
Citation: Al-Abdaly, N.M.; Hussein,

M.J.; Imran, H.; Henedy, S.N.;

Bernardo, L.F.A.; Al-Khafaji, Z. Shear

Strength Prediction of

Steel-Fiber-Reinforced Concrete

Beams Using the M5P Model. Fibers

2023, 11, 37. https://doi.org/

10.3390/fib11050037

Academic Editors: Catalin R. Picu

and Lucian Lucia

Received: 27 March 2023

Revised: 20 April 2023

Accepted: 25 April 2023

Published: 27 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fibers

Article

Shear Strength Prediction of Steel-Fiber-Reinforced Concrete
Beams Using the M5P Model
Nadia Moneem Al-Abdaly 1, Mahdi J. Hussein 2 , Hamza Imran 3 , Sadiq N. Henedy 4,
Luís Filipe Almeida Bernardo 5,* and Zainab Al-Khafaji 6

1 Department of Civil Engineering, Najaf Technical Institute, Al-Furat Al-Awsat Technical University,
Najaf Munazira Str., Najaf 54003, Iraq; inj.nad@atu.edu.iq

2 Construction and Building Engineering Technologies Department, Najaf Engineering Technical College,
Al-Furat Al-Awsat Technical University, Najaf Munazira Str., Najaf 54003, Iraq; mahdi.jasim.cnj@atu.edu.iq

3 Department of Environmental Science, College of Energy and Environmental Science, Alkarkh University of
Science, Baghdad 10081, Iraq; hamza.ali1990@kus.edu.iq

4 Department of Civil Engineering, Mazaya University College, Nasiriya City 64001, Iraq;
sadiq_naama@yahoo.com

5 Department of Civil Engineering and Architecture, University of Beira Interior, 6201-001 Covilhã, Portugal
6 Building and Construction Techniques Engineering Department, Al-Mustaqbal University College,

Hillah 51001, Iraq; zainabal-khafaji@uomus.edu.iq
* Correspondence: lfb@ubi.pt

Abstract: This article presents a mathematical model developed using the M5P tree to predict
the shear strength of steel-fiber-reinforced concrete (SFRC) for slender beams using soft computing
techniques. This method is becoming increasingly popular for addressing complex technical problems.
Other approaches, such as semi-empirical equations, can show known inaccuracies, and some soft
computing methods may not produce predictive equations. The model was trained and tested using
332 samples from an experimental database found in the previous literature, and it takes into account
independent variables such as the effective depth d, beam width bw, longitudinal reinforcement ratio
ρ, concrete compressive strength fc, shear span to effective depth ratio a/d, and steel fiber factor Fsf.
The predictive performance of the proposed M5P-based model was also compared with the one of
existing models proposed in the previous literature. The evaluation revealed that the M5P-based
model provided a more consistent and accurate prediction of the actual strength compared to the
existing models, achieving an R2 value of 0.969 and an RMSE value of 37.307 for the testing dataset. It
was found to be a reliable and also straightforward model. The proposed model is likely to be highly
helpful in assessing the shear capacity of SFRC beams during the pre-planning and pre-design stages
and could also be useful to help for future revisions of design standards.

Keywords: machine learning; steel fiber reinforced concrete (SFRC); slender beams; shear strength; MP5

1. Introduction

Shear failure, a critical type of failure in structural concrete beams, occurs when
the applied load exceeds the shear capacity, leading to diagonal cracks and potential
catastrophic failure [1–4]. Shear failure is of particular concern due to its sudden and brittle
nature, posing significant safety hazards, unlike the more gradual flexural failure [5].

The design of concrete beams to resist shear failure involves calculating the shear
capacity, which depends on factors such as the size and shape of the beam, concrete
compressive strength, and reinforcing steel. Design codes and standards provide guidelines
for calculating the shear capacity, taking these factors into account [6,7].

The design of concrete beams to resist shear failure can be challenging, especially for
beams with complex geometries or unusual loading conditions. However, advances in
concrete construction [8] and computational tools have led to the development of new types
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of reinforcement and analytical techniques that can enhance the shear capacity of beams
and improve their performance [9–13]. One of those reinforcing materials is steel fibers.

The addition of steel fibers to concrete can significantly improve its resistance to shear
failure. According to several sources [14–17], the inclusion of fibers in concrete can greatly
enhance its behavior after cracking and modify its tensile strength. The addition of steel
fibers has been found to significantly affect various properties of concrete members, such
as resistance to deformation and cracking, as well as ultimate flexural strength, ductility,
toughness, and shear capacity [18–23]. In order to enhance the shear strength of reinforced
concrete (RC) elements, fibers are sometimes used to substitute partially transverse steel
reinforcement (such as vertical stirrups). High-strength concrete is a type of concrete that is
commonly used in high-rise buildings because of its ability to reduce section dimensions
and dead load. However, it is also known to have a brittle behavior, which can give rise to
structural issues. Fortunately, using steel fibers in high-strength concrete can improve its
mechanical properties and ductility [24]. This means that the concrete will be less prone to
cracking and breaking under stress and will be more flexible and able to deform without
failing. By using steel fibers in high-strength concrete, engineers can design structures that
are both strong and durable, without sacrificing safety or stability requirements.

The addition of steel fibers to concrete can make the prediction of its shear strength
more challenging due to several factors. One of the primary reasons is the complex and
nonlinear behavior of the material with the addition of fibers. Two types of machine
learning models (ML) were used in predicting the shear strength of steel fiber reinforced
concrete (SFRC) beams. These are called black-box [25–31] and white-box [32–36] ML
models. Black-box ML models such as the neural network, random forest, and support
vector machine are often highly accurate in making predictions, which is their primary
benefit. Despite this, these models are sometimes referred to as “black box” models because
they cannot provide a specific mathematical solution to describe how the shear capacity
and input parameters are functionally related. On the other side, various evolutionary algo-
rithms have an advantage over “black box” models because they can express the connection
between inputs and outputs through explicit formulas. One example of those algorithms
is gene expression programming (GEP). GEP is an evolutionary algorithm optimizing
functions and coefficients, ideal for uncovering nonlinear system relationships. With GEP,
a symbolic model is produced that can be easily comprehended by humans, allowing
users to comprehend the solution from the algorithm. This capability for interpretability
is especially beneficial in scenarios where human input is critical for decision-making.
Evolutionary algorithms have been used by a number of researchers to predict the shear
capacity of SFRC beams [37–41].

Although the studies mentioned earlier reported good levels of accuracy, it is still
recommended to create novel models and conduct statistical analyses to ascertain the
significance of any observed variations in performance and accuracy. The main objective
of this research is to develop an accurate model for predicting the shear strength of SFRC
slender beams using the M5P tree algorithm. The M5P tree algorithm is a machine learning
technique that combines the advantages of decision trees and linear regression models,
offering high accuracy and interpretability [42–46]. It builds a decision tree, where each
leaf node corresponds to a linear regression model fitted to the data in that node. The
algorithm has been widely used in various applications due to its effectiveness in handling
nonlinear relationships and ease of understanding the model’s decision-making process.
The proposed model will provide an efficient and reliable tool for the design and assessment
of SFRC beams, which have been widely used in various civil engineering applications due
to their high strength and ductility properties.

While the M5P model itself is not an original proposal, the contribution of this study
lies in its application to the prediction of the shear strength for SFRC beams, which has
not been previously explored in the literature. In this research, the aim is to achieve the
following objectives: establish a comprehensive database for the shear strength of SFRC
slender beams by collecting and analyzing data from experimental studies, develop an
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innovative and interpretable model using the M5P tree algorithm to predict the shear
strength of SFRC slender beams with superior performance compared to existing models,
and conduct a safety analysis using the Collins scale to assess the safety performance of the
proposed model. By developing a more accurate and reliable prediction tool, this research
can contribute to the design and optimization of SFRC beams, ensuring that the desired
level of shear strength is achieved while optimizing resource utilization and improving
safety during the design and construction of SFRC structures.

2. Research Methodology

This section provides a detailed description of the methodological strategy utilized to
achieve the goals and objectives of this research. The approach includes information about
the input parameters, the methodology for gathering data, and the specific actions taken to
develop the M5P-based prediction model and to analyze its performance.

2.1. Selection of the Input Parameters

According to previous studies [47–50] on SFRC beams, the factors that have a signifi-
cant influence on their shear capacity include the effective depth d and the width bw of the
cross-section of the beam, the longitudinal reinforcement ratio ρ, the concrete compressive
strength fc, the shear span to the effective depth ratio a/d, and the steel fiber factor Fsf. The
individual impact for some of the parameters is discussed in detail below.

2.1.1. Shear Span to Effective Depth Ratio (a/d)

The shear strength of SFRC beams is significantly affected by the shear span-to-
effective depth ratio (a/d). As reported by Narayanan and Darwish [51], an exponential
relationship exists between the a/d ratio and the shear strength, with strength decreasing
as the ratio increases. This is attributed to the arch action effect, which redistributes
compressive force within the beam and balances stress distribution between loading points
and supports. The effect contributes to increasing the shear resistance and becomes more
pronounced with lower a/d ratios, leading to a higher overall shear strength in beams.

2.1.2. Longitudinal Reinforcement Ratio (ρ)

The longitudinal reinforcement has a favorable impact on the shear strength of SFRC
beams. However, the positive effect decreases as the reinforcement ratio increases above
3.6%. This was observed by Swami and Bahia [52]. In cases where the reinforcement ratio
is lower, the shear strength experiences a higher increase due to the contribution of the
dowel action [53].

2.1.3. Concrete Compressive Strength (fc)

The shear strength of SFRC beams is also highly influenced by the concrete compres-
sive strength (fc). The shear strength exhibits a linear growth pattern with an increase in
fc. However, some studies have presented contradictory results. It was demonstrated by
Khuntia et al. [54] that when fc rises, the shear strength of SFRC beams grows exponentially.
This trend is particularly noticeable in high-strength concrete beams, where a robust bond
between the concrete matrix and steel fibers exists [55].

2.1.4. Fiber Factor (Fsf)

The shear strength of SFRC beams is also influenced by the fiber factor (Fsf), which is a
combination of the aspect ratio (lf/Df), where lf and Df represent the length and diameter
of the fiber, respectively, and the fiber volume fraction (Vf) [41]. The fiber factor can be
calculated according to the following equation:

Fs f =
Vf L f d f

D f
(1)
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In Narayanan and Darwish’s study from 1987 [51], d f represents the shape factor
or bond factor, with 1.0 for indented fibers, 0.75 for crimped fibers, and 0.5 assigned for
round fibers.

2.2. Data Collection and Pre-Processing

To investigate the impact of the input variables on the mechanical behavior and shear
failure mode, the researchers conducted experimental investigations on the shear behavior
of SFRCB. Study [49] compiled a comprehensive database of 488 trials on SFRC beams
without stirrups. After sifting through the original collection of 488 experiments, a subset
of 332 experimental tests were selected for this study after filtering out beams with a
shear-span to effective depth ratio (a/d) less than 2.5, which are considered non-slender
beams, and beams with a shear-flexure mode of failure. The database that resulted from
the 332 experiments was used to develop models. The evaluation database incorporates
slender beams with rectangular and flanges cross-sections. Figure 1 (adapted from [26])
presents the distribution of the key parameters within the referred database.
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The results from Figure 1 show that most of the values for the concrete compressive
strength found in the database fall within the normal strength range, with some outliers
for high- and ultra-high-strength concrete. Most of the specimens from the dataset have
significant amounts of longitudinal steel, which is typical in shear experiments. The
database is also concentrated in the range of small effective depths. The shear span to
depth ratio is uniformly distributed, with a/d = 3.5 being the most commonly used. Finally,
the histogram of the fiber factor Fsf reflects practical considerations and the workability of
SFRC. The database used for experimental evaluation was split into two parts, a training
set and a testing set. The purpose of this division was to develop and apply ML algorithms.
The testing set was used to assess the performance of the predictive model, while the
training set was used to construct M5P models. Care was taken to ensure that the input
variables for both sets were statistically consistent. Of the total 332 tests in the evaluation
database, 235 (about 70%) were used for training and the remaining 97 (about 30%) were
used for testing the model. The input and output parameters for both sets can be found in
Table 1.

Table 1. Summary of the statistical attributes for the input parameters gathered from the available
experimental datasets.

Data Category Statistics bw (mm) * d (mm) * ρ * a/d * fc (MPa) * Fst * Vu (kN) *

Training data Standard deviation 64.104 176.606 0.010 0.639 25.993 0.336 154.425
Mean 157.429 283.045 0.026 3.367 49.390 0.552 152.166

Median 150.000 251.000 0.027 3.440 41.000 0.503 110.000
Maximum 610.000 1118.000 0.057 6.000 215.000 2.865 1081.000
Minimum 55.000 85.250 0.004 2.500 9.770 0.102 13.000

Testing data Standard deviation 77.563 181.879 0.008 0.638 26.216 0.322 199.085
Mean 161.291 284.693 0.024 3.338 48.005 0.513 157.588

Median 150.000 251.000 0.024 3.400 40.210 0.450 108.500
Maximum 600.000 920.000 0.048 6.000 215.000 2.000 1481.000
Minimum 55.000 85.250 0.010 2.500 19.600 0.102 16.000

* bw = beam width; d = beam effective depth; fc = concrete strength; ρ = longitudinal reinforcement ratio; a/d = ratio
of the shear span to the effective depth; Fst = steel fiber factor; Vu = shear capacity.

2.3. M5P Model Tree Techniques

In the current research, a necessary decision tree was constructed using the M5P
classifier, a tree model developed by Quinlan [56]. This model tree incorporates the M5
learning algorithm, along with multiple enhancements, and offers an innovative strategy
for tackling persistent challenges in the realm of class learning [56]. The M5 algorithm is
a decision tree algorithm, but what sets M5P apart from other decision tree algorithms is
its foundation in regression [57]. As a result, M5P effectively combines linear regression
model techniques with the decision tree algorithm, creating a unique approach for solving
problems that benefits from the strengths of both methods. Utilizing the M5P algorithm,
the developed model tree features linear models at its leaf level, which assist in generating
regression outputs. The precision of the resulting regression model can be assessed through
target values of previously unobserved instances. The M5P algorithm showcases a remark-
able level of adaptability by being able to accommodate a broad spectrum of data types in
various contexts. This includes its ability to handle multiclass and binary target variables,
as well as nominal and numeric attributes, all while effectively addressing the presence
of missing values within the dataset [58]. M5P’s linear models enable the generation of
numeric outputs, and the algorithm accommodates both nominal and continuous input
attribute types. When processing a new instance, the traversal begins at the top of the
tree and continues down to a leaf. Throughout this journey, decisions must be made at
each tree node to determine which branch to follow, based on the test condition associated
with the attribute related to that specific node [59]. This step-by-step procedure ensures an
accurate and systematic evaluation of the instance in question. Establishing the splitting
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criteria is the initial stage in constructing an M5 model tree. The M5 algorithm bases its
determination of splitting criteria on an analysis of the standard deviation of attribute
values, in conjunction with a calculated estimation of error minimization at each respective
node, ensuring an optimized decision-making process. The tree root is selected as the
attribute that reduces the anticipated error, with the standard deviation reduction (SDR)
being calculated accordingly [57,60].

SDR = SD(T)−
n

∑
i = 1

|Ti|
|T| SD(Ti) (2)

SD(T) =

√
1

n− 1

n

∑
i = 1

(Ti− T̄)2 (3)

T̄ =
1
n ∑n

i = 1 Ti (4)

Within this framework, T signifies the collection of instances that reach the node and
Ti represents the sets derived from splitting the node according to the chosen attribute. The
average value of the attribute sets T is denoted by T̄, while SD(T) indicates the standard
deviation of T.

3. Model Result
3.1. M5P Derived Models

In the present research, a nonlinear trend was observed in the distribution of a wide
range of values, which is indicative of a power law relationship between the input and out-
put parameters. While the M5P model can provide straightforward and efficient guidelines
for determining shear capacity, it assumes a linear connection between the input and output
parameters. To address this limitation, a new model was developed using log-transformed
input and output parameters, based on earlier investigations [1,26]. The obtained results
suggest that shear capacity is best described as a power function of the log-transformed
inputs and outputs.

Vu = a′(bw)
b′(d)c′(ρ)d′

( a
d

)e′
( fc)

f ′
(

Fs f

)g′
(5)

where the constants a′, b′, c′, e′, f ′, and g′ have different values under various circumstances,
and all other terms were previously defined.

Figure 2 showcases the developed model tree, formed by employing the M5P approach.
Additionally, Table 2 supplies the coefficients pertaining to Equation (4), as forecasted by
the M5P algorithm.

Table 2. Coefficients for Equation (4) predicted from the model tree.

Linear Model
Coefficient

a’ b’ c’ d’ e’ f’ g’

LM1 0.0594 0.8624 0.9484 0.5095 −0.7424 0.1799 0.1105
LM2 0.0903 1.1591 0.4655 0.6299 −0.6499 0.4844 0.117
LM3 0.0566 1.0062 0.3897 0.2336 −0.2345 0.4727 0.3405
LM4 0.0301 0.5163 1.1544 0.4401 −0.360 0.3881 0.2199

The example provided below highlights the process of employing the M5P technique
to estimate the shear strength of SFRC beams. We will focus on a reference beam selected
from the testing dataset, with its characteristics outlined in Table 3, to effectively illustrate
this approach.
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Table 3. Reference beam attributes from the testing dataset.

Vu(exp) (kN) bw (mm) d (mm) ρ a/d fc (MPa) Fst

220 152 381 0.0271 3.4 49.2 0.8

Observing Table 3 and Figure 2, it becomes apparent that the beam sample is cate-
gorized under the M5P’s LM4 prediction equation, given that bw exceeds 133.52 and d
surpasses 269.15. Consequently, by employing the coefficients associated with LM4, the
estimated shear strength for the reference beam listed in Table 3 amounts to 218.187 kN.
This value demonstrates a strong correlation with the experimentally determined strength,
which measures at 220 kN, indicating a high level of agreement between the two results.

3.2. Performance Analysis

To assess the effectiveness of the established models, two key statistical indices were
taken into account: the root mean square error (RMSE) and the correlation coefficient
(R2). A comprehensive evaluation of these indices, which serves as an indicator of the
correlations’ performance, is presented in Table 4 for further analysis and consideration.
The coefficient of determination, commonly denoted as R2, is a statistical measure used
to assess how well a regression model fits the data. It represents the proportion of the
variation in the dependent variable (y) that can be explained by the independent variable(s)
(x). R2 is a number between 0 and 1, where 0 indicates that the model cannot explain any of
the variation in the dependent variable and 1 indicates that the model perfectly explains
all the variation. In other words, R2 tells us how much of the variability in the dependent
variable can be accounted for by the regression model. On the other hand, the RMSE is a
statistical measure used to evaluate the accuracy of the predictions from a model. It is a
measure of the difference between the predicted values of a model and the observed values.
The RMSE represents the square root of the average of the squared differences between the
predicted and observed values. The formula for RMSE is as follows:

RMSE =

√
∑n

i = 1 (y
obs
i − ypre

i )
2

n
∈ [0,+∞] (6)
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where ypre
i is the predicted value, yobs

i is the observed value, and n is the total number
of observations.

Table 4. Performance of the M5P model in predicting the shear strength for training and test datasets.

Statistics RMSE (kN) R R2

Training 33.924 0.976 0.952
Testing 37.307 0.984 0.969
Total 38.563 0.977 0.955

The RMSE is often used to evaluate the performance of regression models, such as
linear regression or time-series models, by measuring the difference between the predicted
values and the actual values. The RMSE is measured in the same units as the dependent
variable, which makes it easier to interpret than other measures, such as the mean absolute
error (MAE).

Table 4 presents the statistical evaluation of the performance of the M5P model for
predicting the shear strength of SFRC beams. The results in Table 4 show that the M5P
model produced predictions that were in good agreement with the experimental data.
The prediction ability of the model was evaluated using blind points that were not part
of the training dataset. The M5P model was able to predict the shear strength values
for the testing dataset with an R2 value of 0.969, indicating a strong association between
the predicted and actual values. The closer the R2 value is to 1, the more accurate and
effective the model is. Additionally, the authors used the RMSE value as another statistical
metric to compare the performance of the models. The RMSE for the testing dataset for
the M5P-based correlation was 37.307, indicating that the predictions from the model were
very close to the actual values.

Figure 3 presents the results of the M5P model for forecasting the shear strength
of SFRC beams. The results are presented as a cross plot, which shows the expected
values for both the training and testing datasets. The cross plot was drawn to provide a
clearer understanding of the model performance. The results indicate that the M5P model
performed near perfection, as the predicted values were precise and located in a condensed
area around the unit slope line (X = Y), as can be seen in the cross plot. These results are
supported by the previous statistical analysis, and they demonstrate that the M5P model
can accurately forecast the shear strength of SFRC beams.

Fibers 2023, 11, x FOR PEER REVIEW 9 of 20 

 

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

1200

1400

 Training

 Testing

P
re

d
ic

te
d
 (

k
N

)

Actual (kN)

Prefect slop

Pre(train) = 6.44+Act(train)0.943

Pre(test) = 9.07+Act(test)0.910

 

Figure 3. Cross plots of the proposed M5P correlations for both training and testing datasets. 

0 50 100 150 200 250 300 350

0

200

400

600

800

1000

1200

1400

1600

S
h

ea
r 

st
re

n
g

th
 (

k
N

)

Number of experiments

 Experiments

 M5P model prediction

Train Test

 

Figure 4. Comparison of the predictions generated by the M5P-tree-based model with the experi-

mental measurements of the shear strength for both training and testing datasets. 

3.3. K-Fold Cross Validation Results 

To ensure that overfitting does not occur in the proposed models, a widely used tech-

nique known as the five-fold cross-validation method is employed. Five-fold cross-vali-

dation is a technique for assessing the performance of ML models. The main purpose of 

this technique is to evaluate the ability of the model to generalize to new data, rather than 

simply memorizing the training data. To implement five-fold cross-validation with RMSE 

(root mean squared error) measurement, the steps to follow are: 

1. Divide the data into five equal parts (or “folds”). 

2. Choose one fold as the test set and the other four folds as the training set. 

3. Train the model on the training set and use it to predict the target values on the test 

set. 

Figure 3. Cross plots of the proposed M5P correlations for both training and testing datasets.



Fibers 2023, 11, 37 9 of 19

In order to assess the precision and efficiency of the M5P model from an alternative
viewpoint, Figure 4 displays the predicted and experimental values of the shear strength
in both the training and testing datasets. The results in Figure 4 confirm the previous
observations about the accuracy of the M5P model.
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3.3. K-Fold Cross Validation Results

To ensure that overfitting does not occur in the proposed models, a widely used
technique known as the five-fold cross-validation method is employed. Five-fold cross-
validation is a technique for assessing the performance of ML models. The main purpose
of this technique is to evaluate the ability of the model to generalize to new data, rather
than simply memorizing the training data. To implement five-fold cross-validation with
RMSE (root mean squared error) measurement, the steps to follow are:

1. Divide the data into five equal parts (or “folds”).
2. Choose one fold as the test set and the other four folds as the training set.
3. Train the model on the training set and use it to predict the target values on the test set.
4. Calculate the RMSE between the predicted values and the actual values in the test set.
5. Repeat steps 2–4 for each of the five folds, using a different fold as the test set each time.
6. Calculate the average RMSE across all five folds. This is the overall measure of the

model’s performance.

The RMSE performance of the model on all the data points is 38 (kN), while the
average performance of the 5-fold cross-validation is 41 (kN). This suggests that the model’s
performance on unseen data is relatively close to its performance on the training data,
indicating that the model is not prone to overfitting. The smaller difference between the
two RMSE values suggests that the model is more likely to generalize well to new data. A
box plot displaying the distribution of the model performance across the five folds of the
data can typically be seen in Figure 5.
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3.4. Comparision with Previouly Developed Models

Figure 6a–f visually shows the comparative analysis between the predicted shear
strengths derived from existing models and those obtained from the experimental results.
The dashed line, also referred to as the 1:1 line, represents the intended target values for the
predictions. In contrast, the solid line embodies the linear regression calculated from the
distribution of the effectively predicted data points, providing a graphical representation
of the deviation between the predicted and experimental values. When the data points are
in closer proximity to the 1:1 line, it signifies a higher level of accuracy for the predicted
outcomes. When compared to other models, the models from Ashour et al. [60] and Khuntia
et al. [54] demonstrate the lowest prediction performance, indicating a higher discrepancy
between their results and the actual outcomes, suggesting room for improvement in their
predictive capabilities. The results from Ashour came from a proposed equation in the
study [61], which is an adaptation of Zsutty’s equation found in reference [62]. This
modified version integrates the fiber factor, accounting for its influence on the overall
equation. Khuntia et al. [54] took into account the post-cracking tensile characteristics of
fiber-reinforced concrete (FRC) to develop an equation. Their equation was subsequently
validated through the analysis of experimental outcomes obtained from 68 SFRC beam
specimens featured in their study. Conversely, the average results computed using the
equations proposed by Sabetifar and Nematzadeh [35], Sarveghadi et al. [63], and Chaabene
and Nehdi [64] demonstrated a closer match with the experimental findings. These models
were primarily developed using genetic programming (GP) as their foundation. GP, as
introduced in reference [65], is a relatively recent ML technique employed to generate
nonlinear regression equations, as documented in references [66–68]. This innovative
approach has proven to be effective in producing more accurate predictive models. Notably,
the equations proposed by Sabetifar and Nematzadeh [35] and Chaabene and Nehdi [64]
exhibited a strong predictive performance, characterized by higher R2 values. The linear
regression displayed a close alignment with the 1:1 line, indicating a high degree of accuracy
in their respective models.
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Figure 6. Comparison of shear strength between experimental outcomes and various computa-
tional techniques: (a) Ashour et al. [61], (b) Khuntia et al. [54], (c) Sabetifar and Nematzadeh [35]
(d) Sarveghadi et al. [63], (e) Chaabene and Nehdi [64], (f) proposed M5P model.
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The predicted outcomes derived from the M5P model are juxtaposed with the exper-
imental data, as illustrated in Figure 6f. Upon examination, it becomes evident that the
dispersion of data points in the proposed M5P model is substantially smaller in comparison
to the data scatters observed in the earlier models. This observation suggests that the M5P
model offers a more precise and accurate prediction. Furthermore, the linear regression
line plotted using the data points demonstrates a striking resemblance to the diagonal line,
boasting a high R2 value of 0.9580. This high value signifies a strong correlation between
the predicted results and the experimental data, indicating that the model has effectively
captured the underlying relationships in the data.

In addition to the aforementioned observations, Figure 7 shows the histograms of
the proposed M5P model. The visual representation of these histograms reveals a well-
distributed pattern, with the mean unit value being adequately centered within the distri-
bution. This balanced distribution is an indication of the model’s robustness and its ability
to generalize well across data points with a wide distribution.
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Figure 8 displays a box plot illustrating the predicted-to-tested strength ratios obtained
from different predictive models. Meanwhile, Table 5 provides a detailed overview of
the statistical characteristics associated with these ratios across the various models being
analyzed. The analysis emphasizes that the M5P model demonstrates the highest accuracy
in predicting the shear strength of SFRC beams. This is evidenced by its lowest COV and
SD values, along with a mean value that closely approaches unity. The R2 value for the
proposed M5P model was found to be the largest among all considered models, indicating
its superior performance. In addition, its RMSE value, which signifies the error between the
predicted and target values from experiments, was the second smallest one, only slightly
surpassed by the value from Chaabene and Nehdi’s model [64]. Moreover, the M5P model
exhibits a considerably lower SD and COV, with 0.1627 and 0.1601, respectively, compared
to the values for the other models. With a mean value of 1.04, which is remarkably close
to 1.0, the M5P model demonstrates a high degree of reliability in estimating the shear
strength of SFRC beams. This evidence underlines the effectiveness and reliability of the
M5P model in the application studied in this research.
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Table 5. Accuracy of earlier models for predicting the shear strength in comparison with M5P.

Predicted Model
RMSE R2 Statistical Properties of Vactual/VM5P

x SD COV% Min Max

Khuntia et al. [54] 42.7104 0.8917 1.4963 0.4536 30.32 0.1735 4.0345
Ashour et al. [61] 76.6893 0.8595 1.1195 0.3720 33.23 0.2327 3.1421

Sabetifar and Nematzadeh [35] 61.8467 0.9307 1.0146 0.2454 24.19 0.1974 2.0038
Sarveghadi et al. [63] 88.3206 0.9133 1.0007 0.2712 27.10 0.2267 2.2046

Chaabene and Nehdi [64] 38.2046 0.9294 1.1193 0.2492 22.27 0.4062 2.1188
M5P in this study 38.5633 0.9554 1.0160 0.1627 16.01 0.5407 1.7182

3.5. Model Safety Analysis

Most models and design codes balance safety and practicality with a marginal accuracy
level. The proposed model must also maintain adequate safety, consistent with these codes.
This study employs Collins scale [69] to assess the proposed model safety and compare
it to existing design codes. The scale facilitates a comprehensive evaluation of the safety
performance and practicality, ensuring alignment with industry standards. The demerit
points classification (DPC) method evaluates a model’s safety, accuracy, and variability by
examining the correlation between experimental ultimate shear strengths and estimated
theoretical shear capacities. This method assigns a demerit point value (DP) according to
the Vactual/Vpredicted ratio. Using the Collins scale, researchers can classify various design
codes and the safety performance. Table 6 provides a detailed presentation of the safety
classification based on the Collins scale, highlighting different safety levels and criteria.
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Table 6. Classification by demerit points.

Vactual/Vpredicted Classification Demerit Points

< 0.50 Extremely dangerous 10
[0.50–0.85) Dangerous 5
[0.85–1.15) Appropriate and safe 0
[1.15–2.00) Conservative 2
≥ 2.00 Extremely conservative 1

In order to evaluate quantitatively the safety of the proposed model and contrast it
with earlier models, demerit points are assigned to each prediction made by these models,
incorporating a total of 332 data points based on the criteria outlined in Table 6. This
approach enables a comprehensive comparison of the safety performance between the
models. The cumulative demerit values for each model are calculated by summing the
products of specimen counts and corresponding penalties within each interval as shown in
Table 7. A lower total sum value indicates a higher safety level for the model under study.
For instance, the model from Khuntia et al. [54] has four instances, where Vactual/Vpredicted
< 0.5. Referring to Table 6, each of these 4 points carries a penalty of 10. Thus, the total
penalty is calculated as 4 × 10 = 40. This method enables an effective evaluation and
ranking of various models’ safety performance, guiding the selection of the safest and most
reliable model for practical applications. It is crucial to highlight that the M5P algorithm
demonstrates the lowest demerit penalty among the various prediction models, indicating
its superior safety performance. Based on the Collins scale, approximately 70% of the
predictions made by the M5P algorithm fall within the safe and acceptable range, further
emphasizing its reliability and effectiveness

Table 7. Categorization of the proposed and earlier models based on Collins criteria.

Model Vactual
Vpredicted

< 0.50 0.5 ≤ Vactual
Vpredicted

< 0.85 0.85 ≤ Vactual
Vpredicted

< 1.15 1.15 ≤ Vactual
Vpredicted

< 2 Vactual
Vpredicted

> 2 Demerit Points

Khuntia et al. [54] 4 15 42 247 24
4104 × 10 15 × 5 42 × 0 247 × 1 24 × 2

Ashour et al. [61] 10 57 130 127 7
52610 × 10 57 × 5 130 × 0 127 × 1 7 × 2

Sabetifar and Nematzadeh [35] 9 67 169 86 1
5139 × 10 67 × 5 169 × 0 86 × 1 1 × 2

Sarveghadi et al. [63] 7 84 158 82 1
5747 × 10 84 × 5 158 × 0 82 × 1 1 × 2

Chaabene and Nehdi [64] 1 41 150 138 2
3571 × 10 41 × 5 150 × 0 138 × 1 2 × 2

This study - 46 232 54 0
2840 ×10 46 × 5 232 × 0 54 × 1 0 × 2

3.6. Safety Factor Inclusion

The M5P model equations LM1, LM2, LM3, and LM4 do not consistently overestimate
all data points, but rather produce both overestimated and underestimated predictions.
For this reason, introducing a reduction factor can still further improve the reliability of
the predictions. This can be especially important in scenarios where reliable predictions
are necessary to satisfy the design conservatism and can help ensure that the model is an
effective tool for generating insights from data. As shown in Figure 9a–d, the Vexp/VM5P
ratios exhibit a minor level of scatter and do not follow a normal distribution (Lognormal).
Therefore, the reduction factor γ needs to be applied to account for the statistical uncertain-
ties associated with estimating the characteristic value of the Vexp/VM5P ratio. Equation (6)
provides a means of calculating the reduction factor, as recommended by EN 1992 [7,70].
By using this approach, engineers can be confident that their designs are based on sound
engineering principles and are safe and reliable in a range of different scenarios.

γ = a·exp
(
−αβηo − 0.5η2

o

)
(7)



Fibers 2023, 11, 37 15 of 19

where β is a reliability index taken as 3.8, α is a sensitivity factor taken as 0.8, a is the
slope of the relationship between Vexp and VM5P, and ηo is the standard deviation of
Vexp/a × VM5P. Those values and relationships are recommended by EN 1992 [7]. As
depicted in Figure 10a–d, the slope values (a) of 1.11, 1.17, 1.23, and 1.04 are assigned
for equations LM1, LM2, LM3, and LM4, respectively. By substituting these values in
Equation (7), engineers can estimate the reduction factor γ for the shear strength of SFRC
slender beams from equations LM1, LM2, LM3, and LM4, as 0.69, 0.69, 0.85, and 0.65,
respectively.Fibers 2023, 11, x FOR PEER REVIEW 16 of 20 
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4. Conclusions

In this study, the aim was to develop an innovative, interpretable, and easy-to-use
M5P-tree-algorithm-based model to predict the shear strength of SFRC beams. The model
showcases superior performance compared to existing models in the field of structural
engineering. Accurate prediction of the shear strength of SFRC beams is crucial, as it
ensures the safety and reliability of structures, particularly when dealing with challenging
loading conditions and complex geometries. Furthermore, a safety analysis using the
Collins scale was employed to assess the safety performance of the proposed model. Based
on the results and analysis, the following conclusions, which emphasize the novelty of this
work, can be drawn:

• The M5P model demonstrated high accuracy in predicting the shear strength of SFRC
beams, outperforming existing models in terms of performance metrics. The simplicity
and ease of use of the M5P tree algorithm highlight its effectiveness in handling com-
plex relationships and its potential applicability to other civil engineering problems.

• The safety analysis conducted using the Collins scale revealed that the M5P model
had the lowest demerit penalty and was the safest among the different prediction
models. Approximately 70% of the predictions made by the M5P algorithm fell
within the safe and acceptable range, emphasizing its reliability and effectiveness in
practical applications.

• By developing a more accurate, reliable, and user-friendly prediction tool, this research
provides a significant contribution to the design and optimization of SFRC beams. It
ensures that the desired level of shear strength is achieved while optimizing resource
utilization and improving safety in SFRC structure design and construction.

The successful development and validation of the M5P model open up new opportuni-
ties for future research in the field of SFRC beams. Further refinements and enhancements
to the model can be pursued, and additional case studies can be conducted to continue im-
proving the accuracy, reliability, and safety performance of the prediction tool. Ultimately,
the M5P model serves as a valuable and novel contribution to the ongoing advancement
of SFRC beam design and engineering, addressing a crucial aspect of structural safety
and reliability.
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