope (5 GHz bandwidth) and a large span auto-correlator (AC) with 200 ps scan range.
An external-cavity stage was added after the oscillator to nonlinearly compress the output pulses.
The nonlinear compression stage consisted of a 30/70 coupler to extract 30% of the pulse energy, an
erbium-doped fiber amplifier, 20 m of dispersion-shifted passive fiber (DSF) to broaden the spectrum
through SPM, and a pair of transmission gratings used to recompress the pulse.
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QWP: Quarter-wave plate; SAM: Saturable absorber mirror; WDM: Wavelength-division multiplexer;
SMF: Single-mode fiber; PS-ISO: Polarization-sensitive isolator; C: Coupler.

3. Experimental and Numerical Results

The characteristics of the output pulses generated in a typical operation regime of this cavity are
shown in Figure 3. The pulse exhibited very narrow spectrum (0.17 nm in terms of FWHM) and long
temporal duration (29 ps of FWHM assuming a Gaussian pulse shape). The oscillator delivered 65 mW
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average power at 16 MHz repetition rate, corresponding to about 4 nJ. Two reasons can cause the laser
to mode-lock in regimes exhibiting very narrow spectrum. On the one hand, the mismatch between
the peak values in the gain profile and that of the dispersion causes the laser to operate around a
wavelength where high-order dispersion is significant. On the other hand, the mode coupling between
the core and the ring modes effectively enlarges the supermode field area, which leads to a weak
broadening effect through self-phase modulation (SPM).
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The mode-locking operation was self-starting and remained stable for hours. The quality of
the mode-locking pulse train was evaluated by radiofrequency (RF) measurements using the power
spectra obtained with a microwave spectrum analyzer (Rohde & Schwarz, Munich, Germany, 7 GHz
bandwidth) via a high-speed photodetector (8-GHz bandwidth). Spectra were taken at different
frequency ranges from 50 kHz to 200 MHz. The RF spectrum, shown in Figure 3c, revealed a high
signal-to-noise ratio of the fundamental beat note at 16 MHz. It showed very good stability, with a
contrast of more than 60 dB between the fundamental harmonic and the background. This indicates that
the mode-locked laser operation was very stable and free from any Q-switching instability. The slowly
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decreasing amplitude of the inter-mode frequency harmonics, shown in Figure 3d, also confirmed
stability of the CW mode-locking regime.

The output pulses were then nonlinearly compressed through the extra-cavity stage introduced in
Part 2. The dispersion of the DSF was about −2 ps/nm/km at 1530 nm. The spectrum and alternating
current (AC) trace of the nonlinearly compressed pulses are depicted in Figure 4.
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Figure 4. Optical spectrum (a) and alternating current (AC) trace of the output pulses measured after
nonlinear compression (b). The dashed and dotted curves correspond, respectively, to the spectrum
measured at the oscillator output and the Fourier transform (FT) limited AC-trace inferred from the
SPM-broadened spectrum.

As the spectrum of the pulse is broadened to a FWHM of 2.33 nm from the original 0.17 nm,
its temporal shape experienced little stretching in this process to reach 32 ps duration. The Fourier
transformation of the spectrum assuming a zero-phase relation led to a duration of 1.43 ps. Using a
pair of polarization independent transmission gratings (PING model from Ibsen photonics), the output
pulses were dechirped down to a width of 2.3 ps, which was about 1.6-times the transform limit. The
relatively large pedestal on the AC trace of the compressed pulses, combined with the small deviation
of the pulse width from its transform-limited value, indicate that the output pulses suffered from
nonlinear chirp, which could be attributed to the mismatch between the dispersion characteristics of the
DSF and the gratings-based compressor. Nevertheless, the results of the external-cavity compression
confirm the coherent nature of the pulse generated by the DCCF-based oscillator, which negates the
possibility of noise-like pulse operation and highlights the potential of this new type of fiber laser if the
fiber and the cavity parameters are correctly optimized.

To better understand the pulse dynamics along this cavity, we numerically investigated this system
using the standard split-step method with the cavity elements arrangement provided in Figure 2.
Pulse propagation along the gain fiber was described by the extended nonlinear Schrödinger equation
(NLSE), including second- and third-order dispersion terms, Kerr nonlinearity, and saturated gain with
a finite bandwidth of 30 nm around 1530 nm [6,12,28,29]. Propagation along the fibers was assumed to
be single-mode, and only the dispersion and nonlinearity parameters inferred from their structures
were considered. The linear and nonlinear parameters of the intracavity fibers are summarized in
Table 1. The action of the mode-locking mechanism was modeled by a high-contrast effective saturable
absorption effect with an instantaneous response [6]. We used the well-known transmission equation
given by [28]:

Aout = Ain

1− ∆R

1 +

∣∣∣A(t)
∣∣∣2

Psat


−1 (1)
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where ∆R and Psat correspond to the modulation depth and the saturation power, respectively. An
ideal saturable absorber with a modulation depth of 90% was considered in this study. The saturation
power was increased with pump power to maintain a constant saturation ratio of about 10 [29].

Table 1. Fiber parameters used in the simulation.

Parameter Units Er-DCCF SMF

Length m 10 1.5
GVD (β2@1530 nm) ps2/km 100 −20

Dispersion slope (β3) ps3/km −2 −0.13
Nonlinear coefficient (γ) W−1 km−1 1.7 1.6

Small signal gain (g0) m−1 2 -
Gain bandwidth (∆λg) nm 30 -

The evolution of the pulse parameters inside the cavity shows that the pulse dynamics were
dominated by the interplay between the high dispersion of the gain fiber and the saturable absorption
mechanism, as shown in Figure 5. The temporal lengthening endured within the gain fiber was
completely compensated by the saturable absorber effect. We note that the spectral broadening along
the cavity was moderate at this energy level, indicating a quasi-linear propagation regime. The
simulated pulse characteristics are shown in Figure 5, with a spectrum of 220 pm FWHM and pulse
duration of 34.3 ps, which are comparable with the experimental measurements.
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Saturable absorber.

It is worth noting that these results are retrievable only in the case that the effective supermode
area is much larger than the actual core diameter of the fiber. This fact confirms that the mode-field
distortion caused by the mode coupling plays an important role in the dynamics and is studying further.
Interestingly, numerical simulations showed that stable pulsed solutions were obtained for output
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pulse energies higher than 100 nJ, indicating that this concept is very promising for energy scaling. The
laser outputs predicted for 110 nJ pulse energy are shown in Figure 6. The pulsed solution presented
a spectral width of 6.3 nm and a pulse duration of 100 ps. As expected, the linearly chirped output
pulses could be compressed down to a duration of 870 fs which is close to the Fourier limit, calculated
by Fourier transformation of the optical spectrum assuming a zero-phase relation (see Figure 6). We
note that the calculated solution exhibited a quasi-parabolic profile and a linear chirp, thus suggesting
that self-similar pulse propagation occurred in the normal dispersion DCCF segment.
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4. Discussion

In summary, we demonstrated a passively mode-locked laser featuring an erbium-doped dual
concentric core fiber combining a high normal dispersion and a large mode area. This laser generated
picosecond pulses with several nanojoules energy, which were nonlinearly compressed down to 2.3 ps
externally to the cavity. The numerical simulations showed good agreement with experimental results
and revealed that self-similar pulse propagation can occur in the normal dispersion active DCCF, thus
paving the way for energy scaling. Indeed, simulations showed that several tens of nanojoules energy
can be reached in this laser platform. From these calculations, it appears that third-order dispersion did
not constitute a fundamental limit for the generation of sub-picoseconds pulses with few nanometers
of spectral width. However, the stabilization of higher energy pulses with broader spectra could be
compromised by the higher-order dispersion terms. More work is needed to identify the upper limits
of this concept and to improve the fiber design to better match the dispersion curve with the gain
profile. Moreover, the fabrication of a double-clad version of the DCCF is also desired to overcome the
power limitation of the passive fiber components.
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