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Abstract: This study assesses the mechanical properties of mortars incorporating waste paper sludge-
derived cellulose fibers. Compression and flexural tests were carried out on specimens prepared
with cellulose fibers at different proportions, ranging from 0% to 2% of the total weight of the solid
mortar constituents (cement, sand, and lime). In addition, a comparative analysis was carried out
to evaluate the influence of the preparation method on the mechanical properties of the mortars.
To this end, two series of mortars were studied: one prepared following a rigorous control of the
preparation parameters and the other made without systematic parameter control to simulate typical
on-site conditions. Finally, the applicability of both traditional and eco-friendly mortars in the
construction of small-scale masonry walls was assessed through compression tests. Overall, the
mechanical properties of mortars with cellulose fibers were comparable to those with 0% waste
material, regardless of the production process. Regarding the compressive behavior of masonry walls,
experimental tests showed significant similarities between specimens made with traditional and
eco-friendly mortar. In conclusion, incorporating cellulose fibers into cement-based mortar shows
considerable potential for building applications, enhancing the environmental benefits without
compromising the mechanical behavior.

Keywords: cellulose fibers; cement-based mortar; masonry wall; waste material; waste paper sludge

1. Introduction

The construction industry has been increasingly focusing on the development of
sustainable practices to address the environmental challenges posed by traditional cement-
based materials [1–6]. The production of cement, a key component of cement-based
materials, accounts for a substantial portion of global carbon dioxide (CO2) emissions [7–9].
Indeed, the calcination of limestone to produce clinker releases significant amounts of CO2,
around 850 kg per ton of clinker, contributing to the greenhouse effect and global warm-
ing. Moreover, traditional cement production consumes vast amounts of non-renewable
resources, such as limestone, clay, and fossil fuels, leading to resource depletion and habitat
deterioration [10,11].

These issues have prompted extensive experimental research into the development of
eco-friendly cement-based materials that can reduce the environmental impact while main-
taining or even enhancing the mechanical properties essential for construction applications.
One promising alternative to traditional solutions involves the incorporation of industrial
byproducts and waste resources into cement-based materials [12–14]. In particular, paper
sludge-derived cellulose fibers, a residual product of the paper recycling industry, have
emerged as a potential candidate for such incorporation owing to their potential to enhance
mechanical performance while concurrently mitigating the environmental impact [15–17].
For instance, only about 100,000 tons/year of deink paper sludge is produced in Italy, of
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which about 46% is disposed of for incineration and 4% is disposed of in landfills, with
considerable costs but especially with significant environmental repercussions. Further-
more, as indicated in [18], the total production of paper and paperboard waste globally
reached around 417.3 million metric tons in 2021. In this context, by incorporating paper
sludge-derived cellulose fibers into cement-based materials (e.g., mortar), it is possible to
divert them from landfills, reducing the demand for virgin resources, conserving forests and
ecosystems, and mitigating the environmental impacts associated with their extraction. It is
also worth mentioning that mixing paper sludge-derived cellulose fibers and cement-based
mortar aligns with the principles of the circular economy, where resources are continu-
ously reused and recycled. Apart from the environmental benefits, the incorporation of
this waste resource into cement-based materials presents the potential for improving the
material performance. Indeed, cellulose fibers effectively bridge microcracks within the
mortar, thereby enhancing the tensile and flexural strength of the material [19]. In addition,
cellulose fibers can help mitigate the shrinkage cracks that often occur in cement-based
materials during the curing process, contributing to an increase in durability, which can
particularly be advantageous in harsh environments [20].

Although there are advantages, challenges related to fiber dispersion, workability,
and interface bonding emphasize the need for careful consideration during the mix-design
and production of this eco-friendly material. For instance, poor dispersion can lead to
localized variations in the mechanical properties, compromising the overall performance of
the material. In addition, the inclusion of cellulose fibers can alter the rheological properties
of the fresh mix, potentially resulting in reduced workability. This limitation highlights the
importance of defining a proper mix design to balance the fiber content with the workability
requirements. Moreover, ensuring strong interfacial bonding between the cellulose fibers
and the cement paste is crucial for obtaining optimal mechanical performance. Inadequate
bonding may lead to weak interfaces, limiting the load transfer and reducing the overall
effectiveness of the additions.

Despite the importance of this topic, the information available in the literature about
the mechanical performance of cement-based materials mixed with paper sludge-derived
cellulose fibers remains limited [20–23].

For instance, Azevedo et al. [20] evaluated the viability of integrating paper sludge
waste materials into cement-based mortars. The experimental investigation involved the
replacement of lime with waste sludge at proportions of 5%, 10%, 15%, and 20% of the
cement weight. The main objective of the authors was to provide further insights into
parameters such as the consistency index, heat of hydration, entrapped air content, water
retention, mechanical strength, and capillarity coefficient. Overall, the authors found that
for applications such as wall coatings and ceiling mortars, the percentage of sludge should
not exceed the threshold value of 10%. This is explained by the fact that higher incorporation
levels lead to reduced mechanical strength (not in line with market demands). According
to the authors, the reduction in the mechanical properties of the material can be attributed
to the waste material’s reduced heat of hydration, which leads to a slower reaction rate.
On the other hand, higher amounts of waste material, exceeding 10%, are suitable for
utilization in mortars specifically designated for minor masonry repairs (not requiring
strict property control). Rezende et al. [21] studied the impact of incorporating waste paper
cellulose fibers into cement-based mortar mixtures at proportions of 5%, 10%, 15%, and 20%
over cement weight. Concerning the properties at a fresh state, the authors found that the
inclusion of cellulose fibers within the mortar resulted in a reduction in the density of 4.3%
and 7.2% for mixtures containing 5% and 10% cellulose fibers, respectively. In terms of the
mechanical response (hardened state, 7-day curing period), the results obtained showed
that the presence of fibers leads to a reduction in both the 7-day compressive and flexural
tensile strength proportional to the amount of fibers incorporated. On the other hand, the
fibers’ ability to effectively limit crack propagation and distribute stress resulted in better
results in the post-crack behavior, showing increased deformability and tenacity (compared
to traditional cement mortar).
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The physical and mechanical properties of mortar samples containing varying quanti-
ties of deink paper sludge were also studied by Yan et al. [22]. The authors observed that
the incorporation of deink sludge into cement-based mortar at a consistent water-to-cement
ratio notably decreased the flow characteristics and extended the setting time. In addition,
as the dosage of sludge increased, the water absorption and volume of the permeable
voids within the cement mortar increased, consequently leading to a reduction in the bulk
density. The retained compressive strength of mortar specimens (after 90 days of curing)
with sludge at proportions of 2.5% and 20% was 83% and 62%, respectively, compared to
the reference mortar.

The literature review reported above suggests that waste cellulose fibers, often rele-
gated to disposal or incineration, hold significant potential as additions for cement-based
mortars. However, the limited information about the mechanical properties of this eco-
friendly material is still hindering its application in sustainable construction practices.
In this context, the aim of this work is to fill this research gap by providing a comprehen-
sive study of the mechanical performance of cement-based mortar incorporating paper
sludge-derived cellulose fibers. First, compression and flexural tests were performed on
cement-based mortar specimens without cellulose fibers (0%) and reinforced with 1% and
2% of cellulose fibers, by weight of the solid constituents. This analysis is crucial for deter-
mining the optimal fiber proportions required to achieve specific mechanical performance,
given the wide range of potential applications. Subsequently, the influence of the mixture
preparation method on the mechanical behavior of this eco-friendly mortar was also as-
sessed. To this end, two types of mortars were produced: one with rigorous control of
all the preparation parameters and another without parameter control, simulating on-site
conditions during construction processes. Finally, the practical use of this eco-friendly
mortar was evaluated by employing it in the construction of masonry walls. In order to
achieve this objective, compression tests were performed on 20 small-scale masonry walls:
10 specimens were made with the traditional mortar and the remaining 10 with the eco-
friendly mortar incorporating 1% of cellulose fibers. The results obtained from these tests
were also used to assess the accuracy of the predictive formulas available in the literature.

2. Experimental Preparation
2.1. Waste Paper Sludge

The conversion of waste paper sludge into cellulose fibers is a crucial step in the
sustainable use of this waste material. Indeed, this process represents a key step for the re-
purposing of a waste product into a valuable resource, ultimately enhancing the mechanical
performance of cement-based mortars while promoting environmental responsibility. It is
worth mentioning that the cellulose-milled fibers used in this study were obtained through
various processing stages developed by other partnership laboratories within a previous
research project. The process initiates with the collection of paper sludge, which is obtained
from the recycling of paper products. This sludge is a mixture of calcium carbonate (about
65% by weight), paper fibers (about 30%), and moisture (about 5%). The sorted sludge
is then mixed with water to create a pulp. Subsequently, mechanical and/or chemical
treatments are performed to dislodge and remove ink, coatings, and impurities from the
sludge. Once the deinking process is completed, the mixture is subjected to mechanical
and centrifugal forces to separate the cellulose fibers from the remaining pulp. This step is
necessary to ensure the extraction of clean cellulose fibers while minimizing contamination.
After fiber separation, the pulp is then subjected to a grinding process (using a RETCH
lab scale hammer mill, Figure 1a). This step is essential for improving the quality and
strength of the cellulose fibers. As shown in Figure 1b, the Scanning Electron Microscopy
(SEM) analysis shows the presence of both fibers and inorganic particles in the mixture,
thus indicating a bimodal distribution. Finally, the cellulose fibers are dried to reduce their
moisture content (for 4 h at 105 ◦C). Adequate drying is essential to prevent microbial
degradation during storage and transportation.
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Figure 1. Deink paper sludge: (a) sample of cellulose fibers milled with a hammer mill and
(b) SEM analysis.

It is worth mentioning that a dimensional analysis of the ground paper sludge was
performed by the authors in a previous experimental campaign. Further information about
this aspect can be found in [24].

2.2. Materials and Methods
2.2.1. Mortar Specimens

The materials used in this experimental campaign were Portland Cement Type II-B/L,
hydraulic lime, river quartz fine sand (size range of 0/2 mm), water, and waste cellulose fibers.
Traditional mortars with 0% cellulose fibers were initially prepared to serve as a reference for
comparison with eco-friendly mortars. Subsequently, mortars with cellulose fibers at propor-
tions of 1% and 2% of the total weight of the solid constituents were prepared. Considering the
few studies on this topic, the authors selected to use relatively small percentages of cellulose
fibers, 1% and 2%, percentages similar to those used with other types of fibers, to avoid
problems with the dispersion and homogenization of the fibers within the matrix as well as
limit a large decrease in the mechanical properties. It is worth mentioning that the mortar
constituent materials were added in a 1:1:5 ratio (cement:lime:sand) for all the specimens.
As reported in the introduction section, the role of the preparation method in the mechani-
cal performance of the eco-friendly mortars was also assessed. In particular, this aspect was
addressed through two distinct approaches: one in which all the preparation parameters
were meticulously controlled (series I) and the other that simulated real construction site
conditions, where the parameters were not rigorously regulated (series II). In the first series,
the fibers were used in a saturated but surface-dry state, aiming to prevent excessive water
absorption during the mixing process. This condition was achieved by immersing the fibers
in water before mixing and allowed for maintaining a stable water-to-binder ratio for each
mortar composition. On the other hand, the cellulose fibers used in the second series were
not subjected to any preliminary treatment, and the water-to-binder ratio of the mortar was
not controlled during the manufacturing process. These specimens were produced with
the aim of achieving the same workability as that of the specimens of series I. The mixing
ratios of both the traditional and eco-friendly mortars are listed in Table 1. It is worth
noting that each specimen is labeled according to the following nomenclature: (i) type of
mortar, traditional (TM) and eco-friendly (CM) mortars; (ii) type of preparation method,
series I (I) or II (II); and (iii) cellulose fibers percentage (0, 1, or 2). For instance, the mortar
incorporating 1% of cellulose fibers produced in the first series is identified as CM-I-1.
Concerning the manufacturing process, all the materials were mixed using a mortar mixer
and then used to cast 40 × 40 × 160 mm3 prismatic specimens. During the casting process,
both traditional and eco-friendly mortars were positioned into metallic molds in two layers
(Figure 2a), each layer being compacted using a vibrating table. Then, all the specimens
were covered with a plastic film and stored in a room with a controlled environment (25 ◦C
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and 95% humidity) for one day. Subsequently, they were demolded (Figure 2b) and then
reintroduced into the same controlled environment, where they underwent an additional
curing period of 28 days.

Table 1. Mixing ratios of traditional and eco-friendly mortars.

Mortars Cement Lime Sand Cellulose
Fibers (%) W/B

TM-I-0 1 1 5 0 0.50

CM-I-1 1 1 5 1 0.53

CM-I-2 1 1 5 2 0.56

TM-II-0 1 1 5 0 0.50

CM-II-1 1 1 5 1 N.C.

CM-II-2. 1 1 5 2 N.C.
N.C.—Not controlled.
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After this period, compression and flexural tests were carried out, in accordance with
EN 1015-11:2019 [25], to determine the compressive and flexural tensile strengths of the
mortars. To this end, 108 (18 × 6 types of mortar) specimens were subjected to a three-point
flexural test using the set-up illustrated in Figure 3a.
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Concerning the compression tests, 216 (36 × 6 types of mortar) specimens having a
cross-section of 40 × 40 mm2 were also tested up to failure using the test set-up depicted in
Figure 3b. Both the traditional and eco-friendly mortars were loaded until failure under
displacement control at a cross-head displacement speed of 0.3 mm/min using a 100 kN
Instron machine.

2.2.2. Masonry Walls

Compression tests were performed on small-scale masonry walls with the aim of eval-
uating the potential of cement-based mortars incorporating cellulose fibers for structural ap-
plications. Figure 4 illustrates the procedure followed for preparing the masonry walls. The
specimens were made of modern clay bricks (nominal dimensions of 245 × 120 × 55 mm3)
produced with standard industrial process separated by eco-friendly mortar with 1% of
cellulose fibers (CM-II-1 series). This mortar was chosen because it was made using the
traditional production method on site and, as will be seen in the results presented later, it is
the mortar with cellulose fibers that presents the best performance in terms of mechanical
properties. Note that masonry walls with traditional mortar joints were also prepared for
comparison; in both cases, the bed joints had a thickness of about 10 mm.
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Following the recommendation given in EN 1052-1:1998 [26], the panels were built
with dimensions of 510 × 125 × 315 mm3 (height × thickness × width). Compression
tests were carried out, in accordance with EN 772-1:2011 [27], to determine the mechanical
behavior of the bricks employed for the construction of the walls. From the results obtained,
average values of the compressive strength (fb = 68.20 MPa) and characteristic compressive
strength (fbk = 40.96 MPa) were found. As shown in Figure 4b, the bricks were soaked in
water for 2 h to prevent the absorption of the mixing water.

All the masonry walls were tested after 28 days of curing in a controlled temperature
environment (25 ◦C and 95% relative humidity). The test set-up is illustrated in Figure 5.
Before testing, all the walls were capped using a leveling mortar and had an average flexural
tensile strength of ftm = 8.24 MPa and an average compressive strength of fcm = 38.72 MPa.
This procedure was chosen to level the contact surface between the specimen face and the
testing machine, thus ensuring a uniform load application. Since the mechanical properties
of the leveling mortar were much higher than that of the mortar joints, it is reasonable to
assume that the influence of the capping on the result is negligible.
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In terms of instrumentation, the vertical strains of the specimens were measured
using four displacement transducers (two for each specimen’s side), with a measurement
range of 100 mm and a precision of 0.01 mm. The information given by the load cell and
displacement transducers was recorded using an HBM data logger at an acquisition rate
of 5 Hz. The monotonic compressive load was applied gradually, as recommended by
EN 1052-1:1998 [26], using a universal hydraulic compression machine equipped with a
3000 kN load cell. The load was applied using force control at a rate of 0.6 N/(mm2·min).
Ten tests were carried out for each type of mortar, resulting in a total of twenty tests.

3. Results
3.1. Compressive and Flexural Properties of Mortars

Figure 6 presents the representative load vs. cross-head displacement curves obtained
from the flexural tests carried out on the series II specimens.
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Figure 6. Load vs. cross-head displacement curves for representative flexural mortar specimens.

In general, it can be seen that increasing the percentage of the cellulose fibers within the
mortar led to changes in the post-crack behavior of the specimens. The traditional mortars
(with 0% of cellulose fibers) exhibited a sudden decrease in the load at the end of the tests.
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On the other hand, all the mortars containing 1% and 2% of cellulose fibers continued to
deform after the initial crack. This result is explained by the fact that the tensile stresses are
transmitted to the fibers incorporated into the mortar, which absorb more energy, allowing
the material to deform before collapsing. The influence of the addition of the cellulose fibers
and the preparation method on the mechanical properties (both average and characteristic
values at 5%) of cement-based mortars is also reported in Table 2 and Figure 7.

Table 2. Compressive and flexural tensile properties of traditional and eco-friendly mortars
(average ± standard deviation).

Mortars ftm
[MPa]

ftm,k
[MPa]

fcm
[MPa]

fcm,k
[MPa]

TM-I-0 3.68 ± 0.31 3.08 15.02 ± 0.57 15.02

CM-I-1 3.67 ± 0.26 3.15 13.38 ± 0.45 13.38

CM-I-2 3.52 ± 0.22 3.09 13.46 ± 0.46 13.46

TM-II-0 2.77 ± 0.48 1.86 7.17 ± 0.83 5.55

CM-II-1 2.95 ± 0.33 2.37 7.47 ± 0.52 6.56

CM-II-2 2.30 ± 0.19 1.95 5.14 ± 0.45 4.23
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Concerning the specimens obtained from series I (CM-I-1 and CM-I-2), the flexural
tensile strength values did not present significant variations compared to the traditional
mortars (relative differences lower than 5%). These results confirm that in the case of the
matrices prepared with a high degree of accuracy, it was possible to achieve a strong fiber–
matrix bond, enabling effective stress transfer from the matrix to the fibers. Additionally,
the limited variation in the flexural strength observed in this type of mortar can also
be indicative of the homogeneous dispersion of fibers within the matrix, resulting in a
composite with well-balanced mechanical properties.

Unlike the trend observed in the flexural tensile strength, all the series I mortars
incorporating cellulose fibers exhibited compressive strength reductions of almost 10%
compared to the traditional mortars (Table 2). As pointed out by [23], this result can be
attributed to the increased porosity of the material due to the greater difficulty in releasing
the air inside the matrix when cellulose fibers are used.
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Regarding the series II specimens (CM-II-1 and CM-II-2), prepared without a rigor-
ous control, they presented a different trend in the variation of the mechanical properties
compared to that of the series I specimens. In general, it can be observed that the flexural
tensile strength increases between 0% and 1% fiber content, likely due to the bridging effect
of the fibers within the matrix. However, when the fiber percentage was increased to 2%,
significant reductions in the flexural tensile strength were observed compared to the tradi-
tional mortar (approximately 17%). This result can be primarily attributed to a non-uniform
dispersion of the fibers within the material. As for the series I specimens, the compressive
strength of the specimens of series II also followed also a non-monotonic variation trend
with increasing fiber content. In particular, the mortar specimens incorporating 2% of
cellulose fibers (CM-II-2) presented compressive strength reductions of 30% compared to
the traditional mortar (TM-II-0). In accordance with [15], this result should be related to
the increased amount of voids and porosity resulting from the higher water content in the
mortar. It is worth mentioning that, as reported in Section 2.2, the cellulose fibers used in
the series II specimens were not used in a saturated state; therefore, it is likely that they
absorbed more water during the production process. Overall, the results reported in Table 2
highlight the significant potential of cement-based mortars incorporating cellulose fibers as
sustainable building materials. Indeed, all the eco-friendly mortars (even those made with
a higher % of cellulose fibers) not only exhibit adequate mechanical properties suitable for
secondary uses (e.g., landfill layering) but also demonstrate good potential for structural
purposes. For instance, all the specimens meet the Italian code [28] minimum requirements
of 28-day compressive strength (2.5 MPa) for load-bearing masonry applications.

Nonetheless, it is of paramount importance to perform further analyses to provide a
better understanding of the physical and chemical properties of the mortars incorporating
cellulose fibers. Indeed, this comprehension is essential for assessing their suitability as
cost-effective and sustainable solutions for structural and non-structural applications.

3.2. Compressive Response of Small-Scale Masonry Walls

The compressive stress vs. vertical strain curves of the small-scale masonry walls are
reported in Figure 8. Each specimen is labeled according to the following nomenclature:
(i) type of element (MW—masonry wall); (ii) type of mortar (TM—traditional mortar;
CM—mortar with 1% of cellulose fiber), and (iii) specimen number. Note that the compres-
sive stress was computed as the ratio between the load and the loaded area of the specimens.
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As shown in Figure 8, all the specimens presented a relatively similar compressive
behavior, regardless of the type of mortar considered. In general, the curves present an
initial linear behavior (until reaching ~50% of the compressive strength), followed by a
certain degree of non-linearity with increasing load levels. The change in the slope of the
curve can be associated with microcracks caused by the incompatible elastic characteristics
of the bricks and mortar. Once the compressive strength of the specimens was attained,
previous cracks expanded, and new vertical cracks occurred along the lateral sides of the
specimens (Figure 9).
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failure mode observed in specimen MW-TM-1).

It is worth mentioning that the post-peak behavior of the curves is not reported in
Figure 8. This is explained by the fact that for safety reasons, the instrumentation was
removed after reaching the peak load.

Tables 3 and 4 present a summary of the results obtained with reference to the fol-
lowing parameters: failure load (Pmax), compressive strength (σmax), elastic modulus (Em),
vertical strain at peak load (εv,max), and characteristic compressive strength at 5% (σmax,k).
In accordance with EN 1052-1:1998 [26], the elastic modulus of the specimens was computed
at one-third of the compressive strength (service load condition).

Table 3. Summary of results obtained in the compression tests of masonry walls made with tradi-
tional mortar.

Specimens Pmax
[kN]

σmax
[MPa]

Em
[MPa]

εv,max
[mm/mm]

σmax,k
[MPa]

TM-1 981.60 15.40 9854.49 0.0034

12.15

TM-2 1209.84 18.98 10,479.82 0.0054

TM-3 1099.92 17.25 9748.23 0.0055

TM-4 1055.28 16.55 9222.61 0.0038

TM-5 925.44 14.52 8426.44 0.0033

TM-6 917.64 14.39 8805.95 0.0035

TM-7 779.16 12.22 11,824.18 0.0020

TM-8 950.64 14.91 10,455.15 0.0030

TM-9 1088.64 17.08 9146.66 0.0029

TM-10 1072.56 16.82 9544.063 0.0040

Average 1008.07 15.81 9751.04 0.0037 -

Dev.St 121.761 1.910 981.53 0.001 -

C.o.V. 0.121 0.121 0.103 0.28 -
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Table 4. Summary of results obtained in the compression tests of masonry walls made with eco-
friendly mortar.

Specimens Pmax
[kN]

σmax
[MPa]

Em
[MPa]

εv,max
[mm/mm]

σmax,k
[MPa]

TMC-1 1113.48 17.47 8860.97 0.0048

12.91

TMC-2 1020.36 16.01 9121.02 0.0038

TMC-3 1251.00 19.62 11,234.02 0.0052

TMC-4 1344.84 21.10 11,203.07 0.0047

TMC-5 964.08 15.12 9343.20 0.0026

TMC-6 1007.88 15.81 12,409.26 0.0027

TMC-7 916.56 14.38 6913.29 0.0025

TMC-8 1117.56 17.53 11,037.57 0.0018

TMC-9 987.66 15.49 9431.084 0.0037

TMC-10 1239.48 19.44 10,670.48 0.0029

AVG 1096.28 17.20 10,022.40 0.0035 -

Dev.St 142.260 2.232 1586.35 0.001 -

C.o.V. 0.130 0.130 0.15 0.32 -

Overall, it seems that changes in the mortar’s compressive strength did not lead to
significant variation in the load-bearing capacity of the masonry walls. As expected, the
masonry made with the eco-friendly mortar presented slightly higher compressive strength
compared to the specimens prepared with the traditional mortar (less than 10%). This
result can be associated with the higher compressive strength of the former mortar type.
Therefore, it can be concluded that for the specific geometry and material considered in
this study, the influence of the cellulose fibers does not have a significant influence on
the compressive behavior of the masonry, which is mainly governed by the compressive
strength of the bricks.

The results obtained from the experimental tests were also used to assess the ability of
an analytical formula available in the literature to predict the characteristic compressive
strength of masonry, namely that provided by EN 1996-1-1:2022 [29]. In addition, the accu-
racy of the Italian code [28], which provides tabulated values to predict the characteristic
compressive strength of masonry depending on the characteristic compressive strength of
the bricks and type of mortar, was also evaluated. In accordance with EN 1996-1-1:2022 [29],
the characteristic compressive strength of the masonry can be determined using the follow-
ing equation:

σmax,k, EN = K f α
b f β

cm (1)

where K is the shape factor, which depends on the type of bricks and mortar; fb is the
normalized compressive strength of the brick (obtained by converting the average com-
pressive strength using EN 772-1:2011 [21]); fcm is the compressive strength of the mortar;
and α and β are constants. For the type of masonry studied herein, the values of K, α, and
β were set as 0.55, 0.70, and 0.30, respectively. The values estimated using the formula
given by EN 1996-1-1:2022 [29] (σmax,k,EN), as well as those provided by the Italian code
(σmax,k,IC), are listed in Table 5 together with the average (σmax,avg) and characteristic (σmax,k)
experimental values. The predictive value of the characteristic compressive strength of
the masonry wall, obtained using a relationship proposed by the author (σmax,k,prop), as
explained ahead in the text, is also reported in Table 5.
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Table 5. Experimental results vs. analytical estimates: compressive strength.

Specimens σmax,avg
[MPa]

σmax,k
[MPa]

σmax,k,EN
[MPa]

σmax,k,prop
[MPa]

σmax,k,IC
[MPa]

MW-TM 15.81 12.15 16.53
12.15 10.66

MW-CM 17.20 12.91 16.76

Overall, it can be seen that the Italian code provided conservative predictions for both
the MW-TM and MW-CM specimens, whereas the values obtained using the relationship
provided by EN 1996-1-1:2022 [29] overestimate the experimental results: the values of
σmax,k,EN were ~22% higher than the characteristic compressive strength obtained from
the experiments. Therefore, an inverse analysis was performed in this study based on
the formula given by EN 1996-1-1:2022 [29], with the objective of obtaining more accurate
estimates of the experimental characteristic compressive strength of both the MW-TM and
MW-CM masonry walls. In this context, the shape factors α and β were calibrated in order
to achieve the minimal deviation from the experimental values. As shown in Table 5, by
selecting a proper set of parameters (α = 0.65 and β = 0.24) for Equation (1), it is possible to
obtain more accurate predictions (σmax,k,prop) of the experimental results. However, given
the limited number of test data available, further experimental studies are needed to refine
the proposed model.

Concerning the elastic modulus, the masonry walls prepared using eco-friendly mor-
tars exhibited slightly higher values compared to the specimens made with traditional mor-
tars (10,022.40 MPa vs. 9751.04 MPa). The values of the elastic modulus determined in the
experiments were then compared with the predictions given by both EN 1996-1-1:2022 [29]
and the Italian code [28], which provide the following predictive equation:

Em,ana = 1000 σmax,k (2)

As shown in Table 6, the relationship given by EN 1996-1-1:2022 [29] and the Italian
code [28] clearly overestimates the values observed in the experiments: the analytical
predictions for the specimens MW-TM and MW-CM were, respectively, 1.24 and 1.28 times
higher than the experimental results.

Table 6. Experimental results vs. analytical estimates: elastic modulus.

Specimens Em
[MPa]

Em/σmax,k
[-]

Em,ana
[MPa]

MW-TM 9751.04 802.55 12,150.00

MW-CM 10,022.40 776.29 12,910.00

Finally, as for the elastic modulus and the compressive strength, the deformation
capacity of the masonry walls was relatively similar, regardless of the type of mortar
considered: the average vertical strain was 0.0037 and 0.0040 for the MW-TM and MW-CM,
respectively. It is worth mentioning that the assumptions made above refer to a limited
number of test data, and further investigations are needed to confirm the trend results
reported in this study.

4. Conclusions

The experimental investigations presented in this work provided a better understand-
ing of the mechanical behavior of a mortar mixed with paper sludge-derived cellulose
fibers. The experimental tests focused on assessing the influence of (i) varying fiber pro-
portions and (ii) different practical preparation methods. At the same time, the potential
use of this eco-friendly mortar in practical applications (small-scale masonry walls), such
as those encountered in real-world scenarios, was also evaluated. This approach was
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defined with the dual objective of promoting the development of sustainable materials
while maintaining adequate mechanical performance. Based on the results obtained, the
following main conclusions can be drawn:

• Increasing the percentage of cellulose fibers in the mortar altered the post-crack behav-
ior of the specimens. The traditional mortars (0% cellulose fibers) exhibited a sudden
load decrease in strength at the end of the test, whereas the mortars containing 1% and
2% of cellulose fibers continued to deform after reaching the peak load. This behavior
can be associated with the energy absorbed by the fibers and the capacity of the fibers
to transfer tensile stresses between the two faces of the cracks, which improves the
deformation capacity of the material.

• The cement-based mortar specimens made following an accurate preparation protocol
(CM-I-1 and CM-I-2) exhibited relatively low variations in the flexural tensile strength
compared to the traditional mortars (less than 5% of relative differences). This sug-
gests a uniform fiber dispersion in the material. However, the compressive strength
decreased by approximately 10%. This result is mainly attributed to the increased
porosity of the material.

• The cement-based mortar specimens (CM-II-1 and CM-II-2) made without rigorous
control of the preparation parameters presented a higher flexural tensile strength
(compared to traditional mortar) when the fiber content was increased from 0% to 1%;
this is mainly due to the fiber bridging effect. However, at 2% of fiber content, signifi-
cant reductions occurred, likely due to non-uniform fiber dispersion. Concerning the
compressive strength, a non-monotonic trend was observed with an increase in the
percentage of the fiber content, with the CM-II-2 specimens showing reductions of
30% compared to the TM-II-0 specimens.

• Changes in the mortar’s compressive strength did not significantly affect the load-
bearing capacity of the masonry walls. The eco-friendly mortar slightly increased
the wall’s compressive strength (<10%) compared to the traditional mortar, primarily
due to the higher compressive strength of the former. In general, the cellulose fibers
did not significantly affect the masonry’s compressive behavior, which was mainly
influenced by the brick’s compressive strength.

• The formula provided by EN 1996-1-1:2022 [29] resulted in non-accurate predictions
of the compressive strength for masonry walls prepared using traditional and eco-
friendly mortars. On the other hand, more accurate estimates were obtained when
using the values given by the Italian code [28] and the relationship proposed by the
authors. Concerning the elastic modulus predictions, both EN 1996-1-1:2022 [29] and
the Italian code [28] overestimated the experimental results, regardless of the type of
mortar used.

This study has provided valuable insights into (i) the mechanical performance of
cement-based mortar incorporating cellulose fibers and (ii) the compressive behavior of
masonry walls made using this eco-friendly material. However, several topics still need to
be investigated. Some recommendations for further research are listed below:

• Experimental investigations are needed to define optimal cellulose fiber content that
exploits both mechanical strength and durability while minimizing material costs.

• Microstructural analyses (SEM or computed tomography) should be performed to
obtain a further understanding of the “macroscopic” behavior of the mortars incorpo-
rating cellulose fibers.

• More in-depth studies should focus on the environmental impact of these eco-friendly
mortars, including life cycle assessments (LCA), with the aim of providing a better un-
derstanding of the sustainability benefits and drawbacks of these materials compared
to traditional options.

• Experimental studies about the long-term durability of eco-friendly mortars are
needed, including exposure to harsh environmental conditions and aging effects,
with the aim of providing insights into structural performance and stability over
extended service lifetimes.
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Addressing these future research directions will not only contribute to a more com-
prehensive understanding of cement-based mortars prepared using cellulose fibers but
will also help to develop standardized testing protocols and guidelines, which will help
promote the widespread adoption of these materials as a sustainable and high-performance
solution in the evolving construction industry.
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