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Abstract: Textile-reinforced Portland cement-based concrete has been researched and developed
over the last few decades. It was widely used in a different range of applications, such as repair
and/or strengthening of structural elements, thin walls, lightweight structures, façade elements,
and others. Due to its varied application, this study aims to develop the carbon textile-reinforced
geopolymer composite. Specimens of rectangular form with the dimensions of 400 × 100 × 15 mm3,
reinforced with carbon textile, were produced. Four-point bending test was used to evaluate the
effect of carbon textile on the mechanical strength of reinforced geopolymer composite based on the
three factors: the different mortar compositions corresponding to the addition of the chopped basalt
fiber (BF), the number of carbon textile layers, and the different thicknesses of the mortar cover layer.
Besides that, a small part of the pull-out test was also considered to assess the adhesion strength
at the interface between carbon textile and geopolymer mortar. The experimental results from the
four-point bending test showed that the mechanical strength of composite specimens increased when
the content of the chopped basalt fiber increased. With the increasing number of the textile layers,
the specimens improved the flexural strength significantly. However, the flexural toughness of the
specimens reinforced with three textile layers did not improve, as compared to those reinforced
with two textile layers. The experimental results for the specimens related to the mortar cover
thicknesses indicated that specimens with the mortar cover thickness of 2 mm provide the best
strength. The experimental results from the pull-out tests showed that all the specimens have the
same failure mode by slipping of the fiber yarn from the matrix.

Keywords: geopolymer; pull-out; compressive strength; flexural strength; carbon textile; chopped
basalt fiber; textile-reinforced geopolymer matrix

1. Introduction

For many decades now, the ordinary Portland cement-based concrete (PCC) has been most
widely used as construction material, due to its outstanding properties, such as high durability,
high compressiveness, desired mechanical strength with respect to economic efficiency, ability to be
cast into any desired shape, and that its ingredients are available in the most places. Besides this, an
inherent disadvantage of PCC is that it contributes to environmental pollution due to CO2 emission in
the Portland cement production process. The production of a ton of cement is usually associated with
the emission of 0.73 to 0.99 ton of CO2, and the cement industry is one of the major distributions to the
global CO2 emissions, where these industries emit approximately 7% of the global share [1,2]. In such
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a context, the development of innovative new building materials is needed to substitute Portland
cement. A new binding material known as geopolymer, developed by Davidovits in 1978, is being
considered as a possible substitute to Portland cement [3].

Geopolymers are inorganic aluminosilicate polymers with non-crystalline networks, which are
ceramic-like in their structures and properties [4]. Geopolymer materials are synthesized from
a two-component blend, including an alkaline solution primarily based on potassium or sodium,
and solid aluminosilicate materials based on metakaolin or fly ash at room, or slightly higher,
temperature [5–7]. The geopolymerization process is the result of the three different stages, consisting
of (i) the dissolution of the primary aluminosilicate materials in an alkaline environment with
release of silicates and aluminates species, (ii) organization of these species into a growing gel
phase, and (iii) condensation of the gel phase to shape a stable 3D structure [8,9]. Several superior
properties of geopolymer materials include its high compressive strength [10], excellent stability in
a variety of chemical environments [11–13], good thermal stability [14], high fire resistance [15],
and others. Moreover, the manufacturing of the raw materials for geopolymers produces only
a fraction of the CO2 emissions compared to Portland cement. For the above such advantages,
it can be stated that geopolymers have drawn more attention as a promising building material.
Nonetheless, regarding pure geopolymer, its brittle nature, like most ceramics, make it difficult to
be accepted as an engineering material. Pure geopolymers are very sensitive to crack formation
under loading. Cracks continue to propagate as the load increases; as a result, geopolymers fail
when faced with extra loads [16]. Consequently, geopolymers should exist in the system of the
multi-component materials by means of the addition of a variety of reinforcements into them, to
form a geopolymer composite with improved mechanical properties and structures. In this regard,
fiber-reinforcement plays a vital role in overcoming its low tensile and flexural strengths. Due to the
possibility of random distribution after addition to geopolymer, fibers can be linked to the cracks and
capture their evolution. Hence, the mechanical properties of the geopolymer are improved. Also,
the particle-reinforced geopolymer provides several advantages, particularly as it offers desirable
material properties while geopolymer resin acts as a binding intermediate essential for structural
applications. Zhang [17] reported the using of hollow glass microsphere waste and quartz powder
to enhance compressive strength and sulfuric acid resistance of fly ash/slag-based geopolymers.
Duan [18] presented the impact of the use of silica fume on mechanical properties and microstructure
of fly ash-based geopolymer beneath thermal cycle. The results obtained in each study showed
the distinct strengths of each type of reinforcement for each application range. Due to the easy
association with reinforcements, geopolymers bring forward an economically helpful substitute to
Portland cement concrete. Their possible applications include as fireproof materials [15,19,20], thermal
insulation [21–23], thermal shock refractories [24], lightweight materials [25–27], foams [28–30], etc.

Textile-reinforced concrete (TRC) is a new type of building composite material with respect
to non-corrosive textile reinforcement [31] as steel-reinforced bars. Compared to conventional
steel-reinforced concrete, TRC composite does not require a strong covering layer to protect against
the corrosion during the lifetime of the structure. This composite also proves the enhanced strength
in tensile and ductility. Thus, the concrete structural elements will become slender, lighter, and
more flexible. Textile-reinforced concrete can be utilized in a wide range of applications, such as
the lightweight concrete systems [32–34], repairing and/or strengthening in current structural
elements [35,36], thin wall elements [37,38], etc. In another context, the research and development of
non-corrosion textile material, reinforced in Portland cement concrete for the different applications,
have been studied by many researchers, however, with respect to the geopolymer, this is quite a new
field. There are a restricted number of studies on the assessment of textile reinforcements for the
strengthening purpose of geopolymer concrete. Tamburini [39] performed an experiment on the use
of geopolymer grout combined with different types of textile for the strengthening of brick masonry
substrates. Shaikh [40] investigated an experiment on the combined effect of AR-glass textile and
polyvinyl alcohol (PVA) fiber on the four-point behavior of geopolymer composites. Menna [41]
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studied the use of geopolymers, instead of polymeric resins, along with fibers for composite external
reinforcement of existing reinforced concrete structural members. For the motivation of expanding
developed opportunities and the design of advanced geopolymer composite materials, this paper
presents information about the production of the thin plate composites, based on geopolymer mortar
reinforced with the carbon textile, to assess their mechanical strength through four-point bending
strength. In addition, a small part of the pull-out test is performed to evaluate the adhesion strength
at the interface between geopolymer matrix and carbon fiber yarn. Geopolymer mortar matrix is
a mixture of sodium based geopolymer resin, fine-grain silica sand, and various contents of chopped
basalt fiber (BF).

2. Materials and Methods

2.1. Materials

Geopolymer binder, based on metakaolin, was used as the aluminosilicate source for producing
geopolymer mortar (in weight percent: SiO2—47.4; Al2O3—29.7; CaO—14.5; MgO—2.6; TiO2—1.8;
Fe2O3—0.5; K2O—0.3; Na2O—1) along with sodium silicate activator of modul 1.73 (in weight percent:
SiO2—20.72; Na2O—12.33; H2O—66.68). Geopolymer cement was synthesized from calcined kaolin
and shale fly dust burnt in a rotary kiln (for 10 h at 750 ◦C) with a Si/Al molar ratio of 2.0. Two different
types of silica sand were used as the fine aggregates for geopolymer mortar matrix (grain size in mm:
0–0.063 and 0.6–1.25). The chopped basalt fiber (BF) was provided by Kamenny Vek, and the tows were
6.4 mm long with individual fiber diameters of 13 µm, a density of 2.67 g/cm3, tensile strength in the
range of 2700–3200 MPa, and tensile modulus of 85–95 GPa, as shown in Figure 1. Basalt has a softening
and melting point of 1060 ◦C and 1250 ◦C, respectively. It is non-combustible, making it useful for
high-temperature applications. The silane coating or sizing helps to protect the brittle fibers from
premature fracture, and prevents them from binding each other. In this work, BF addition with various
percentage contents of 3%, 5%, and 7.5% (by weight of geopolymer resin) was considered. A carbon
textile of net size 14 × 10 mm was provided by Frisiverto S.R.O company, Czech Republic, as shown in
Figure 1. The carbon grid was made up of 48 K individual filaments for the yarns in the longitudinal
direction, and 12 K individual filaments for the yarns in the transverse direction, and a density of
1.8 g/cm3. The yarns of carbon textile were arranged in two orthogonal directions (0/90◦) to form
a textile grid, and they were coated using a styrene–butadiene binder. Further detailed properties are
shown in Table 1. In the four-point bending test of geopolymer composite specimens, carbon textiles
were placed in the molds such that the force acting on the specimen was in the longitudinal direction
of the yarn.
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Table 1. Properties of carbon textile.

Form Carbon Fiber Grid

Fiber type Carbon fiber 10/15–40
Binder yarn PP 110dtex

Fiber construction Fiber orientation 0/90◦ (bi-directional)
Tex 800 g/km

Fiber density 1.8 g/cm3

Number of threads/m 78 (lengthways) and 55 (crossways)
weight 350 g/m2

Coating Styrene-butadiene
Stitch spacing 10 × 15 mm (center to center distance)

Tensile strength 2551 N/mm2 (lengthways) and 2847 N/mm2 (crossways)
Elongation lengthways 1.17%
Elongation crossways 1.24%

2.2. Specimen Manufacturing

2.2.1. Geopolymer Mortar Matrix Preparation

Geopolymer mortar matrix was prepared according to the following steps. Pure geopolymer resin
was a two-part blend from geopolymer cement and sodium silicate activator, which was prepared
in a ratio of geopolymer cement to activator (1:0.8). This mixture was mechanically stirred for
approximately 5 min to ensure a homogenous fresh paste. After that, microsilica sand was added into
the prepared paste and stirred for around 3 min more. Finally, chopped basalt fiber (with various
percentage content for each mixture) together with the rough silica sand were added into the prepared
mixture, followed by mechanical mixing for a few minutes to ensure homogeneous distribution of the
BF in the mortar matrix. The detailed proportion of mixture was shown in Table 2. The fresh mortar
was cast into 30 × 30 × 150 mm3 prismatic molds for the flexural and compressive test. Three samples
for each mixture were used for flexural test, and then the compressive strength was measured on both
residual pieces obtained from flexural strength according to EN 196-1 standard [42].

Table 2. Mixture of geopolymer mortar matrix.

BF Content (wt % of Geopolymer Resin)
By Weight Ratio (–)

Geopolymer Cement Activator Microsand Rough-Sand

0, 3, 5, 7.5 1 0.8 0.2 1.5

2.2.2. Specimen Preparation for the Four-Point Flexural Test

For the four-point bending test, the samples are molded in the rectangular form with the
dimensions of 400 × 100 × 15 mm3. Carbon textile was used as reinforced with geopolymer mortar,
and the specimen was prepared with a hand lay-up method, and the alignment of carbon textile in the
mold was clearly described in Figure 2. Four-point bending test for the specimens was performed on
the three different types. In the first type, the effect of chopped basalt fiber on the bending strength of
specimens was analyzed. Therefore, the different mortar compositions based on the various percentage
contents of the BF and one carbon textile layer were used. In the second type, the effect of the number
of carbon textile layers on the bending strength of the specimens was analyzed. Geopolymer mortar
matrix without BF addition, and one to three textile layers were used. In the last type, the effect of the
different thicknesses of the mortar cover layer was analyzed. The one textile layer, geopolymer mortar
matrix containing 5% BF, and the mortar cover thicknesses of 2, 4, and 6 mm, were used to produce
the specimens.
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Figure 2. Schematic drawing for the arrangement of carbon textile in the specimens (unit: mm).

2.2.3. Specimen Preparation for the Pull-Out Test

Pull-out tests were performed for the specimens with the dimensions of 20 × 60 mm2, and
the three different embedded lengths (le): 50, 75, and 100 mm. Only a geopolymer mortar matrix
containing 5% BF was chosen to carry out the pull-out test. It should be made clear that the mortar
containing 5% BF satisfies two conditions, as compared to those containing the other BF contents:
(i) mortar mixing and casting of specimens is easy; (ii) high mechanical strength of the hardened
mortar. Although the mortar containing 7.5% BF shows the best mechanical strength, it takes more
time to mix and cast.

Single fiber yarn in carbon grid was embedded in the middle of specimens, along with the whole
length. The free length (yarn part at the out of the mortar matrix) was 100 mm, constant for all the
specimens, and its end was glued by epoxy resin sheets for loading (see Figure 3a).
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2.2.4. Curing Regime and Curing Time

After casting, all the specimens were wrapped using a polypropylene film, and cured at
room temperature, ~26 ◦C, with 65% relative humidity for 24 h. Afterwards, the specimens were
demolded, and wrapped again using a polypropylene film, and kept at room temperature until testing.
Three specimens for each mixture were prepared. They were tested at approximately 28 days after
the casting.

2.3. Four-Point Bending Test and Pull-Out Test Setup

Four-point bending test, with a constant support span of 100 mm, was used to determine the
bending strength of the specimens. The detailed description about the specimen arrangement and
testing process was shown in Figure 4. The testing machine with load cell capacity of 100 kN (FP Lab
Test II, from LABORTECH s.r.o Opava, Czech Republic), located at the Technical University of Liberec
Laboratory, with the applied load under displacement control at a loading rate of 2 mm/min, was used.
The four-point flexural strength can be calculated as per the Equation (1):

σ = Fl/(bh2), (1)



Fibers 2018, 6, 87 6 of 14

where σ is the four-point flexural strength in MPa; F is the load at a given point on the load–
displacement curve in N; b is the width of the tested sample in mm; h is the thickness of the sample in
mm; and l is the support span in mm.
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Figure 4. Four-point bending test for the thin plate specimens.

For the pull-out test, the specimens were clamped on the special device of the universal testing
machine, see Figure 3b. The load was applied at the rate 2 mm/min, and increased gradually until
the yarn was pulled out from the geopolymer matrix. The testing ended when the applied load was
reduced to 95%, or the cross-head displacement of the testing machine was maximum, about 10 mm.
The bond strength was calculated using the following equations:

τm = Fmax/(πdl), (2)

As = Tex/Df = (πd2)/4, (3)

where τm is the bond strength in MPa; Fmax is the peak pull-out load in N; d is the fiber diameter in
mm; l is the embedded length in mm; and Df is the fiber density in g/cm3.

3. Results and Discussion

3.1. The Mechanical Strength of Geopolymer Mortar Matrix

Figure 5 provides information about the results of the average flexural and compressive strength
of geopolymer mortar matrix at the age of 28 days. Overall, both mechanical strengths show an upward
trend with increasing BF content. On the other hand, when BF content goes up from 0% to 3%, and
3% to 5%, the specimens show a significant increase in strength, however, when BF content increases
from 5% to 7.5%, the slight rate of strength increase is observed. The average mechanical strength of
the specimens without BF addition is 11.23 MPa in flexural and 64.36 MPa in compressive strength.
The average strength of the specimens with the addition of 3%, 5%, and 7.5% BF increases the flexural
strength by 6.40%, 13.71%, and 16.21%, respectively, whereas compressive strength increases by 8.84%,
22%, and 25.08%, respectively, as compared to specimens without BF addition.
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3.2. Pull-Out Behavior

In this section, the pull-out test is carried out to characterize the adhesion strength between carbon
fiber yarn and geopolymer matrix. The good bond strength at the interface between yarn and matrix
can cause breakage of the yarn at the initiation time of the first crack. On the contrary, the low bond
strength means easily pulling out of the textile. The bond strength may be considered as a dominating
factor for the mechanical properties of textile-reinforced geopolymer composite.

Figure 6a shows the experimental results of the pull-out curves of all the specimens. In general,
pull-out tests consist of three different phases: first, the elongation of the yarn free length (yarn part
not embedded) along with elastic adhesion between fiber yarn and matrix, followed by formation of
debonding phase. The debonding phase continues to increase until reaching the pull-out peak load,
and a significant drop in load happens. The load drop represents the transition from debonding phase,
which is controlled by both chemical bond and frictional bond to the pull-out phase with frictional
bond only. After debonding of the fiber/matrix interface is finished, the chemical bond does not
survive, but the frictional bond continues to remain constant, and the load tends to decrease [43].
The pull-out load increases with increasing embedded length. The specimens with the embedded
lengths of 75 mm and 100 mm, increase by 22.31% and 72.37%, respectively, compared to specimens
with the embedded length of 50 mm, as seen in Figure 6b. The experimental results show that the
average interfacial bond stress decreases when increasing the embedded length of fiber yarn. For
this reason, it can be explained by the longer the embedded length of fiber yarn in the matrix, where
it is more difficult to unify distribution of bond stress over the entire embedded length; as a result,
the maximum average bond stress at failure will be smaller [44].
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pull-out stress.

3.3. Flexural Behavior of Carbon Textile-Reinforced Geopolymer Composites

In this section, the influence of the different contents of the chopped basalt fiber, the number
of the textile layers, and the different thicknesses of the mortar cover layer on the bending behavior
of the specimens will be discussed. Figure 7a–h presents the bending load–displacement curves of
all the specimens, whereas Table 3 summarizes the average values of the experimental results that
include the first-crack load, first-crack stress, ultimate load, ultimate stress, ultimate displacement,
and flexural toughness. Toughness is the ability of the composite materials, which indicates how
much energy it can absorb before rupturing. Toughness value is calculated as the area under the
respective load–displacement curves up to the peak load of each specimen. Overall, the flexural
load–displacement curves of all the specimens indicate the similar behavior. It consists of the three
parts corresponding to the stages in the flexural test. Three behavior areas are clearly visible during
the bending test. The first stage describes the load-bearing geopolymer matrix, as shown by the linear
increase in load until the formation of the first crack happens. The slope of this segment of the curve
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reflects the stiffness of the geopolymer matrix. In the second stage is the formation of the multi-cracks,
as proven through the oscillation of the loading curve, when the load continues to apply. In this
stage, it seems that the structure of textile/geopolymer matrix composite is being reorganized with
the compromise between matrix and textile reinforcement, for the purpose of the composite that can
continue to take its higher load-bearing capacity. It can be said that the number of cracks in each
specimen almost results in this stage, and the figure of this segment of the curve depends significantly
on the number of textile layers, the organization of carbon textile in geopolymer matrix, the stiffness of
geopolymer matrix, and the adhesion strength at the interface between fiber yarn and matrix. The last
stage is the process of expanding of all cracks that formed in the second stage. Moreover, it is also
considered that there could appear some new cracks. The current cracks continue to become broader
until the specimens break down by rupturing or slipping of the fiber yarns of the textile.

The influence of the different BF contents on the flexural behavior of the specimens is described
in Figure 7a–d, whereas Figure 8 and Table 3 summarize the mean values of the first-crack load,
first-crack stress, ultimate load, ultimate stresses, ultimate displacement, and flexural toughness of the
corresponding specimens. It can be seen that the BF-reinforced geopolymer mortar is useful to enhance
both first-crack load and the ultimate load of the textile-reinforced specimens. It can be observed by
fact that chopped fiber adds to accelerating the early age performance of the geopolymer mortar; as
a result, it can conduce the restricted appearance of micro-cracks in geopolymer mortar. Moreover,
the connection between fiber yarns of the textile and geopolymer mortar is also promoted due to the
bridge effect of the chopped fiber at the micro-cracks. In this case, it could be said that the chopped
fiber contributes to enhance the efficiency of the textile in reinforcement as well. The BF-reinforced
geopolymer composites confirm the high-quality advancement in the aspect of the bending strength
and, the higher the fiber content, the higher the bending strength when compared to geopolymer
composites without BF addition. The average ultimate strength of the specimens without BF addition
is 21.59 MPa. The average ultimate strength of the specimens with BF addition of 3%, 5%, and 7.5
increases by approximately 23.76%, 38.90%, and 58.59%, respectively, compared to those without
BF addition. The specimens also increase in the flexural toughness with the increasing BF content.
The average flexural toughness of the specimens without BF addition is 21.03 kN.mm. The average
flexural toughness of the specimens with BF addition of 3%, 5%, and 7.5%, increases by 12.89%, 32.81%,
and 73.04%, respectively, compared to those without BF addition.

Figure 7c,e,f shows the influence of the different mortar cover thicknesses on the flexural behavior
of the specimens. The mean values of the experimental results are represented in Table 3 and Figure 9.
It can be observed from Figure 9 that the thin cover layer leads to an increment of tension element
(textile layer) that brings higher stiffness and higher bearing capacity. This phenomenon can be
explained by the fact that when the cover layer thickness guarantees the anchoring capability of the
textile in the matrix, the specimens with thinner cover layer will delay the development of the crack
width as long as possible, due to the tension efficiency of the textile. This results in both geopolymer
mortar and textile undergoing collectively better bearing capacity under loading. It can be seen
that, in comparison with the specimens having cover thickness of 6 mm, the ultimate stress of the
specimens having a cover thickness of 4 mm and 2 mm, increases by 4.1% and 59.12%, respectively
(see in Figure 9). With a slight increase of flexural strength, on the other hand, there is a significant
reduction in displacement of the specimens which have the mortar cover thickness of 4 mm, which also
provides the lowest toughness value as compared to the other specimens.
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Figure 7. The flexural load–displacement curves of the thin plate specimens: (a) one textile layer 
reinforced specimens without BF addition and the mortar cover thickness of 6 mm; (b) one textile 
layer reinforced specimens containing 3% BF and the mortar cover thickness of 6 mm; (c) one textile 
layer reinforced specimens containing 5% BF and the mortar cover thickness of 6 mm; (d) one textile 
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Figure 7. The flexural load–displacement curves of the thin plate specimens: (a) one textile layer
reinforced specimens without BF addition and the mortar cover thickness of 6 mm; (b) one textile
layer reinforced specimens containing 3% BF and the mortar cover thickness of 6 mm; (c) one textile
layer reinforced specimens containing 5% BF and the mortar cover thickness of 6 mm; (d) one textile
layer reinforced specimens containing 7.5% BF and the mortar cover thickness of 6 mm; (e) one textile
layer reinforced specimens containing 5% BF, and the cover mortar thickness of 4 mm; (f) one textile
layer reinforced specimens containing 5% BF and the mortar cover thickness of 2 mm; (g) two textile
layer reinforced specimens without BF addition; (h) three textile layer reinforced specimens without
BF addition.
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Table 3. Results of the flexural behavior of the thin plate specimens with respect to the different
percentage contents of the BF, the number of textile layers, and the thicknesses of the mortar cover layer.

Specimen
The Average Value (Standard Deviation)

First-Crack
Load (kN)

First-Crack Stress
(MPa)

Ultimate
Load (kN)

Ultimate Stress
(MPa)

Ultimate
Displacement (mm)

Flexural Toughness
(kN.mm)

1 layer + 0%BF 0.42 (0.07) 5.61 (1.16) 1.62 (0.52) 21.59 (2.12) 18.94 (2.42) 21.03 (1.56)
1 layer + 3% BF 0.68 (0.11) 9.02 (1.60) 2.05 (0.40) 26.72 (4.07) 18.01 (2.93) 23.74 (2.99)
1 layer + 5% BF 0.78 (0.06) 10.38 (0.79) 2.25 (0.31) 29.99 (4.11) 20.03 (2.61) 27.93 (5.90)

1 layer + 7.5% BF 0.88 (0.11) 11.78 (1.40) 2.57 (0.14) 34.24 (1.88) 21.85 (1.83) 36.39 (4.51)

1 layer + 0%BF 0.42 (0.07) 5.61 (1.16) 1.62 (0.52) 21.59 (2.12) 18.94 (2.42) 21.03 (1.56)
2 layers + 0%BF 0.54 (0.04) 7.23 (0.47) 2.73 (0.32) 36.41 (4.32) 19.98 (1.79) 32.87 (0.56)
3 layers + 0%BF 0.73 (0.02) 9.71 (0.22) 3.54 (0.55) 47.21 (7.40) 15.23 (1.77) 32.35 (1.84)

2 mm + 5% BF 0.90 (0.11) 12.02 (1.52) 3.58 (0.25) 47.72 (3.35) 14.56 (3.72) 33.19 (8.05)
4 mm + 5% BF 0.79 (0.11) 10.52 (1.52) 2.34 (0.41) 31.23 (5.51) 13.68 (0.60) 19.85 (3.27)
6 mm + 5% BF 0.78 (0.06) 10.38 (0.79) 2.25 (0.31) 29.99 (4.11) 20.03 (2.61) 27.93 (5.90)
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Figure 9. The mechanical strength of one textile layer reinforced specimens containing 5% BF with
respect to the mortar cover thicknesses: (a) flexural stress; (b) flexural toughness.

The influence of the number of the textile layers on the flexural behavior of the specimens is
illustrated in Figure 7a,g,h. The mean values of the experimental results are represented in Table 3
and Figure 10. In comparison with the one textile layer reinforced specimens, the two textile layer
reinforced specimens increase in the first-crack stress by 28.87%, in the ultimate stress by 68.64%, and in
the toughness by 56.30%. The three textile layer reinforced specimens increase in the first-crack stress
by 73.08%, in the ultimate stress by 118.64%, and in the toughness by 53.83% (see in Table 3). It could
be observed that the three textile layer reinforced specimens increase significantly in ultimate stress by
29.66%, but decrease in toughness by 1.6%, compared to two textile layer reinforced specimens.

Figure 11 shows the failure modes of the several specimens, which are represented for the common
failure modes of all the specimens after finishing of the bending test. Figure 11a,b shows the failure
mode of one to three textile layer reinforced specimens without BF addition. During the destruction
phase of the specimens under loading, a gradual peeling process of the fiber yarns occurs out from the
matrix, followed by collapsing of the geopolymer matrix, due to reaching the maximum load. On the
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contrary, in the specimens containing the high BF content, the interfacial debonding between the matrix
and the textile does not occur, as seen clearly in Figure 11c,d. The failure mode of these specimens
controls the flexural failure by slipping of the fiber yarns from the geopolymer matrix. It can be clearly
shown in Figure 12 that after finishing the pull-out test, all the specimens show the same failure by
slipping of fiber yarn from the matrix and, in this case, there is no impact on the specimen length.Fibers 2018, 6, x FOR PEER REVIEW  11 of 14 
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4. Conclusions

The flexural behavior of carbon textile-reinforced specimens is based on three different factors:
(i) the different mortar compositions corresponding to BF addition; (ii) number of textile layers;
and (iii) thicknesses of the mortar cover layer, which were investigated and discussed. Besides
that, the pull-out test was also performed to provide information about adhesion strength between
carbon fiber yarn and geopolymer matrix. Based on the results achieved, the following conclusions
were drawn:

• When BF is added into geopolymer mortar, the experimental results showed that the mechanical
strength of the thin plate specimens improved significantly; and the mechanical strength increased
with increasing BF content.

• In comparison with the one textile layer reinforced specimens, reinforcement with two to three
textile layers significantly improves the flexural strength and toughness. However, the three
textile layer reinforced specimens do not have an increase in flexural toughness, as compared to
those reinforced with two textile layers.

• The specimens with the mortar cover layer of 2 mm provide the best result in both flexural stress
and toughness.

• The experimental results from the pull-out test show that the average interfacial bond stress
decreased with increasing embedded length of the fiber yarn. For this reason, it can be explained
by that, the longer the embedded length of fiber yarn in the matrix, the more difficult for the
unified distribution of bond stress over the whole embedded length. As a result, the average
maximum bond stress will be smaller. After finishing the pull-out test, all the specimens show the
same failure by slipping of the fiber yarn from the matrix and, in this case, there is no impact on
the specimen length.
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