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Abstract: Mid-IR fiber lasers operating at wavelengths near 5 µm are of great interest for many funda-
mental and industrial applications, but only a few experimental samples based on active chalcogenide
fibers have been demonstrated so far. One of the limitations of the power of such lasers may be a fairly
low fiber damage threshold. To solve this problem, we developed and numerically investigated in
detail a mid-IR fiber laser at 5.3 µm with multi-W output power pumped into the cladding at a wave-
length of 2 µm. We proposed using a Tb-doped chalcogenide multicore fiber with 25 single-mode
cores arranged in a 5 × 5 square lattice as an active medium. The proposed laser design surpasses
the power limit of single-core chalcogenide fibers. When simulating lasers, we specified realistic
parameters of Tb-doped chalcogenide glass based on published experimental data. We performed a
comprehensive theoretical analysis, studied the influence of various factors on the characteristics of
generation, and found optimal system parameters and expected generation parameters.

Keywords: Tb-doped chalcogenide fiber; multicore fiber; mid-IR fiber laser

1. Introduction

Mid-IR lasers in the 3–6 µm range are in demand for a lot of applications, including
scientific, industrial, and medical ones [1,2]. However, the development of lasers in this
spectral range is associated with a number of difficulties, so, today, such sources are not
widespread, especially with powers at the level of several watts and above. However, sig-
nificant experimental success has been achieved in this direction [2], for example, quantum
cascade lasers [3–5].

Another promising way to develop coherent mid-IR sources is based on fiber lasers.
These could be, for example, gas-filled hollow fiber lasers [6–9]. Hollow light waveguides
of various designs are made of silica glass [10]. Even very high losses of silica glass in the
mid-IR range are not a limitation because the mode is localized away from the walls of
the silica waveguide. However, if we speak about lasers based on solid fibers, silica fibers
are fundamentally not suitable; fibers based on soft glasses are used in these cases [1,11].
Currently, continuous-wave lasers based on fluoride fibers doped with rare-earth ions make
it possible to obtain powers of tens of watts in the wavelength range of about 3 µm [12,13].
However, an advance to notably longer wavelengths in fluoride fiber lasers proves to
be very difficult. The longest wavelength achieved in lasers based on fluoride fibers is
3.92 µm [14]; further increase in laser wavelength is limited by multiphonon luminescence
quenching in active rare-earth ion transitions. A possible way to overcome this problem
is to use chalcogenide fibers doped with rare-earth ions, in which the phonon energy
is significantly lower than in fluoride fibers. Chalcogenide fibers based on glasses with
various compositions doped with Tb3+, Pr3+, Dy3+, and other ions were produced, and their
optical and physicochemical characteristics were comprehensively investigated; optical
losses, cross-sections, lifetimes, and other parameters were measured and calculated from
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experimental data [15–20]. Considerable efforts were devoted to numerical simulation of
mid-IR chalcogenide fiber lasers; different schemes, including cascade lasing schemes at
two successive radiative transitions, were proposed and studied (see book chapter [20]
and references therein, as well as original works [16,18,19,21–24]). However, despite the
long history of experimental and theoretical works, a fiber laser at a wavelength of about
5 µm based on chalcogenide glasses was first demonstrated only in 2021 [25]. The laser
generation with a spike structure at 5.38 µm was achieved in a Tb3+-doped selenide fiber
pumped at 1.98 µm [25]. Since then, other chalcogenide fiber lasers have been demonstrated
in this spectral range using various rare-earth ions [26,27]. Ce3+-doped laser with mW
power, operating near 4.6 µm or near 5 µm (depending on resonator Q-factor), with in-band
pump at 4.16 µm was reported in [27]. Currently, to the best of our knowledge, the highest
reported power in chalcogenide fiber lasers at wavelengths around 5 µm is 150 mW [26,28].

With the use of single-core chalcogenide glass fibers, the maximum power achieved
may be limited by the fiber damage threshold [28]. This limit may be overcome in mul-
tichannel systems. However, in multichannel systems with independent channels, it is
necessary to provide their coherent combination, which is not an easy task, even in the
near-IR range, to say nothing of the mid-IR. In this work, we propose to use a multicore
fiber with 25 coupled doped cores arranged in a 5 × 5 square lattice. At the same time, in
such a fiber, the intensity of radiation propagating in each core is reduced, which allows
the total power to be increased many times over. When coherently combining channels of
multicore fibers, in-phase field distribution is frequently used, which is the most intuitive
solution [29,30]. We remind the readers that the in-phase distribution is a wave structure in
which the spatial phases of the fields are the same in all cores. However, for the proposed
fiber design with coupled cores, we operate with an out-of-phase supermode (in which the
spatial phases in the neighboring active cores differ by π) that has a number of advantages
compared to the in-phase supermode. As was shown theoretically and experimentally,
the in-phase supermode is susceptible to instability at relatively high powers, while the
out-of-phase mode is stable [31,32]. Further, the coherent beam combining (CBC) technique
for out-of-phase supermode radiation can be easily implemented using only two beam-
splitters [33,34]. In this case, a feedback system is not required for channel phasing, and
the combining efficiency is significantly higher than that for the in-phase supermode [33].
Moreover, for the out-of-phase supermode, the overlap integral with doped cores is maxi-
mal and, hence, the gain is maximal, which makes it possible to implement self-selection
of modes in the laser and to obtain lasing in this particular mode. It should be noted that
the use of active chalcogenide multicore fibers as a laser medium has not been considered
before. The goal of our work is a detailed study of this case, which may be important for
the development of mid-IR fiber lasers around 5 µm with a power of several watts.

The rest of the article is organized as follows. In Section 2.1, we describe the laser
properties of the considered Tb-doped chalcogenide glass. In Section 2.2, we propose a
specific design of a multicore fiber, find the parameters of its out-of-phase supermode in
comparison with the in-phase one, and find the efficiency of coherent beam combining of
the out-of-phase supermode in the far field. Section 2.3 describes in detail the numerical
model used to simulate lasers. Section 3 presents the results of laser modeling and their
analysis. Discussion and conclusions are given in Section 4.

2. Materials and Methods
2.1. Model of Active Tb-Doped Chalcogenide Glass

We considered chalcogenide glass doped with Tb ions with a concentration of 2 × 1019 cm3

as an active medium for lasing, with a focus on the best achievements in the field of
synthesis of selenide glasses and the manufacture of optical fibers from them [26]. As far as
we know, experimental chalcogenide fiber lasers reported to date were based on selenide
glass fibers since they have appropriate optical and physicochemical properties [26]. This
is what determined our choice.
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Figure 1a shows a simplified diagram of laser levels. We assumed that pumping occurs
at a wavelength of about 2 µm at the 7F6 → 7F2 transition, which can be easily achieved
using thulium fiber lasers. Moreover, pumping can also be carried out at a slightly shorter
wavelength of about 1.9 µm at the 7F6 → 7F1 transition using thulium fiber lasers too [28].
Laser generation can occur at the 7F5 → 7F6 transition at wavelengths of about 5 µm. The
emission and absorption cross-sections of this transition are shown in Figure 1b.
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Figure 1. (a) Simplified scheme of the energy levels of Tb3+ ions. (b) Emission and absorption
cross-sections of 7F5 → 7F6 laser transition.

The parameters of the active Tb-doped Ga–Ge–Sb–Se glass [26,28] used in our simula-
tion are given in Table 1. It is important to note that the lifetime of the upper 7F5 laser level
is long enough to create the necessary inversion between this level and the ground state.

Table 1. Tb-doped chalcogenide glass parameters used in modeling (taken from Refs. [20,26,28]).

Parameter Symbol Value

Pump wavelength at 1 → 4 (7F6 → 7F2) transition λp 2 µm
Laser wavelength at 2 → 1 (7F5 → 7F6) transition λs 5.3 µm

Total lifetime of level 2 (7F5) τ2 7.5 ms
Total (non-radiative) lifetime of level 3 (7F4) τ3 10 µs

Total lifetime of level 4 (7F2) τ4 0.1 ms
Absorption cross-section at 1 → 4 (7F6 → 7F2) transition σ14 0.7 × 10−20 cm2

Emission cross-section at 4 → 1 (7F2 → 7F6) transition σ41 0.7 × 10−20 cm2

Absorption cross-section at 1 → 2 (7F6 → 7F5) transition σ12 0.35 × 10−20 cm2

Emission cross-section at 2 → 1 (7F5 → 7F6) transition σ21 1.09 × 10−20 cm2

2.2. Model of Multicore Fiber: Features and Advantages of Out-of-Phase Supermode

The cross-section of the considered active selenide fiber is shown in Figure 2a. We
proposed a fiber design with 25 cores arranged in a 5 × 5 square lattice. The diameter of
each Tb-doped core was set to 20 µm, and the distance between the centers of neighboring
cores was set to 25 µm. The refractive index of the cores was n ~ 2.545, which corresponds
to a Fresnel reflection coefficient of 19% at a wavelength of 5.3 µm. The refractive index of
the undoped cladding was 2.538 (the cladding was assumed to be made of Ga–Ge–Sb–Se
selenide glass with slightly different exact composition compared to the glass matrix of
the cores). For such a fiber, the V-parameter is 2.236 at a wavelength of 5.3 µm, i.e., each
core is single-mode at the laser signal wavelength. The cladding diameter was 300 µm.
The diameter and the glass composition of the second cladding (“cladding 2” in Figure 2a)
are not important in our model, but its refractive index must be lower than the refractive
index of the 300 µm undoped cladding for waveguide propagation of the pump. We
calculated the supermodes of such a fiber using the finite element method. The fields of the
fundamental in-phase supermode and the higher out-of-phase supermode are shown in
Figure 2b,c, respectively. It can be seen that the out-of-phase mode is much better localized
near the cores; between the cores, there are lines on which the fields take zero values. For
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an in-phase supermode, the fields are notably wider. The effective mode areas Ae f f are
calculated as follows:

Ae f f =

(s +∞
−∞ Pzdxdy

)2

s +∞
−∞ P2

z dxdy
, (1)

where Pz is the longitudinal z-component of the Poynting vector. We found that Aeff is 7017
µm2 and 4892 µm2 for in-phase and out-of-phase supermodes, respectively. In this case,
the overlap integrals of supermodes with doped cores calculated as

Γs =

s
cores Pzdxdy

s +∞
−∞ Pzdxdy

(2)

which are 0.74 and 0.91 for in-phase and out-of-phase supermodes, respectively.
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Figure 2. (a) Cross-section of chalcogenide multicore fiber with Tb-doped cores arranged in a
5 × 5 square lattice. Modeled electric fields of in-phase (b) and out-of-phase (c) supermodes. Intensity
distributions of the laser beam before (d), after one (e), and after two (f) steps of CBC, calculated in
the far field after propagating a path of 5 cm.

Next, we considered CBC of the out-of-phase supermode in the far field using
two beam splitters, described in detail in [33,34]. The far field intensity found after the
2D Fourier transform is shown in Figure 2d. The intensity after combining at the first
beamsplitter is shown in Figure 2e and after combining at two beamsplitters in Figure 2f.
In this case, the combining efficiency was 98%.

2.3. Modeling Laser Action in Tb-Doped Chalcogenide Multicore Fibers

A simplified laser scheme based on the proposed Tb-doped chalcogenide multicore
5 × 5 fiber is shown in Figure 3a. We assumed that the reflection coefficient for the signal
at the pump end was close to 1. We also assumed that the unabsorbed pump power
was not reflected from the output end. The reflection coefficient at the output end R2
varied for the laser wave. We calculated the output power. Further, by calculating the
far field distributions and applying two consecutive steps of coherent combining with
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two beamsplitters, we modeled a highly efficient system for coherent beam combining of
an out-of-phase supermode, as described in Section 2.2.
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Figure 3. (a) Scheme of Tb-doped chalcogenide glass fiber laser. CBC is the system for coherent beam
combining by summing out-of-phase supermode with two beamsplitters. Evolution of intracavity
powers at pump wavelength (b) and at signal wavelength (c) modeled for Ppump = 30 W, L = 150 cm,
and R2 = 0.19.

To simulate a laser based on a double-clad Tb-doped chalcogenide glass multicore
fiber, we implemented a numerical model taking into account rate equations for levels
7F6, 7F5, 7F4, and 7F2, equations for the evolution of pump and signal (laser) waves along
the z-coordinate, and boundary conditions at the fiber ends. The rate equations for the
population densities n1, n2, n3, and n4 (normalization to the concentration of Tb3+ ions in
the core NTb = 2 × 10−19 cm−3) read [20]

∂n1

∂t
= −(W12 + W14)n1 +

(
W21 +

1
τ2

)
n2 + W41n4 = 0 (3)

∂n2

∂t
= W12n1 −

(
W21 +

1
τ2

)
n2 +

n3

τ3
= 0 (4)

∂n3

∂t
= −n3

τ3
+

n4

τ4
= 0 (5)

n1 + n2+n3 + n4 = 1, (6)

where t is time; τ2, τ3 and τ4 are the lifetimes of levels 2 (7F5), 3 (7F4), and 4 (7F2), respec-
tively; and Wkl are the stimulated emission (if k > l) and absorption (if k < l) rates from level
k to level l. The stimulated emission and absorption rates for the pump are [20]

W41,14 =
Γpλpσ41,14

(
P+

p + P−
p

)
hcAc

, (7)

where h is Planck’s constant, c is the speed of light in vacuum, σkl are cross sections, λp is
the pump wavelength, Pp

+ (Pp
−) is the intracavity power at λp propagating in the forward

(backward) direction (see Figure 3a), Ac = N × N × πd2/4 is the area of all N × N Tb-doped
cores, and Γp is the overlap integral of the pumping wave with all doped cores evaluated
as Γp = Ac/(πD2/4). The stimulated rates for the signal (laser) waves at λs are [20]

W21,12 =
Γsλsσ21,12(P+

s + P−
s )

hcAc
, (8)

where Γs is the overlap integral defined by Equation (1) and P+
s and P−

s are the intracavity
powers of the forward-propagating and backward-propagating laser waves at λs.
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The equations for the intracavity power evolution are written as [20]

±
dP±

p

dz
= ΓpNTb(σ41n4 − σ14n1)P±

p − αpP±
p (9)

±dP±
s

dz
= ΓsNTb(σ21n2 − σ12n1)P±

s − αsP±
s , (10)

where αp and αs are the background fiber losses at λp and λs. The boundary conditions for
Equations (9) and (10) are [20]

P+
s (0) = R1P−

s (0) (11)

P−
s (L) = R2P+

s (L) (12)

P+
p (0) = R1P−

p (0) (13)

P−
p (L) = R2P+

p (L). (14)

The output power Pout at 5.3 µm is calculated as

Pout = P+
s (L)× (1 − R2). (15)

All parameters used in modeling are summarized in Tables 1 and 2.

Table 2. Problem parameters used in modeling.

Parameter Symbol Value

Cavity multicore fiber length L 30–300 cm
Diameter of Tb-doped core d 20 µm

Distance between core centers ∆ 25 µm
Tb concentration in the core NTb 2 × 10−19 cm−3

Numerical aperture (cores/cladding) NA 0.189
Cladding diameter D 300 µm

Effective mode field area at λs = 5.3 µm Aeff 4892 µm2

Overlap integral (pump with Tb-doped cores) Γp 0.11
Overlap integral

(laser wave with Tb-doped cores) Γs 0.91

Background fiber loss α
1.7 dB/m (for Figures 4–8)

0.5–5 dB/m (for Figures 9 and 10)
Reflection coefficient at z = 0 R1 0.999

Reflection coefficient at z = L for laser wave R2 0.19–0.99

We numerically modeled the system of Equations (9) and (10), taking into account the
boundary conditions (11)–(14). An iterative method based on the Runge–Kutta algorithm
was implemented.

3. Results

Using the mathematical model described in detail in Section 2, we performed a theo-
retical study of high-power mid-IR multicore fiber lasers. From the general theory of lasers,
it is known that the lasing thresholds, slope efficiencies, and maximum output powers are
influenced by various system parameters, such as cavity length, output reflectance, optical
losses, etc. [35]. Therefore, we carried out a detailed theoretical study of the behavior of a
laser based on the proposed multicore fiber as dependent on various parameters.

First, we set a high pump power Ppump = 30 W and modeled the output laser power as a
function of two variables: cavity fiber length L and output reflection coefficient R2 (Figure 4).
The output power was calculated for each point in the 500 × 500 grid of parameters
(L, R2) to ensure precision in plotting the dependence. With increasing reflection coefficient,
the optimal length decreased, as shown by the dotted line in Figure 4. Hereinafter, we set
the minimum value of output reflectivity R2 = 0.19, which corresponds to the coefficient
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of Fresnel reflection from the chalcogenide fiber end [28]. In the simplest case, an increase
in the reflection coefficient can be achieved using external mirrors [28]. In principle, there
are technologies for applying special coatings to the fiber end, which can either increase
or decrease R2. But such technologies for chalcogenide glasses are not widespread and
well-developed, so, in the analysis, we are limited to R2 = 0.19. It is seen from Figure 4 that
the maximum laser powers are achieved precisely at minimum R2. Note that the highest
laser power in a mid-IR fiber laser based on a single-core chalcogenide fiber was obtained
when the fiber end was used as an output reflector [28]. For the multicore fiber considered
in Figure 2, it can be seen that the optimal cavity length is 100–150 cm, allowing output
powers >3.5 W to be obtained in 25 phased channels at a pump power of 30 W.
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Next, we fixed the length of the resonator L = 150 cm and plotted the dependence of
the output laser power on two variables, which are the pump power Ppump and the output
reflection coefficient R2 on the 500 × 500 grid (Figure 5). In this case, the output power
at high reflection coefficients is significantly inferior to the output power at low values
of R2. This is also explained by the fact that, for large R2, the optimal resonator length is
significantly less than 150 cm (Figure 4).
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Then, we plotted standard dependences of the output power on the pump power at
two values of cavity length: L = 100 cm (Figure 6a) and L = 150 cm (Figure 6b) for different
reflectance values. It can be seen that the efficiency is significantly higher for small R2.
Laser thresholds are visible in enlarged subplots. The larger the value of R2, the lower the
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threshold, which is fully consistent with the general theory of lasers [35]. The considered
resonator lengths differ by a factor of 1.5, but the output powers with the same parameters
change slightly for high Ppump.
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Figure 6. Output laser power vs. pump power, modeled for L = 100 cm (a) and L = 150 cm (b) and
varied R2.

Next, we studied in more detail the influence of the cavity length on the output laser
power. Figure 7 shows the dependence of the output power on the resonator length and
pump power at a fixed optimal value R2 = 0.19 on the 500 × 500 grid. The dotted line
shows the optimal length for a fixed pump power. It can be seen that, the greater the power,
the longer this length. At the same time, the optimum is quite smooth, i.e., even with a
noticeable deviation from the optimal length, the output power does not change much.
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dashed curve shows the optimal fiber length that maximizes output laser power for certain Ppump.

For a better visual perception, we plotted the dependence of the output laser power
on the resonator lengths for varying reflection coefficients at three different values of pump
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power: Ppump = 10 W (Figure 8a); Ppump = 20 W (Figure 8b); and Ppump = 30 W (Figure 8c).
These dependences clearly show that the maxima are quite smooth. At pump powers <10 W,
lengths <100 cm should be chosen. But the expected output powers are not very high, so
simpler fiber designs are suitable to achieve them.
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In a series of numerical experiments (see Figures 4–8), we set the value of loss
α = 1.7 dB/m, as in experimental work [28]. Note that, for different samples of chalcogenide
fibers, background losses can be either larger or, in principle, smaller. Therefore, we also
investigated the impact of background fiber losses on laser performance. We plotted the
expected output power versus pump power for varying losses (Figure 9). The enlarged
dependences, where the lasing thresholds are clearly visible, are shown on the right panel.
Indeed, losses greatly affect the generation efficiency. It can be seen that, at a loss level
of ≤1 dB/m, laser powers >5 W are expected to be obtained. At the same time, due to
the reduction in heat dissipation during pump thermalization, the influence of parasitic
thermo-optical effects is reduced, which is also a favorable factor for the development of a
laser system.
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We plotted the output power as a function of the fiber cavity length for varying losses
for a pump level of 30 W (Figure 10a) as well as for a pump level of 100 W (Figure 10b).
At the same time, we assumed that the fiber would not be damaged under the action of
such high power. Note that, in contrast to the experimental work in [28], where pumping
was carried out into a core with a diameter of 19 µm, in our case, we considered pumping
into a cladding of a significantly larger diameter of 300 µm (pumping into a cladding is a
standard technique for high-power fiber lasers). Therefore, in our case, at Ppump = 100 W,
the pump intensity is even lower than that achieved in [28]. In this case, the predicted
laser powers reach a level of 10 W, which is undoubtedly interesting for many applications
(atmosphere monitoring, astronomy, lidars, and so on).
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4. Discussion and Conclusions

We have studied in detail a mid-IR chalcogenide multicore fiber laser at a wavelength
of 5.3 µm with an output power level of several watts when pumped into the cladding
at a wavelength of 2 µm. We proposed to use a Tb-doped chalcogenide multicore fiber
with 25 single-mode cores arranged in a 5 × 5 square lattice as the active medium. This
exceeds the power limit of single-core fibers. For the proposed multicore fiber design, the
out-of-phase supermode has a significantly larger overlap integral with doped cores than
the in-phase supermode. Therefore, the gain for the out-of-phase supermode is maximal,
which makes it possible to achieve self-selection of spatial modes and obtain lasing in the
out-of-phase mode. If necessary, additional measures for suppression of other modes can
be implemented, for example, by inserting a spatial filter between the mirror and the fiber
end and placing a mask with four holes that correspond to the locations of the beams (as
in Figure 2d) in the Fourier plane of the filter. Moreover, at the output, all channels can
be coherently combined, with an efficiency of 98%, using two beamsplitters. Note that
this idea of simple, highly efficient coherent beam combining for one-dimensional and
two-dimensional beam arrays with out-of-phase spatial distribution of the fields in adjacent
channels was experimentally and theoretically demonstrated in [33,34].

When modeling fiber lasers, we specified realistic parameters of Tb-doped chalco-
genide glass, focusing on the experimental data in work [28]. We have made a compre-
hensive theoretical analysis and studied the influence of various factors on the generation
parameters. We have shown that a higher lasing efficiency is achieved with the use of
Fresnel reflection at the fiber end rather than using an additional mirror that increases the
reflection coefficient, which is in excellent agreement with experimental data [28]. We have
shown that a laser power of several watts at a wavelength of 5.3 µm can be generated
with a pump power of ~30 W for an active fiber length of ~100–150 cm. We have also
investigated the effect of background fiber losses and have shown that, when they are
reasonably reduced to <1 dB/m, the output power is expected to increase to >5 W (with a
pump power of 30 W). Moreover, the lower the losses, the lower the parasitic contribution
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from thermo-optical effects that arise during pump power thermalization [36–38]. We have
also shown that a power level of 10 W in the mid-IR range is theoretically achievable at
pump intensities that are experimentally supported by a single-core fiber [28].

Thus, the design of a fiber laser at a wavelength of 5.3 µm based on a Tb-doped
chalcogenide multicore fiber proposed in our work may be useful for the development of
laser systems with a power level of several watts, which can be interesting for practical
applications (atmosphere monitoring, astronomy, lidars, and so on).
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