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Abstract: Terpolymers of acrylonitrile with acrylic acid and alkyl acrylates, including methyl-, butyl-,
2-ethylhexyl-, and lauryl acrylates, were synthesized using the reversible addition–fragmentation
chain transfer method. In this study, the focus was on the investigation of the impact of different
monomer addition methods (continuous and batch) on both the rheological behavior of the spinning
solutions and the mechanical properties of the resulting fibers. Our findings revealed that the
method of monomer addition, leading either to non-uniform copolymers or to a uniform distribution,
significantly influences the rheological properties of the concentrated solutions, surpassing the
influence of the alkyl-acrylate nature alone. To determine the optimal spinning regime, we examined
the morphology and mechanical properties at different stages of fiber spinning, considering spin-
bond and orientation drawings. The fiber properties were found to be influenced by both the
nature and introducing method of the alkyl-acrylate comonomer. Remarkably, the copolymer with
methyl acrylate demonstrates the maximum drawing ratios and fiber tensile strength, reaching 1 GPa.
Moreover, we discovered that continuous monomer addition allows for reaching the higher drawing
ratios and superior fiber strength compared to the batch method.

Keywords: co-polyacrylonitrile; RAFT process; comonomer sequence; alkyl acrylate; mechanotropic
spinning; fibers; mechanical properties

1. Introduction

Polyacrylonitrile (PAN) is widely used as a polymer for producing high-strength
carbon fibers [1–3]. Although the process of PAN fiber carbonization has been studied
for a long time [4–7], the optimal copolymer composition required for producing high-
quality precursor fibers and high-strength carbon fibers from them remains uncertain.
This uncertainty is derived from the need to solve a set of complex problems, starting
from copolymer synthesis and polymer processing into precursor fibers to finishing of
thermal oxidative stabilization and carbonization/graphitization [8,9]. The carbon fiber
properties depend on the conditions, regimes, and parameters chosen to be applied at each
stage [2,10].

Acrylonitrile homopolymer is typically unsuitable for producing textile or precursor
fibers due to the solution gelation because of the strong interaction of nitrile groups, making
it impossible to achieve a high degree of orientation that is critical for producing high-
quality fibers [11,12]. Additionally, cyclization in homopolymers on the thermal oxidation
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stage occurs within a narrow temperature range with a high exo-effect, making it impossible
to reach a uniform distribution of poly-conjugated bonds [13–15].

To solve these challenges, precursor fibers are typically prepared from double or
ternary copolymers, depending on the desired properties of the final fiber. To accelerate
the formation of PAN poly-conjugated bonds, an acid comonomer is added, typically
itaconic acid [16,17] or acrylic acid (AA) [7,18]. Alkyl acrylate comonomers (such as methyl
acrylate (MA)) are often used as plasticizers [19,20]. Comparative studies on the effect of
comonomer additives on the rheological behavior and thermal properties of the polymer
indicate that the chosen strategy simplifies the processing of the polymer into fibers and
improves their thermal and mechanical properties [21–23], confirming its effectiveness.

Reversible addition–fragmentation chain transfer (RAFT) polymerization is a relatively
new method for polymer synthesis [24,25]. It enables working with a broad spectrum of
comonomers, controlling the molecular weight distribution and distribution of comonomers
along the chain, which can significantly influence the properties of the resulting polymers.
These parameters are essential for the fiber spinning and the thermal behavior of the
polymer during thermal cyclization, which are crucial for obtaining high-quality textile
and precursor fibers [26–28].

The influence of the synthesis method and the sequence of adding AA to the reaction
syrup of binary copolymers of acrylonitrile (AN) with AA has been studied [29–31]. In the
case of radical polymerization, the rheological properties of solutions show little change de-
pending on the method of loading the components. However, in the case of RAFT synthesis,
the viscoelastic characteristics of both dilute and concentrated solutions are dependent on
features of the synthesis procedure. Additionally, solutions of polymers synthesized by
RAFT synthesis, with similar molecular weight and concentration, have lower viscosity
compared to polymer solutions synthesized by classical radical polymerization.

In [32], the role of the MA fragment in the polymer was analyzed by studying the rhe-
ological properties of high-molecular-weight binary and ternary copolymers with similar
molecular weights. It was found that in the concentration range above 5%, terpolymers’
solutions exhibited a relative decrease in the elastic modulus, and a decrease in the pseudo-
plasticity index due to changes in concentration and temperature was more significant in
the terpolymer compared to the copolymer, which suggests that MA acts as a component
that reduces intermolecular interactions.

The influence of the synthesis method on solution properties of ternary copolymers
of AN, AA, and alkyl acrylates (AAc), obtained by either RAFT or radical polymerization,
was studied [7]. There was no solution rheology difference at high concentrations but
significant differences in the behavior of dilute solutions was observed due to changes in
the interaction of the polymer with the solvent. Continuing this work, a series of ternary
copolymers based on AN, AA, MA was synthesized by the RAFT method, varying the
sequence of component loading. Thermal behavior analysis showed that the cyclization
occurs over a wider temperature range with the increasing length of the alkyl substituent
in alkyl acrylate, with the maximum observed for copolymers containing lauryl acrylate
fragments [33]. The significance of the sequence of component addition was studied
in a pair of terpolymers, also based on AN, AAc, and methyl acrylate synthesized by
RAFT, revealing that a uniform distribution of comonomers along the chain promotes
better polymer dissolution, yielding less viscoelastic solutions at concentrated region. The
nonuniform copolymer demonstrated the best ability for orientational and plasticizing
stretching that led to spinning much stronger fibers [34].

The goal of this study was the investigation of the influence of the addition of a
broad range of ternary copolymers of PAN with various alkyl acrylates, including methyl-,
butyl-, ethylhexyl-, and lauryl acrylate, on the solutions rheology in a novel mechanotropic
fiber-spinning process that does not use coagulation baths and PAN fiber properties. The
synthesis was carried out in two ways, i.e., by producing statistically homogeneous copoly-
mers and copolymers of predominantly nonuniform structure, as described in [33], and
their synthetic conditions and properties were reported. In the first stage, we analyzed the
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effect of the alkyl substituent on the rheological properties of dilute solutions, which is
essential for understanding the interaction of the polymer with a solvent and concentrated
systems used for fibers spinning. In the second stage, we obtained a series of fibers by
mechanotropic spinning and studied their mechanical properties. The results obtained
bring us closer to understanding the role of the alkyl substituent in nature and composi-
tional homogeneity of PAN in the production of high-strength fibers, including precursors
for carbon fiber.

2. Materials and Methods
2.1. Materials

Ternary copolymers were synthesized using the RAFT method [35]. The series of
copolymers were obtained with a molar monomer ratio of AN:AA:AAc of 93:7:3.5 and
98:2:10. All monomers were produced by Acros Organics (Fisher Scientific GmbH, Schwerte,
Germany) except for LA (Sigma Aldrich, Merck Group, St. Louis, MO, USA). In one case, AA
and AAc were continuously introduced into the reaction mixture containing AN, initiator
(Sigma Aldrich, Merck Group, St. Louis, MO, USA), and RAFT agent (Sigma Aldrich, Merck
Group, St. Louis, MO, USA), resulting in a polymer with a nonuniform structure (Samples
MAc, BAc, LAc). In the second case, all monomers were added at the same time, resulting in
a copolymer with a uniform distribution of monomer units along the chain (samples MAb1,
MAb2, BAb1, BAb2, LAb1, and EHAb1). The synthesis conditions are described in detail
in [33], and the polymer characteristics are presented in Table 1.

Table 1. Copolymer characteristics, where c = continuous comonomer addition method, b = batch
comonomer addition method; 1 = high MW, 2 = low MW.

Sample Ð Mn × 10−3 Alkyl Acrylate Comonomer Addition Method fAH, mol.% fAH, mol.%

MAc 1.5 50
Methyl-

Continuous 88.4 72.2
MAb1 1.4 76 Batch 89.8 91.3
MAb2 1.7 53 Batch 88.4 89.5

BAc 1.6 85
Butyl-

Continuous 88.4 72.4
BAb1 1.4 95 Batch 89.8 92.3
BAb2 1.7 61 Batch 88.4 85.5

LAc 1.7 45 Lauryl- Continuous 88.4 84.2
LAb1 1.7 101 Batch 89.8 91.2

EHAb1 1.4 75 Ethylhexyl- Batch 89.8 92.6

2.2. Methods
2.2.1. Preparation of Solutions

Polyacrylonitrile powder and dimethyl sulfoxide (DMSO) of 99.5% from Ekos-1
(Moscow, Russia) were mixed in glass vials with hermetically sealed lids. Different dissolu-
tion methods were employed based on the polymer concentration:

• For solutions with a polymer concentration of 1–5 wt%, the mixture was stirred for
24 h at 50 ◦C using a magnetic stirrer. For concentrations below 1 wt%, the solution
was sequentially diluted inside a Ubbelohde capillary viscometer at 25 ◦C to determine
the intrinsic viscosity.

• Highly viscous solutions with a polymer content greater than 5 wt% were prepared
using a paddle mixer with a J-shaped rotor. Mixing was conducted at 60 rpm for 24 h
at 70 ◦C.

• High-viscosity spinning solutions with concentrations above 20 wt% were prepared
using a rotor speed of 10 rpm for 72 h at 70 ◦C.
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2.2.2. Rheology

The rheological behavior of the solutions was studied using shear and oscillatory
deformation modes on a HAAKE MARS 60 rheometer (Thermo Fisher Scientific, Karlsruhe,
Germany) at temperatures ranging from 20 to 70 ◦C, with a cone-plate system having
an angle of 1◦ between the cone and the plate. A 60 mm diameter rotor was used for
solutions with concentrations less than 10%, while a 25 mm diameter rotor was used
for concentrations greater than 10%. The flow curves were obtained in the shear rate
range of 10−1–103 s−1, and the frequency dependences of the storage and loss moduli
were obtained in the linear viscoelastic region at angular frequencies ranging from 0.6 to
628 rad/s. The intrinsic viscosities of the solutions were determined at 25 ◦C using an
Ubbelohde viscometer following to [36].

2.2.3. Fiber Spinning

The fibers were spun by the mechanotropic method [37] on a laboratory spinning line,
where the relative humidity and the temperature were set at 20 wt% and 25 ◦C, respectively.
The method involves stretching a highly viscous solution jet in the air with high elongation
ratios, leading to the onset of phase separation, and the solvent is released from the center
of the jet to the surface of the spinning fiber. In the case of the humid air, it is possible
that the superposition of two mechanisms causes polymer separation from solution jets:
under diffusion of the air moisture in, and due to strong extension leading to the phase
separation and selection of the solvent out [37–39]. To feed the solution, a Malvern Rosand
RH10 capillary rheometer was used, while a monofilament spinneret with a hole diameter
of 500 µm was used to control the solution flow rate, set at 0.08 m/min. The spun fiber
then has two stages of orientation stretching: in air, followed by washing with water to
remove any residual solvent on the fiber surface, drying at 80 ◦C, and finally plasticized
as-spun fibers—the thermal drawing at 120 ◦C. The maximum possible draw ratio for
each copolymer was achieved at each stage by controlling a speed that allowed for stable
spinning without breakage, resulting in the most oriented fiber. Figure 1 displays the
scheme of the spinning line.

Fibers 2023, 11, x FOR PEER REVIEW 4 of 17 
 

• High-viscosity spinning solutions with concentrations above 20 wt% were prepared 
using a rotor speed of 10 rpm for 72 h at 70 °C. 

2.2.2. Rheology 
The rheological behavior of the solutions was studied using shear and oscillatory de-

formation modes on a HAAKE MARS 60 rheometer (Thermo Fisher Scientific, Karlsruhe, 
Germany) at temperatures ranging from 20 to 70 °C, with a cone-plate system having an 
angle of 1° between the cone and the plate. A 60 mm diameter rotor was used for solutions 
with concentrations less than 10%, while a 25 mm diameter rotor was used for concentra-
tions greater than 10%. The flow curves were obtained in the shear rate range of 10–1–103 
s–1, and the frequency dependences of the storage and loss moduli were obtained in the 
linear viscoelastic region at angular frequencies ranging from 0.6 to 628 rad/s. The intrinsic 
viscosities of the solutions were determined at 25 °C using an Ubbelohde viscometer fol-
lowing to [36]. 

2.2.3. Fiber Spinning 
The fibers were spun by the mechanotropic method [37] on a laboratory spinning 

line, where the relative humidity and the temperature were set at 20 wt% and 25 °C, re-
spectively. The method involves stretching a highly viscous solution jet in the air with 
high elongation ratios, leading to the onset of phase separation, and the solvent is released 
from the center of the jet to the surface of the spinning fiber. In the case of the humid air, 
it is possible that the superposition of two mechanisms causes polymer separation from 
solution jets: under diffusion of the air moisture in, and due to strong extension leading 
to the phase separation and selection of the solvent out [37–39]. To feed the solution, a 
Malvern Rosand RH10 capillary rheometer was used, while a monofilament spinneret 
with a hole diameter of 500 µm was used to control the solution flow rate, set at 0.08 
m/min. The spun fiber then has two stages of orientation stretching: in air, followed by 
washing with water to remove any residual solvent on the fiber surface, drying at 80 °C, 
and finally plasticized as-spun fibers—the thermal drawing at 120 °C. The maximum pos-
sible draw ratio for each copolymer was achieved at each stage by controlling a speed that 
allowed for stable spinning without breakage, resulting in the most oriented fiber. Figure 
1 displays the scheme of the spinning line. 

 
Figure 1. Scheme of the mechanotropic spinning line. V0 is the linear flowing speed from the die, 
and V1−V6 are the winding speeds. 

Figure 1. Scheme of the mechanotropic spinning line. V0 is the linear flowing speed from the die,
and V1–V6 are the winding speeds.
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2.2.4. Fiber Characterization

The diameter of each fiber was averaged from at least ten measurements along different
locations on the fiber. To perform these measurements, the Biomed 6PO optical microscope
coupled with a Touptek XFCAM1080PHD camera with a magnification of 60×, which has
an accuracy of ±0.3 µm, was used. The inhomogeneity was characterized by the difference
between the maximum and minimum values of the fiber diameter.

The mechanical properties of the fibers were measured using an Instron 1122 tensile
machine, with a basic filament length of 10 mm. All measurements were performed at 23 ± 2 ◦C.
The extension speed was 10 mm/min. The reported results are averaged for at least 10 tests.

3. Results and Discussion
3.1. Solutions’ Rheology

First of all, the behavior of dilute solutions of different copolymers in DMSO was exam-
ined. The intrinsic viscosity values were determined, and the Huggins constants [40] were
calculated using the equation ηsp/c = [η] + KH[η]2c. Additionally, the Martin constants [41]
were calculated using the equation ln(ηsp/c) = ln([η]) + KM[η]c. Figure 2 illustrates the
relationship in Huggins coordinates.
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In the case of flexible-chain polymers, the value of KH increases as the solvent quality
gets worse, indicating that polymer–polymer interactions become more favorable than
polymer–solvent interactions [42,43]. It was observed that polymers with high intrinsic
viscosities could be obtained for all samples with the simultaneous addition of components
under the same synthesis conditions, irrespective of the type of alkyl acrylate used. Such
polymers exhibit slightly better solvent affinity, which is reflected in the lower values of
Huggins and Martin constants compared with continuous reagent loading. The properties
of dilute solutions of these polymers are summarized in Table 2.
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Table 2. Intrinsic viscosity values, KH, and KM parameters of the copolymers.

Sample [η], dL/g KH KM

MAc 1.8 0.4 0.3
MAb1 1.9 0.3 0.2
MAb2 2.5 0.3 0.2
BAc 2 0.2 0.2

BAb1 2.4 0.3 0.2
BAb2 2.3 0.3 0.2
LAc 1.8 0.4 0.3

LAb1 2.5 0.3 0.2
EHAb1 1.9 0.3 0.2

By considering these data, a generalized relationship between reduced coordinates
of Martin equation viscosity and the volume occupied by macromolecule concerning
polymer–solvent interaction was derived (Figure 3). This dependence confirms that the
flow behavior of dilute solutions is mainly influenced by the intensity of the interaction
between the polymer and solvent and the volume of the macromolecular coils present in
the solution. These results are consistent with those reported previously for copolymers
containing acryl amide [44].
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As the concentration of the solutions increases in the region of concentrated solutions,
which is more desirable for stable spinning and minimizing solvent usage, the behavior
of solutions containing different copolymers begins to change. Figure 4 displays the flow
curves of a series of 30 wt% solutions at 70 ◦C.
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Figure 4. Flow curve of 30 wt% PAN terpolymers’ solutions at 70 ◦C.

The non-Newtonian flow behavior of solutions of lauryl acrylate copolymers is par-
ticularly evident in copolymers with higher molecular weights and predominantly has
nonuniform distribution of comonomers along the chain (LAc). At high concentrations,
the values of the highest Newtonian viscosity of solutions vary significantly for different
solutions at the same concentration of polymers, and the expected correlation between
viscosity and intrinsic viscosity of solutions is not observed. These differences indicate
that, in addition to the molecular weight of the polymer, intermolecular polymer–polymer
interactions, which increase in concentrated solutions, are the decisive factor.

Viscoelastic properties of the solutions were analyzed using the rotational rheometry
method under linear viscoelasticity conditions (at 1% of deformation). Figure 5 presents
the results obtained for 30% solutions at 70 ◦C.

The structuring of the samples is primarily determined by the density of the entangle-
ment network in the solution, which depends on the polymer concentration and the volume
of macromolecules in a solution, proportional to the intrinsic viscosity. A strong correlation
between viscoelastic properties and steady-state shear rheology data was observed in the
studied series. Samples with a predominantly nonuniform distribution of comonomers
exhibit higher values of the viscosity and loss modulus with a lower slope angle of the
frequency dependences in the terminal zone.

The copolymers with lauryl acrylate exhibit the highest degree of structuring in the
low-frequency region. In a series of nonuniform copolymers, the behavior of a sample
with an ethylhexyl group obeys the Maxwell model [45]. Among copolymers with uniform
distribution, the copolymer with methyl acrylate, which has the lowest molecular weight,
has the least deviation from the Maxwell dependence in the low-frequency range.
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3.2. Fiber Spinning

The effect of spinneret drawing (drawing between the spinneret and the first winding
roller), as well as subsequent drawing stages on the fiber mechanical properties, has been
investigated using as an example of spinning of MAb1 solution.

3.2.1. Spinneret Drawing Influence

The data on the influence of spinneret drawing on the mechanical properties of the
fiber and its diameter are presented in Figure 6.

Increasing the draw ratio at this stage primarily affects the fiber diameter. This is
because the solution jet exiting the die is a viscoelastic liquid and undergoes viscous
deformation until the moment of phase separation onset, which is caused by the combined
action of high uniaxial deformation and air moisture. The mechanical properties of the
fiber, particularly the elongation at break, change non-linearly as the spinneret drawing
rate increases. In the relatively low drawing ratio regime (up to 40 for the solution jet
under study), large-diameter fibers are obtained with extremely low strength and very
low elongation at break. These properties are possible to explain by prevailing of filament
coagulation by air moisture at weak extension. The resulting opaque fiber (Figure 7)
contains interfacial borders and, presumably, defects caused by fast diffusions of the water
vapor, similar to those observed during wet fiber spinning [46,47], or membrane obtained
in a humid environment [48–50].

An increase in the drawing ratio of the solution jet beyond 40 results causes a shift in
the mechanism of phase separation from coagulation to strain-induced. In this case, the
phase separation occurs throughout the volume of the jet with the achieved separation of
polymer phase being in the center, while that achieved by the solvent phase being squeezed
in the outward direction, ultimately resulting in the formation of a homogeneous and
dense fiber [51,52]. As a result, the elongation at the break of the fiber increases to ~100%,
the strength increases by 4 times, and the fiber diameter decrease to ~20 µm, reaching an
almost constant value that weakly depends on a subsequent increase in the drawing ratio.
This behavior is explained by the fact that the solid fiber formed after phase separation
behaves as a single unit during uniaxial tension, becoming resistant to further stretching.
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Based on the experiment, the spin draw ratio was selected for all samples to achieve
a fiber diameter of approximately 30 µm, which is sufficient for subsequent orientational
drawing to obtain a final fiber of 10–15 µm. Moreover, the phase separation in the stretch-
able solution jet mainly occurs due to the high deformation mechanism.
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3.2.2. Influence of Orientation Drawing

The structure and properties of the PAN fibers obtained by wet and dry–wet spinning
are greatly affected by the subsequent orientation and plasticization stages of
stretching [53,54]. The subsequent stages of fiber spinning by mechanotropic method
were performed under conditions of maximum stretching at each stage, preserving a con-
tinuous process without breaking the spinning fiber. The evolution of fiber diameter and its
mechanical properties at various stretching stages were investigated using as an example a
fiber from MAb1 copolymer prepared at a spinneret draw ratio of 40.

Figure 8 shows images of the fibers obtained.
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Figure 8. Images of the obtained fibers from different stages of spinning at V1 = 4.2, V2 = 5.7,
V5 = 12.5, V6 = 17.5 m/min.
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The diameter of the fiber decreases by ~2 times after passing through all stages of
drawing, resulting in a transparent fiber without pronounced fibrillation or defects. Figure 9
shows the mechanical properties at different stages of the spinning process.
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Figure 9. Values of diameter (a), strength (b), elongation at break (c), and modulus of elasticity
(d) for MAb1 fibers after subsequent stages of drawing: V1, V2, V5, and V6.

The strength and modulus of elasticity increase by approximately 3.5 times as the fiber
is drawn. The main stretching and strengthening processes occur at the initial stages of
orientation hood (V1–V5), followed by additional stretching at the thermal hood stage (V6)
with a corresponding decrease in elongation at break from 123% to 40%, and then from 40%
to 30%, respectively. The developed process conditions allowed for continuous spinning
without any breaks during the experiment (more than 5 h of continuous spinning from a
one-hole spinneret). An example of a spool with spun fibers is shown in Figure 10.
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Figure 10. Spool with MAb1 spun fiber.

Furthermore, fibers were obtained from all other copolymer solutions by using the
maximum possible drawing ratios at each stage. The detailed conditions for their formation
are provided in Table 3.

Table 3. Solutions’ spinning parameter.

Title 1
Linear Flow (V0) and Winding (V1–V6) Speed, m/min Draw Ratio

V0 V1 V2 V3 V4, V5 V6 V6/V1 V6/V0

MAc

0.08

3.8 6.1 10 10 20 5.3 250.0
MAb1 4.2 5.7 10.4 12.5 17.5 4.2 218.8
BAc 4.4 10.4 12.2 12.3 21.9 5.0 273.8

BAb1 2.2 10.1 11.9 13 21.2 9.6 264.4
LAc 2.2 6.8 7.1 7.1 16.3 7.4 203.8

LAb1 2.2 10 12.5 12.9 17.3 7.9 216.3

The variation of process parameters is due to differences in the behavior of the jet
during stretching under conditions of spinneret drawing and subsequent orientation and
thermal drawings. It should be noted that for all systems, the highest draw ratio is achieved
in the first stages of orientation drawing (V2 and V3), and the resulting fiber stretches well
when heated above the glass transition temperature of PAN during the thermal drawing
stage, allowing for application of double stretching ratio of the fiber. The comparative
mechanical properties of the resulting fibers, prepared at various modes of component
loading at synthesis, are shown in Figure 11.
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Figure 11. Strength (a), modulus of elasticity (b), and elongation at break (c) for fibers obtained from
polymers synthesized by the continuous and one-time introduction of monomers modes.

Solutions with a more uniform comonomers’ distribution despite the most severe
orientation and plasticizing stretching, resulting in lower mechanical properties. Maybe, the
additional thermal stretching steps are necessary to produce high-strength fibers. However,
as per used processing stages, the best mechanical properties for all copolymers were
observed in nonuniform copolymers synthesized by continuously introducing comonomers.
Among the series, copolymers containing methyl acrylate achieved the highest residual
elongation at break values. Fibers spun from copolymers with methyl acrylate have the
maximum strength (over 1000 MPa) and elastic modulus of 10 GPa at a relative elongation
at a break of 15%.
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4. Conclusions

The order of monomers introduction to the reaction mixture during copolymer syn-
thesis directly affects their rheological properties in the concentrated solution region where
intermolecular interactions become significant. In this case, the nature of unit distribution
contributes significantly to the properties of solutions and spun fibers more than the typical
nature of alkyl acrylate used. Deviations from this behavior were observed only in the LA
series, where the presence of lauryl acrylate caused a change in the flow of concentrated
solutions, presumably, due to its poor solubility stipulated by the long aliphatic substituents.
Solution jets of copolymers with a uniform distribution of alkyl acrylate units along the
chain exhibit the poorest stretching ability in the air. The same concerns fibers stretching at
temperatures below the PAN glass transition, as shown for the entire series studied. The
best mechanical properties are achieved by adding methyl acrylate, which produces the
most durable and high-modulus fibers in the case of a nonuniform copolymer.
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