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Abstract: Hydrolytic degradation in media having a continuous variation of pH from 2 to 

12 was studied for a copolymer having two polyglycolide hard blocks and a middle soft 

segment constituted by glycolide, trimethylene carbonate, and ɛ-caprolactone units. The last 

units were susceptible to cross-linking reactions by γ irradiation that led to an increase of the 

molecular weight of the sample. Nevertheless, the susceptibility to hydrolytic degradation 

was enhanced with respect to non-irradiated samples and consequently such samples were 

selected to analyze the degradation process through weight loss measurements and the 

evaluation of changes on molecular weight, morphology, and SAXS patterns. Results 

reflected the different hydrolytic mechanisms that took place in acid and basic media and the 

different solubilization of the degradation products. Thus, degradation was faster and 

solubilization higher in the basic media. In this case, fibers showed a high surface erosion 

and the formation of both longitudinal and deep circumferential cracks that contrasted with 

the peeling process detected at intermediate pHs (from 6 to 8) and the absence of longitudinal 

cracks at low pHs. SAXS measurements indicated that degradation was initiated through the 
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hydrolysis of the irregular molecular folds placed on the amorphous interlamellar domains 

but also affected lamellar crystals at the last stages. Subsequent heating processes performed 

with degraded samples were fundamental to reveal the changes in microstructure that 

occurred during degradation and even the initial lamellar arrangement. In particular, the 

presence of interfibrillar domains and the disposition of lamellar domains at different levels 

along the fiber axis for a determined cross-section were evidenced. 

Keywords: absorbable sutures; glycolide copolymer; hydrolytic degradation; γ-irradiation; 

lamellar microstructure; small angle X-ray scattering 

 

1. Introduction 

Sutures were the first commercial use of biodegradable polymers as orthopedic devices and by now 

their use has been extended to most surgical fields [1]. Nowadays, most resorbable sutures are polyesters 

(homopolymers and copolymers) based on glycolide, lactide, trimethylene carbonate, ɛ-caprolactone, 

and p-dioxanone units. These synthetic polymers, with hydrolizable bonds in their main chain, provide 

clear advantages over natural polymers such as tailored properties and even predictable lot-to-lot 

uniformity. In fact, control over degradation rate and properties can be achieved by the appropriate 

selection of monomers, copolymer composition, and copolymer architecture (e.g., blocky or random 

distributions). In this way, factors like hydrophilicity, crystallinity, chain stiffness, and molecular weight 

can be easily controlled [2]. 

Poly(glycolide), the first and simplest polyester employed as a suture [3], renders materials with high 

crystallinity, high melting and glass transition temperatures, high strength and Young modulus, and high 

degradation rate. The polymer is commercialized as a braided material due to its high stiffness and 

consequently has some potential inconveniences associated to tissue drag, knot tie-down, and risk of 

infection compared to monofilament sutures [4–6]. Flexible suture threads that are processed in a 

monofilament form have been manufactured to avoid these problems. Some of them consist on 

glycolide/trimethylene carbonate copolymers (named as polyglyconates) and a segmented A-B-A 

architecture where A is a polyglycolide hard block and B a random soft segment. MaxonTM (Syneture) 

was one of the former monofilament synthetic suture based in glycolide that has been developed [7]. 

Therefore, detailed studies concerning synthesis, degradation, properties, and crystallization have been 

performed on such copolymers as model materials for suture applications [8–20]. 

Works about monofilament sutures having three (e.g., MonosynTM [21], and BiosynTM [22,23]) and 

four components (e.g., CaprosynTM [24]) are more scarce despite the incorporation of additional 

monomers may lead to polymers with different properties and degradation behavior. Specifically, 

MonosynTM is the segmented GL-b-[GL-co-TMC-co-CL]-b-GL copolymer constituted by 72, 14 and  

14 wt% of glycolide, trimethylene carbonate and ɛ-caprolactone units, respectively. The material has a 

soft segment that represents the 43 wt% of the sample and includes ɛ-caprolactone units. The high 

methylene content provided by them lead to a decrease on the degradation rate that may balance the 

opposite effect caused by the increase on the amorphous character. 
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Exposure to gamma rays is a process often employed for microbial decontamination of medical 

devices since this irradiation procedure is economically feasible for a large-scale terminal sterilization. 

Gamma irradiation is highly penetrating and ionizing events also activate numerous chemical reactions 

that can be useful to modify material properties. Basically, gamma irradiation may cause different effects 

on polymers: chain scission, crosslinking/grafting. The predominant process depends on the chemical 

nature of the polymer and the applied dose [25]. 

Polyester sutures exposed to gamma irradiation can experiment both a chain scission through the ester 

moiety and a crosslinking that involves radicals formed on the carbon atoms of methylene groups of the 

main chain [26]. Both crosslinking and degradation may occur simultaneously (i.e., gas release and 

increase of molecular weight may be observed together), although usually one process predominates. 

Obviously, the effect of these reactions on material properties is clearly different. Crosslinking increases 

the molecular weight, lowers the mobility of molecules, reduces creep, raises the tensile strength and 

increases the hardness and brittleness. Radiation induced degradation decreased the molecular weight as 

well as tensile, impact, shear strength, and elongation at break. 

The predominant effect of γ irradiation on polyglycolide is a chain scission that mainly leads to the 

unzipping of molecules and a faster loss of Mn than Mw [3]. Polyesters with a high number of methylene 

groups in the main chain are less susceptible to degradation since weakening of main chain bonds 

through ester resonance becomes less effective. Therefore, ɛ-caprolactone units belonging to the soft 

segment may be more susceptible to crosslinking than degradation. Note that segmented  

GL-b-[GL-co-TMC-co-CL]-b-GL could experiment a degradation through its hard segments and 

simultaneously a significant crosslinking through its soft segments that could give rise to an increase of 

the molecular weight. This is not the case of the bicomponent segmented copolymer  

GL-b-[GL-co-TMC]-b-GL, in which chain scission events are still predominant during irradiation. 

Nevertheless, the molecular weight decrease was lower than that observed for polyglycolide suggesting 

that trimethylene carbonate units were also susceptible to crosslinking reactions [27]. 

Molecular scission is expected to be more pronounced in the amorphous regions since recombination 

of formed radicals can be easier in the compact crystalline regions with immobile chain segments. 

Gamma irradiation should lead to a reduction of chain entanglement of polyglycolide segments in the 

amorphous phase and an open amorphous structure that facilitates hydrolytic degradation [27]. In the 

same way, polymers could become more susceptible to enzymatic attack after altering their physical and 

chemical structures by gamma irradiation [28]. 

Recent degradation studies on GL-b-[GL-co-TMC-co-CL]-b-GL revealed a complex process that 

could take place along longitudinal and lateral fiber directions depending on the degradation medium as 

also reported for other glycolide based sutures [27–29]. In all cases, disk morphologies were clearly 

detected in the last degradation stages, playing an important role the confinement of the amorphous soft 

segment between the two crystallizable polyglycolide hard blocks [29]. The present work insists  

on the morphological changes that took place during exposure of the gamma irradiated  

GL-b-[GL-co-TMC-co-CL]-b-GL copolymer that was selected for its higher susceptibility to hydrolysis 

and its segmented architecture. To this end, media with a gradual variation of pH from 2 to 12 were 

considered and the lamellar morphology analyzed by means of small angle X-ray scattering (SAXS) of 

the exposed sutures before and after being submitted to a thermal annealing process that could enhance 

differences on the folding surfaces. 
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2. Experimental Section 

2.1. Materials 

Commercially available sutures of GL-b-[GL-co-TMC-co-CL]-b-GL (MonosynTM, USP 0) were 

kindly supplied by B. Braun Surgical, S.A. GL-b-[GL-co-TMC-co-CL]-b-GL samples were also 

exposed to a γ irradiation dosage above 25 kGry at a temperature of 25 °C (i.e., slightly higher than the 

glass transition temperature). The segmented microstructure was attained by a two-step synthesis  

(Figure 1) where firstly a random soft segment was prepared and then used as initiator for the ring 

opening polymerization of glycolide. 

 

Figure 1. Two step synthesis of GL-b-[GL-co-TMC-co-CL]-b-GL showing the chemical 

structure of soft and hard segments. 

2.2. Hydrolytic Degradation 

In vitro hydrolytic degradation assays were carried out at a physiological temperature of 37 °C and 

in the pH range from 2 to 12 using the Universal buffer (citrate-phosphate-borate/HCl) solution [30]. 

This was prepared by mixing 20 mL of a stock solution with x mL of 0.1 M HCl and distilled water up 

to a volume of 100 mL. The stock solution (1 L) contained 100 mL of citric acid, 100 mL of phosphoric 

acid, 3.54 g of boric acid and 343 mL of 1 M NaOH. pHs 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 were 

attained with 74.4, 56.9, 50.7, 45.4 39.7, 32.9, 28.1, 24.0, 18.1, 14.7, and 1.3 mL (i.e., the x values) of 

the HCl solution, respectively. 

Samples were kept under orbital shaking in bottles filled with 50 mL of the degradation medium and 

sodium azide (0.03 wt%) to prevent microbial growth for selected exposure times. The samples were 

then thoroughly rinsed with distilled water, dried to constant weight under vacuum and stored over P4O10 

before analysis. Weight retention, molecular weight, and calorimetric properties were then  

evaluated. Degradation studies were performed in quintuplicate and the given data corresponded to the 

average values. 

a) 1st Polymerization step: synthesis of soft segment

b) 2nd Polymerization step: synthesis of segmented copolymer
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2.3. Measurements 

Weight retention (Wr) of the specimens was determined by the percentage ratio of weight after 

degradation (Wd) to initial weight before degradation (W0): 

𝑊𝑟 =  𝑊𝑑 / 𝑊0 × 100 (1) 

Molecular weights were estimated by size exclusion chromatography (GPC) using a liquid chromatograph 

(Shimadzu, model LC-8A, Tokyo, Japan) equipped with an Empower computer program (Waters). A 

PL HFIP gel column (Polymer Lab) and a refractive index detector (Shimadzu RID-10A, Tokyo, Japan) 

were employed. The polymer was dissolved and eluted in 1,1,1,3,3,3-hexafluoroisopropanol containing 

CF3COONa (0.05 M) at a flow rate of 1 mL/min (injected volume 100 μL, sample concentration  

2.0 mg/mL). The number and weight average molecular weights were calculated using polymethyl 

methacrylate standards. 

Calorimetric data were obtained by differential scanning calorimetry with a TA Instruments Q100 

series with Tzero technology and equipped with a refrigerated cooling system (RCS). A first heating run 

(20 °C/min) was performed to determine melting temperature and enthalpy, whereas a cooling run  

(10 °C/min) after keeping the sample in the melt state for three minutes to erase the thermal history was 

carried out to determine crystallization data. Experiments were conducted under a flow of dry nitrogen 

with a sample weight of approximately 5 mg and calibration was performed with indium. Tzero calibration 

required two experiments: the first was performed without samples while sapphire disks were used in 

the second. 

Optical micrographs were taken with a Zeiss Axioskop 40 Pol light polarizing microscope (Carl Zeiss, 

Oberkochen, Germany) equipped with a Zeiss AxiosCam MRC5 digital camera. 

Scanning electron microscopy (SEM) was employed to examine the morphology of sutures after 

different times of exposure to the selected degradation media. Carbon coating was accomplished with a 

Mitec k950 Sputter Coater (fitted with a film thickness monitor k150x (Quorum Technologies Ltd., West 

Sussex, UK). SEM micrographs were obtained with a Zeiss Neon 40 EsB instrument (Carl Zeiss, 

Oberkochen, Germany). 

Time resolved SAXS experiments were carried out at the NCD beamline (BL11) of the Alba 

synchrotron radiation light facility of Cerdanyola del Vallès (Catalunya). The beam was monochromatized 

to a wavelength of 0.1 nm. Polymer samples were confined between Kapton films and then held on a 

Linkam THMS600 hot stage with temperature control within ± 0.1 °C. SAXS profiles were acquired 

during heating and cooling runs in time frames of 20 s and rates of 10 °C/min. The SAXS detector was 

calibrated with diffractions of a standard of a silver behenate sample. The diffraction profiles were 

normalized to the beam intensity and corrected considering the empty sample background. 

3. Results and Discussion 

3.1. Hydrolytic Degradation of GL-b-[GL-co-TMC-co-CL]-b-GL in Different pH Media 

Figure 2a shows the pH dependence of the degradation process evaluated through weight loss 

measurements during exposure to the different hydrolytic media. Degradation is characterized by 

sigmoidal curves with a short induction time, which is associated to the time required to render small 
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soluble fragments able to diffuse from the fiber to the media, a period where an abrupt mass loss is 

observed and finally a period where degradation is slower due to the enrichment on more resistant 

fragments to the hydrolysis (e.g., crystalline regions). It is assumed that degradation initially occurs 

through random chain scissions that involved amorphous domains while a slower one-dimensional 

stepwise hydrolytic fragmentation is characteristic of the last stages where crystalline regions are more 

abundant [31]. 

  

Figure 2. (a) Plot of remaining weight percentage versus exposure time to the different 

assayed hydrolytic degradation media for non-irradiated GL-b-[GL-co-TMC-co-CL]-b-GL 

samples. The inset shows a magnification for low pH media; (b) Comparison between 

degradation of non-irradiated and γ irradiated GL-b-[GL-co-TMC-co-CL]-b-GL samples 

during exposure to different representative degradation media. 

Results show a clear trend where induction time regularly decreases and the second step becomes 

narrower as the pH of the media increases. Nevertheless, differences were more pronounced by small 

increases on basicity than on acidity. Note for example that a weight loss of 40% required 41 and  

27 days when pH increased from 11 to 12, respectively, whereas 90 and 87 days were required for pHs 

of 2 and 3, respectively. Acid-catalyzed hydrolysis of esters is much slower at a given temperature than 

the alkali-catalyzed one giving rise also to a slower surface attack of the exposed samples [32]. It is well 

known that acid and alkaline hydrolysis take place through different mechanisms, being in the first case 

the process initiated by protonation of the single bonded oxygen of the ester group while in the second 

case the hydroxide ions attack the electron-deficient carbonyl carbons to form an intermediate anion. 

Figure 2b shows that degradation was clearly enhanced when samples were previously submitted to 

γ irradiation. Basically, main differences on degradation profiles of irradiated and non-irradiated samples 

at a given pH correspond to the induction time. This was more significant in acid media and therefore a 

weight loss of 40% required 27 and 20 days at pH 12 while 90 and 73 days at pH 2 for non-irradiated 

and γ irradiated samples (Figure 3), respectively. 
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Figure 3. Plot of time required to get a weight loss of 40% for non-irradiated and γ irradiated 

GL-b-[GL-co-TMC-co-CL]-b-GL samples exposed to different pH media. 

Figure 4 shows the changes on the pH of the medium during the degradation process. A decrease was 

observed for basic media as a consequence of the release of degradation products with an acid nature. 

Basically, curves were characterized by an initial region where pH is constant, followed by a narrow 

(e.g., pH 12) or wide (e.g., pH 9) region where a significant pH decrease was observed due to the 

moderate buffer capacity of the media. Finally, a region where pH became again practically constant 

was detected. Logically, the magnitude of the pH change decreased and the second region shifted to 

higher times as the initial pH of the medium decreased, a feature that is in agreement with previously 

indicated weight loss measurements. In fact, times corresponding to the maximum slope of pH  

(Figure 4) and weight loss curves (Figure 2a) were similar. Comparison between pH curves of  

non-irradiated and γ irradiated samples demonstrated again the faster degradation of the latter. 

Specifically, the maximum slope shifted for example from 30 to 23 days at pH 12 and from 48 to  

30 days at pH 9. 

Evolution of weight average molecular weight of non-irradiated and irradiated samples during 

exposure at the two extreme pHs (i.e., 2 and 11) is shown in Figure 5a. In this case curves were less 

influenced by the pH of the medium and were characterized by a rapid decrease during the first days of 

exposure until reaching a practically constant value at ca. 35 days. This can be interpreted as the 

minimum molecular size of insoluble degraded fragments. Note also that the initial molecular weight of 

the γ irradiated sample was the highest (i.e., 102,400 with respect to 90,700 g/mol), suggesting that 

crosslinking reactions were produced during irradiation. 

Figure 5b shows the relative Mw loss that allows for better comparison of the evolution of samples 

with different molecular sizes. It is clear that small differences could be found at the initial stages of 

degradation, being this enhanced for irradiated samples. The influence of pH is less clear but a faster 

decrease was observed at the beginning of exposure, probably as a consequence of the greater retention 

of small degraded molecules. Therefore, curves point out a variation on the degradation process that 

could obey a preferential degradation of the amorphous region at the beginning that is followed by a 

slower degradation of the edge of crystallites [33–35]. In fact, the first step can be associated to a quick 

random chain scission mechanism that follows a first-order kinetic, irrespective of the chain length, 

whereas a slower chain-end-scission mechanism can be expected when degradation affects the 
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crystalline domains [29,36–39]. Note in Figure 5b the differences between the experimental curve and 

the simulated one considering a theoretical first order equation. 

 

Figure 4. pH evolution of representative degradation media during exposure of non-irradiated 

(solid lines) and γ irradiated (dashed lines) GL-b-[GL-co-TMC-co-CL]-b-GL samples. 

  

Figure 5. (a) Plots of the variation in the weight average molecular weight of a non-irradiated 

and a γ irradiated GL-b-[GL-co-TMC-co-CL]-b-GL sample during exposure to a pH 12 and 

pH 2 degradation media; (b) Plots of the variation in the weight average molecular weight 

(percentage) of a non-irradiated and a γ irradiated GL-b-[GL-co-TMC-co-CL]-b-GL sample 

during the first steps of exposure to representative degradation media. For the sake of 

completeness simulated data for a degradation following a first order equation is also drawn 

(dashed line) for the γ irradiated sample exposed to pH 2. 
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Figure 6 shows typical DSC scans obtained during heating and cooling experiments, which 

demonstrated that samples were semicrystalline and able to easily crystallize from the melt state. 

 

Figure 6. DSC traces obtained with the original γ irradiated GL-b-[GL-co-TMC-co-CL]-b-GL 

sample. Traces correspond to the first heating run (i) and the cooling run after keeping the 

sample in the melt state for 3 min (ii). 

Changes on thermal properties point also out the time required to produce a significant degradation. 

Thus, melting temperature abruptly decreased as well as the crystallization temperature when the 

minimum molecular weight was attained as shown in Figure 7a for the degradation in the pH 7 

representative medium. Therefore, lamellar crystals were sufficiently affected at the indicated degradation 

level to note a significant decrease on the melting temperature (e.g., from 200–198 °C to 191 °C). 

Furthermore, differences were also detected between irradiated and non-irradiated samples, specifically 

the abrupt temperature changes occurred at lower exposure when samples were irradiated (i.e., 28 with 

respect to 21 days). Nevertheless, the effect of degradation could be better detected through the major 

difficulty to crystallize for the degraded samples. In this way, crystallization temperature decreased from 

an initial value of 165–160 °C to temperatures of 130 and 110 °C for non-irradiated and irradiated 

samples, respectively. The larger variation observed in the second case confirms again the greater 

susceptibility to degradation of samples after being γ irradiated. Similar trends were observed from 

melting and crystallization enthalpies of degraded samples (Figure 7b). Thus, both enthalpies seem to 

reach a maximum value at the beginning of degradation as expected from a preferential attack to the 

amorphous region. Logically this maximum was observed at a lower exposure time when the γ irradiated 

samples was considered. 
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Figure 7. (a) Variation of melting and crystallization temperature and (b) melting and 

crystallization enthalpies of non-irradiated and γ irradiated GL-b-[GL-co-TMC-co-CL]-b-GL 

samples during exposure time in a pH 7 buffer medium. 

3.2. Morphological Changes during Hydrolytic Degradation of GL-b-[GL-co-TMC-co-CL]-b-GL in 

Different pH Media 

GL-b-[GL-co-TMC-co-CL]-b-GL oriented fibers exposed to a hydrolytic degradation process 

experience complex morphological changes as a consequence of different factors: 

(1) Fibers are constituted by oriented lamellae and different amorphous regions which will be more 

susceptible to the hydrolysis process. In fact, oriented crystallites are embedded in an amorphous 

matrix, being possible to distinguish between interlamellar and interfibrilar amorphous regions 

(Figure 8a), according to previously postulated models [40,41]. The interlamellar domains alternate 

with lamellae in the direction of the fiber and possess the lowest molecular orientation and density 

since they are formed by molecular folds, tie chain segments between adjacent lamellar structures, 

and free chain ends. Therefore, these domains appear to be the most susceptible to hydrolysis. On the 

contrary, the interfibrilar domains may have a partial orientation and correspond to the regions placed on 

lateral sides of lamellae arranged in a fibrillar way. Degradation may therefore follow two different 

pathways: longitudinal and transversal depending on whether the hydrolysis proceeds mainly through 

the interfibrilar or interlamellar regions, respectively. 

(2) The hydrolysis mechanism is different as previously indicated for acid and basic media. Differences 

not only concern the kinetic mechanism but also the capability to solubilize degradation products. In 

this way, retention may be significant in both the interlamellar and interfibrillar regions when an 

acidic medium is employed and therefore lateral and longitudinal diffusion of water molecules could 

be hindered. On the contrary, rapid solubilization of degradation products may enhance the surface 

erosion of exposed fibers in a basic medium. 

(3) Morphology of fibers is not completely homogeneous due to a spinning process where the fiber 

surface is cooled faster than the core. Therefore, the shell layer should have different degree of 

molecular orientation and probably is constituted by a slightly different lamellar architecture (e.g. 

size of crystalline and amorphous domains). 
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Figure 8. (a) Scheme showing the presence of oriented lamellar crystals embedded in 

interlamellar (yellow) and interfibrillar (blue) amorphous domains. Blue and orange arrows 

indicate the attack able to generate longitudinal and circumferential cracks, respectively;  

(b) Schemes showing the distinctive morphological changes that occurred during heating of 

samples previously degraded in acidic, neutral, and basic media. For the sake of 

completeness representative SAXS patterns taken during a heating scan are also shown. 

Morphological inspection of fibers exposed to different pH media revealed a continuous evolution 

with pH and logically with time as shown in Figures 9–11. Morphological changes were similar for  

non-irradiated and γ irradiated samples as shown in Figure 9 for a representative pH medium. However, 

in all cases changes proceeded faster when samples were exposed to irradiation in agreement with the 

above indicated accelerated degradation. Thus, longitudinal cracks and peeling were evident after 

exposure of the irradiated sample to a pH 7 medium for 21 and 35 days, respectively, whereas the  

non-irradiated fiber was practically unaltered after 21 days. 35 and 47 days were required to appreciate 

cracks and peeling. Some features can be highlighted according to the optical and SEM micrographs 

obtained at neutral (Figures 9 and 12), acidic (Figures 10 and 12), and basic (Figures 11 and 12) pHs. 
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Figure 9. Optical micrographs showing the morphological changes of non-irradiated and γ 

irradiated GL-b-[GL-co-TMC-co-CL]-b-GL samples during exposure for the indicated 

times to a pH 7 buffer medium at 37 °C. 

(1) Degradation in a neutral pH proceeds through three well differentiated steps. The first one 

corresponds to the development of straight and longitudinal cracks that evolve through the 

detachment of the skin layer. Microcracks that propagate circumferentially around the fiber axis are 

characteristic of the second step although they initially contribute to the peeling out process of the 

outermost skin. In this step microcracks are irregularly distributed along the fiber and are not 

completely extended along the circumferential perimeter. In fact, optical micrographs show the 

presence of irregular cracks that appear inclined with respect to the fiber axis. The last step is associated 

to the deep propagation of the initiated circumferential cracks through the cross-sectional planes 

where interlamellar amorphous domains more susceptible to the hydrolysis exist. At the end of this 

step, regularly distributed discs perpendicular to the fiber axis are evident in the optical and SEM 

micrographs. 

(2) Peeling was not observed when the pH of the degradation medium was lower than 6 and furthermore 

the formation of longitudinal cracks was clearly hindered in these acidic media (Figure 10). Logically, 

degradation became slower as the pH decreased and in fact unaltered surfaces were observed after 21 

days of exposure even for the irradiated sample. Circumferential and highly spaced cracks 

perpendicular to the fiber axis were detected at the first stages of degradation in the most acidic media 

(pHs 2 and 3) whereas irregular and inclined cracks were observed in the optical microscopy images 

taken at pHs between 4 and 6. Nevertheless, SEM micrographs revealed that these cracks had a  

zig-zag appearance. In all cases, additional cracks appeared at longer exposures, giving rise to 

irregular fissures that ultimately lead to the thinner and regular discs that were perfectly oriented 

perpendicular to the fiber axis. 
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(3) Degradation in basic media showed the formation of deep longitudinal cracks at the beginning of 

exposure that lead to peeling only when pH was lower than 9. Circumferential cracks were also 

observed at the earlier degradation steps together with a clear erosion of the fiber surface, which can 

already be detected in the irradiated samples exposed for only 21 days in a pH 10 medium. SEM 

micrographs revealed also the formation of such circumferential cracks and the resulting wrinkled 

fiber surface. In fact, degradation in the high basic media was peculiar since deep transversal cracks 

that led to narrow discs were practically formed at the beginning of exposure. Note also that the high 

solubilization of degradation products caused the lineal and smooth fiber profile rapidly to evolve 

towards highly tortuous surfaces. 

 

Figure 10. Optical micrographs showing the morphological changes of γ irradiated  

GL-b-[GL-co-TMC-co-CL]-b-GL samples during exposure for the indicated times to the 

indicated acidic media at 37 °C. 
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Figure 11. Optical micrographs showing the morphological changes of γ irradiated  

GL-b-[GL-co-TMC-co-CL]-b-GL samples during exposure for the indicated times to the 

indicated basic media at 37 °C. 

 

Figure 12. SEM micrographs showing the morphological changes of a γ irradiated  

GL-b-(GL-co-TMC-co-CL)-b-GL sample during exposure to: (a) a pH 4 medium for 35 days 

(inset 55 days); (b) a pH 4 medium for 88 days (inset cross-section detail); (c) a pH 7 medium 

for 35 days (inset 21 days); (d) a pH 7 medium for 88 days; (e) a pH 10 medium for 35 days 

(insets 21 days and cross-section detail at 35 days) and (f) a pH 10 medium for 88 days (inset 

cross-section detail). 
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3.3. Changes on the Lamellar Parameters of GL-b-[GL-co-TMC-co-CL]-b-GL during Hydrolytic 

Degradation in Different pH Media 

Lamellar structure of the non-irradiated and γ irradiated GL-b-[GL-co-TMC-co-CL]-b-GL samples 

gave rise to a strong meridional reflection in the SAXS pattern that corresponds to a LB spacing close to 

8.3–7.6 nm (e.g., Figure 13a for the γ irradiated sample). This high intensity suggests a large difference 

between the electronic density of amorphous and crystalline phases, which is in agreement with the tight 

packing of polyglycolide [42]. Slight differences on the degree of orientation can be detected, being in 

general lower after exposure to highly basic medium. 

  

Figure 13. (a) SAXS patterns of the initial γ irradiated GL-b-[GL-co-TMC-co-CL]-b-GL 

sample and after exposure to pH 4 for 12, 35 and 88 days, pH 7 for 35 days, pH 9 for 35 days 

and pH 11 for 28 days. Red arrows indicate the meridional fiber direction; (b) Comparison 

between correlation functions of γ irradiated GL-b-[GL-co-TMC-co-CL]-b-GL sample for: 

initial sample, after exposure to pH 4 for 12, 35, and 88 days. 

Both non-irradiated and γ irradiated samples exposed to the degradation media showed also the strong 

and oriented lamellar reflection (Figure 13 for representative γ irradiated samples) even when fibers 

began to lose their integrity. More interestingly the lamellar spacing clearly decreased in the advanced 

degradation stages from its initial value (e.g., 8.3 nm for the irradiated sample) to a spacing close to 5.40 nm 

that was reached just before the fiber integrity was lost (e.g., Figure 13a for fibers exposed to a pH 4 

medium during 88 days). On the contrary, slight variations on the lamellar spacing were detected at all 
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assayed pHs during the period associated to the molecular weight decrease (i.e., 0-35 days), namely just 

before to attain the asymptotic molecular weight (e.g., Figure 13a for irradiated fibers exposed to pHs 4, 

7, 9, and 11, respectively). For example, a decrease from 8.3 to 7.7 nm was detected in this period at pH 

4 (Figure 13a). 

Characteristic lamellar parameters (i.e., long period, Lγ, amorphous layer thickness, la, and crystalline 

lamellar thickness, lc) and crystallinity (i.e., crystallinity within the lamellar stacks, Xc 
SAXS = lc/Lγ) were 

determined by means of the normalized one-dimensional correlation function [43], γ(r): 

γ (r) = 


0

2 )cos()( dqqrqIq / 


0

2 )( dqqIq  (2) 

where I is the intensity and q the scattering vector ([4π/λ] senθ). 

SAXS data were collected within a limited angular range and consequently Vonk’s model [44] and 

Porod’s law were applied to perform extrapolations to low and high q values. 

Correlation functions of representative degraded samples are displayed in Figure 13b, whereas the 

determined morphological parameters and crystallinities are summarized in Table 1. 

Table 1. Morphological parameters of γ irradiated GL-b-[GL-co-TMC-co-CL]-b-GL samples 

during degradation in the indicated degradation media and exposure times. 

pH Time (Days) LB (nm) Lγ (nm) lc (nm) la (nm) Xc
SAXS 

- 0 8.3 7.3 5.3 2.0 0.73 

4 12 7.8 6.5 5.2 1.3 0.80 

4 35 7.7 6.5 5.2 1.3 0.80 

4 88 5.4 5.2 4.2 1.0 0.79 

7 35 7.3 6.4 5.1 1.3 0.80 

9 35 7.4 6.4 5.1 1.3 0.80 

11 28 7.6 6.6 5.2 1.4 0.80 

The one-dimensional correlation function is a relatively simple approximation and practicable method 

to derive the general structural differences of samples despite having some degree of orientation [45]. 

Additionally, it should be indicated that other methods have been developed to characterize more 

accurate samples with fiber symmetry (e.g., Chord Distribution Function [46,47]). The derived 

parameters indicate that degradation logically proceeded at the beginning of exposure through the 

molecular folds that constitute the interlamellar domains. Thus, lc remained practically constant  

(i.e., 5.2–5.1 nm), whereas the amorphous layer thickness decreased from 2.0 to 1.3 nm (i.e., a reduction 

close to 35%). At the last stages of degradation the amorphous layer remained practically constant, being 

for example determined values close to 1.0 nm for la (i.e., a reduction close to 50%). At the same time 

the crystalline lamellar thickness started to decrease (i.e., a reduction of 21% corresponds to the observed 

change from 5.3 to 4.2 nm), which means that hydrolysis and depolymerization affected the crystalline 

domains. In any case, the analysis demonstrates that the lamellar decrease was mainly caused by the 

disappearance of the amorphous layer as expected from a higher susceptibility to hydrolysis of the 

molecular folds placed on the lamellar surfaces. 

Correlation functions revealed also that initial samples had a broad distribution of the layer widths of 

the crystal phase since Lγ was higher than the long period determined from twice the value of the first 
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minimum of the function (i.e., 5.6 nm respect to 7.3 nm). However, homogeneity increased during the 

first degradation step that involved the hydrolysis of the amorphous layer (e.g., 5.6 nm and 6.5 nm were 

determined for samples exposed for 12 and 35 days at the pH 4 medium). Logically, a wide distribution 

was again observed at the end when degradation affected the crystalline lamellar layers. 

3.4. Thermal Annealing of Degraded GL-b-[GL-co-TMC-co-CL]-b-GL Samples in Different pH 

Media: Repercussions on the Lamellar Morphology 

The segmented polymer undergoes a lamellar reordering process on heating that causes an increase 

of the crystal thickness. Specifically, the irradiated sample had a change from an initial value of 8.3 nm 

to a spacing close to 20.8 nm that was attained just some degrees before fusion (Figure 14a). In addition, 

patterns also show how the corresponding arched reflections became highly oriented and adopted a 

circular shape, which evidenced an increase of the lamellar breadth and an irregular lamellar stacking. 

Analysis of the correlation function (Figure 14b) demonstrates that the increase of the Lγ interlamellar 

spacing (from 7.3 nm to 16.8 nm) mainly corresponds to the regular increase of the crystalline lamellar 

thickness that changed from 5.3 nm to 13.8 nm, whereas a lower variation was found for the amorphous 

layer (i.e., from 2.0 to 3.0 nm). Nevertheless, the evolution of both spacing was proportional after 

achieving a temperature of 145 °C and Xc
SAXS subsequently remained practically constant (i.e., close to 

0.79–0.82). 

  

Figure 14. (a) SAXS patterns of the initial γ irradiated GL-b-[GL-co-TMC-co-CL]-b-GL 

sample taken at representative temperatures during a heating run at 10 °C/min (up);  

(b) Change on the correlation function during a heating run at 10 °C/min of the initial γ 

irradiated GL-b-[GL-co-TMC-co-CL]-b-GL sample. 
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Lamellar microstructure is modified during hydrolytic degradation and consequently significant 

differences on the reordering process that occurs on heating should be expected not only respect the  

non-degraded sample but also between samples with different degrees of degradation or those exposed 

to different pH media. Figure 15 demonstrates the great differences on the evolution of SAXS patterns 

during heating for representative samples, being worthy of comment some observations that allow 

getting insight the initial fiber microstructure and how it was affected by degradation in the  

different media. 

 

Figure 15. SAXS patterns taken during a heating run at 10 °C/min of γ irradiated  

GL-b-[GL-co-TMC-co-CL]-b-GL samples after being degraded in the indicated media and 

exposure times. Patterns in each row were acquired at increased temperatures from left to 

right. Red and blue arrows indicate the meridional and equatorial fiber directions. 

(1) Samples degraded in acidic media basically showed the characteristic meridional reflections 

associated with lamellar stacking. Firstly, these reflections had the previously indicated evolution 

when temperature was increased that led to an increase of both lamellar thickness and breadth. 

However, at the highest temperatures and especially for the most degraded samples (e.g., see patterns 
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of samples degraded for 35 and 88 days), reflections were elongated in the meridional direction and 

extended towards the center of the pattern as presumable for a decrease of the crystalline domain size 

(i.e., the number of stacked lamellae). It is interesting to note that extrameridional reflections with a 

practically meridional orientation could also be detected during the heating of the less degraded 

samples (e.g., see arrow for the sample exposed for 12 days at pH 4). These spots suggest the sporadic 

formation and tilting of lamellae with a slightly greater thickness (i.e., 17.6 nm respect to 14.0 nm) 

that cannot be well accommodated in the surrounding and compact amorphous phase (Figure 8b). 

Note that solubilization of degradation products in the acidic medium was scarce at low exposure 

times. 

(2) An equatorial reflection is enhanced during heating of samples degraded at a neutral pH where the 

development of longitudinal cracks is characteristic. This reflection can be associated to the 

interfibrillar spacing (Figure 8b) which is greater than the interlamellar one (e.g., ca. 10.4 nm respect 

to ca. 12.3 nm as can be measured in the patterns shown in Figure 15). The regularity of interfibrillar 

domains was lost at the highest temperatures and consequently the corresponding reflection clearly 

disappeared before lamellar stacking was affected by partial fusion. Figure 15 also shows as 

equatorial reflections could still be detected at pH 9. 

(3) Patterns of samples exposed to basic pHs were more complicated since solubilization of degradation 

products allowed a greater readjustment/reorientation of constitutive lamellae. For example, the 

meridional reflection was split in the samples exposed to pH 9, suggesting a slight tilting of lamellae 

according to opposite directions. Note that optical micrographs revealed the development of tortuous 

fiber morphologies during exposure to basic pHs (Figure 11). This lamellar tilting seems not 

appropriate to justify the regular six spot pattern detected at higher pHs, being a plausible explanation 

the enhancement during degradation of a macrolattice arrangement where lamellar domains were 

disposed at different levels along the fiber axis as displayed in Figure 8. 

3.5. Change of Lamellar Parameters of Degraded GL-b-[GL-co-TMC-co-CL]-b-GL Samples during 

Subsequent Non-Isothermal Crystallization and Reheating Processes 

The complex lamellar structures obtained during the heating treatment of degraded fibers were not 

observed again after a non-isothermal crystallization from the melt state. Therefore a homogeneous 

lamellar morphology was inferred for the spherulitic aggregates obtained by melt crystallization.  

A single and strong ring in the corresponding SAXS patterns (Figure 16a) was always detected, being 

also possible to get details of the lamellar stacking through the analysis of the well-defined correlation 

functions (Figure 16b). Nevertheless, small differences were detected between samples submitted at 

different degrees of degradation. The lamellar stacking of the non-degraded and γ irradiated  

GL-b-[GL-co-TMC-co-CL]-b-GL sample was characterized by LB, Lγ, lc, and la values of 15.1, 12.8, 

10.4, and 2.4 nm, respectively, which were clearly different from those observed for both the initial fiber 

and that submitted to the thermal annealing process. Specifically, long period Lγ was lower than attained 

after annealing (i.e., 12.8 nm with respect to 16.8 nm) as typical for a non-isothermal crystallization 

where lamellar insertion mechanism takes place at the ending stages due to the geometrical constraints 

imposed for the previously formed thicker lamellae. Note that in any case, lc and la decreased in a 

proportional way giving rise to a similar Xc
SAXS crystallinity (i.e., 0.81). 
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Figure 16. SAXS patterns (a) and corresponding correlation functions (b) at the end  

of a cooling run performed at 10 °C/min from the melt state of γ irradiated  

GL-b-[GL-co-TMC-co-CL]-b-GL samples before and after being degraded at pH 4 for  

35 days, pH 11 for 28 days and pH 2 for 88 days. (c) SAXS patterns and correlation functions 

of a γ irradiated GL-b-[GL-co-TMC-co-CL]-b-GL sample degraded at pH 9 for 35 days that 

were obtained from sample directly extracted from the degradation medium and at different 

temperatures during a second heating run performed at 10 °C/min. Red arrows indicate the 

fiber direction. 

Lamellar spacing clearly decreased with the degree of degradation, suggesting that the insertion 

mechanism was favored. Note that LB decreased to 10.9–10.6 nm and 8.6 nm for samples submitted to 

degradation for 28–35 days (i.e., the time required to reach the asymptotic molecular weight at a given 

pH) and 88 days, respectively. Note also that minimum changes were detected between samples exposed 

to different media but with similar degrees of degradation (e.g., pH 4 for 35 days and pH 11 for 28 days). 

The Xc
SAXS crystallinity of all these degraded samples was kept in the 0.81–0.80 range, obviously as a 

consequence of a proportional reduction of lc and la. Therefore, the smaller and even more regular 

molecular fragments (i.e., those enriched on polyglycolide hard blocks) formed during degradation did 

not cause a significant variation of Xc
SAXS crystallinity. 

a) 
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Subsequent heating runs demonstrated the capability of degraded polymers to experiment again 

reordering processes that led to a lamellar thickening (Figure 16c for a representative sample degraded 

at pH 9 for 35 days). Final long periods (Lγ) were lower than attained with the non-degraded polymers 

(e.g., 13.6 with respect to 16.8 nm) also in agreement with the lower spacing observed when  

non-isothermally crystallized samples were compared (Figure 16b). Correlation functions showed that 

both lc and la values increased during the reordering process in such a way that Xc
SAXS was again 

practically constant (i.e., 0.82) and comparable to that attained with the non-degraded sample.  

Figure 16c also highlighted the great difference between the lamellar structure of degraded fibers and 

that obtained after the thermal annealing of the corresponding melt crystallized spherulites. Thus, for 

example, Lγ drastically changed from 6.4 to 13.6 nm. 

4. Conclusions 

Hydrolytic degradation of the segmented GL-b-[GL-co-TMC-co-CL]-b-GL copolymers took place 

faster after being γ irradiated despite this treatment caused also cross-linking reactions and a slight 

increase of the initial molecular weight. Samples exposed to hydrolytic media experienced a quick 

decrease of the molecular weight until a constant value was reached but weight loss was still observed 

for longer exposure times. The gradual increase of the pH of the media caused also a progressive 

acceleration of degradation due to the greater solubilization of decomposition products and the 

modification of the hydrolysis mechanism. 

Degraded fibers showed complex morphologic changes that varied according to the pH of the 

medium. These changes involved the formation of longitudinal (at pHs equal to or greater than 5) and 

circumferential (at all pHs) cracks and peeling (at pHs between 6 and 8). 

Small angle X-ray scattering patterns of degraded samples indicated a fast hydrolysis of chains placed 

in the interlamellar domains followed by a continuous attack to the crystalline domains. Furthermore, 

the existence of interfibrillar amorphous domains was clearly highlighted during exposure to neutral and 

basic media, namely when formation of longitudinal cracks was enhanced. 

Subsequent annealing processes performed with degraded fibers demonstrated the capability to 

experiment a reordering process that increased the lamellar thickness and also the lamellar breadth. 

Specifically, the evolution of patterns allowed the detection of changes associated with lamellar tilting 

and structural features such as the presence of interfibrillar domains and the disposition of lamellar 

crystals at different levels along the fiber axis for a given cross-section. 

Degraded samples were able to crystallize from the melt giving rise to aggregates with a lamellar 

structure that was clearly distinct from that observed in the initial fibers. Furthermore, differences were 

also detected between samples submitted at different levels of degradation. Specifically, lamellar 

thickness decreased when the hydrolytic attack was more aggressive as determined for both  

non-isothermally crystallized samples before and after a subsequent thermal annealing process. 
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