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Abstract: Gas-filled hollow-core fibers are a convenient tool for laser pulse compression down to a
few-cycle duration. The development of compact, efficient and high quality compression schemes
for laser pulses of relatively low µJ-level energies is of particular interest. In this work, temporal
pulse compression based on nonlinear spectral broadening in a xenon-filled revolver fiber followed
by a chirped mirror system is investigated. A 250 fs pulse at a central wavelength of 1.03 µm is
compressed to 13.3 fs when the xenon pressure was tuned to provide zero group velocity dispersion
near 1.03 µm. The energies of input and compressed pulses are 3.8 and 2.7 µJ, respectively. The
compression quality factor of 1.8 is achieved.

Keywords: hollow-core fiber; few-cycle pulse; self-phase modulation; nonlinear spectral broadening;
chirped mirror; temporal pulse compression

1. Introduction

In recent years, microstructured hollow-core fibers (HCF) have been widely used in
nonlinear optics experiments with low-power laser pulses. In spite of low power, the pulse
intensity could reach high values due to the small diameter of the hollow core. Moreover,
low propagation losses in modern hollow-core fibers allow a long interaction length,
which facilitates nonlinear processes. The optical power required to reach the threshold
of nonlinear processes can be decreased most strongly for those phenomena in which the
key parameter is the product of the optical intensity and the interaction length. Typical
cases of such phenomena are stimulated Raman scattering (SRS) and spectral broadening
induced by nonlinear self-phase modulation (SPM). For example, the use of hollow-core
microstructured fibers enabled efficient Raman conversion in compressed gases even for
optical pulses with energy as low as several µJ [1].

The SPM-induced nonlinear spectral broadening of the laser pulses is widely used for
temporal pulse compression. To achieve compression of femtosecond pulses to a few-cycle
duration, the hollow-core fiber must provide low optical losses in a spectral range that
is wide enough to support propagation of all frequencies composing a few-cycle pulse.
Such a requirement is satisfied in broadband-guiding hollow-core fibers, the transmis-
sion spectrum of which are determined not by a photonic band gap of the cladding, but
by antiresonant reflection of the propagating wave from thin glass struts that form the
core-cladding interface [2,3].

The antiresonant HCFs have a transmission spectrum that consists of a set of low-loss
transmission bands, which can be as wide as ~1000 nm. The spectral bandwidth and
position of the transmission bands are defined by the thickness of silica glass struts on the
core-cladding interface. However, the antiresonant guiding mechanism cannot explain
all the optical properties of such fibers. In particular, the level of optical losses that was
experimentally obtained in broadband-guiding hollow-core fibers appeared to be much
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less compared to predictions that followed from the antiresonant guiding model. As an
attempt to resolve this discrepancy, an alternative guiding mechanism was proposed based
on the idea of inhibited coupling between a core mode and cladding modes that have the
same effective index of refraction [4]. Although the inhibited coupling mechanism was
implemented to explain the waveguiding properties of Kagome-lattice hollow-core fibers,
this mechanism moreover does not provide a complete picture. This fact became clear when
two research groups discovered independently that the shape of the core-cladding interface
has a strong influence on the level of optical losses in broadband-guiding hollow-core
fibers [5,6]. The introduction of a negative curvature of the core-cladding boundary into
the antiresonant fibers helped to significantly improve the localization of the light in the
hollow core [5–9]. As a result, the optical losses in the antiresonant HCFs were reduced
significantly, thus boosting the practical applications of such fibers [9–11]. The effect of the
negative curvature of the core-cladding boundary on the optical loss reduction was also
demonstrated using other cross-sectional designs of the hollow-core fibers (such as “ice
cream” [12] and “nested” [13,14] HCFs).

At the same time, each transmission band of the broadband-guiding hollow-core fibers
included a zero-dispersion wavelength (λZDW), at which the group velocity dispersion β2
vanishes, and most of the transmission band falls into the region of anomalous dispersion [2,3,15].
Importantly, the anomalous dispersion of the fiber is comparable in magnitude with the
positive dispersion of various gases. This fact makes it possible to control the dispersion
of antiresonant HCFs by changing the composition and pressure of the gas that fills the
hollow core [2].

The most practical type of negative-curvature antiresonant HCFs are revolver
fibers [5,7,8]. Due to their simple design and unique optical properties, the revolver fibers
have attracted much attention and are now studied for various applications, including
extreme compression of femtosecond pulses to single-cycle duration [16,17].

Two schemes of femtosecond pulse compression in gas-filled HCFs can be distin-
guished: (1) self-compression of the pulses propagating in the anomalous dispersion region
of the fiber and (2) pulse compression on external optical elements with negative dispersion
when the pulse propagates in the normal dispersion region of the fiber.

Despite its simplicity, the first scheme usually suffers from the low compression
quality, which is described by the quality factor QC, defined as the ratio of the energy in
the compressed part of the pulse to the energy of the uncompressed pedestal. For laser
pulses with a duration greater than 100 fs, the quality factor can be expressed as QC ≈ 1/FC,
where the compression factor FC is the ratio of the initial pulse duration to the compressed
pulse duration [18]. Thus, the higher is the compression factor FC and the lower is the
compression quality QC, which means that a significant fraction of the pulse energy at
the exit of the hollow-core fiber will be contained in a low-intensity pedestal that has a
duration close to the duration of the initial laser pulse. This fact limits the application of
such a compressor significantly. Therefore, compression schemes based on external optical
elements with negative dispersion are more attractive when the quality of compressed
pulses is of high importance.

In the second scheme of pulse compression, in which the pulse propagates in the
normal dispersion region of the fiber, the SPM-induced spectral broadening for pulses
with a fixed energy can be increased by increasing the gas pressure and, consequently, the
nonlinear refractive index n2. However, in this case, effects associated with the dispersion
of the active medium could produce a detrimental impact on the compression process.
Effects such as a steepening of the trailing edge of the pulse [19], and dispersive spreading
of the pulse, in time lead to a nonlinear pulse chirp at the output of the HCF and require an
increase in the negative dispersion of the optical elements at the compressor output. As a
result, the compression quality may decrease.

In this work, we study the influence of the xenon-filled HCF dispersion on the spectral
broadening of femtosecond laser pulses in order to develop a simple compressor scheme
that allows high-quality compression of a few-µJ-level pulses to a few-cycle duration. By us-
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ing a single-step spectral broadening in xenon-filled revolver fibers with post-compression
on chirped mirrors, 250 fs pulses of an ytterbium laser with a pulse energy of 3.8 µJ are
compressed to a duration as low as ~13 fs with the energy efficiency as high as 71%. The
combination of pulse duration and compression quality achieved in this work is not pos-
sible in the gas-filled capillaries [20] and requires more complex two-step compression
schemes in the case of gas-filled hollow-core fibers [17].

2. Materials and Methods

The scheme of the experimental setup is shown in Figure 1. A femtosecond ytterbium
laser TETA (Avesta) was used as a source of ~250 fs pulses with a repetition rate of up to
500 kHz at the wavelength of 1.03 µm. The built-in pulse compressor that was installed at
the laser output allowed for changing the pulse duration if needed. The output beam had a
Gaussian intensity distribution with a diameter of 2.5 mm. The laser beam was focused
into the hollow core of a revolver fiber (Figure 1, red horizontal line) by the lens L1 with a
focal length of 4 cm. The fiber was completely placed in a 52-cm-long chamber, which was
filled with xenon. Since we are interested in achieving the nonlinear pulse compression at
the lowest possible pump pulse energy, we facilitated the nonlinear spectral broadening by
using the longest length of the revolver fiber available in our setup, i.e., the fiber length
was fixed at 50 cm. The xenon pressure was varied in the experiments to find the optimal
conditions for nonlinear spectral broadening. At the chamber exit, the beam was collimated
by the lens L2 and launched into a pulse compressor consisting of two chirped mirrors, M1
and M2, with a negative group delay dispersion. At the output of the pulse compressor,
the spectrum of the pulse was recorded by an ASP75 spectrometer (Avesta), and the pulse
duration was measured with an ASF5 autocorrelator (Avesta).
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Figure 1. The scheme of the experimental setup. L1, L2—lenses. M1, M2—chirped mirrors. Red line
is the HCF placed inside a gas chamber.

A revolver hollow-core fiber fabricated at FORC RAS was used for the experiments
(Figure 2a, left inset). The fiber has a hollow-core diameter of 36 µm and a fundamental
mode field diameter of 26 µm2. The fiber cladding is formed by 9 capillaries that have
the diameter of 14 µm and a wall thickness of 0.75 µm. Variations of the hollow-core fiber
geometrical parameters were no more than 2%. The optical loss spectrum in the range
of 0.8–1.3 µm was calculated by the finite element method for a fundamental and a few
higher-order modes of the fiber (Figure 2a). The pump wavelength (1.03 µm) used in the
experiments is located in the center of the fiber transmission band, where an optical loss
of 12.6 dB/km was calculated for the fundamental mode. Determined at the loss level
of 0.1 dB/m, the spectral width of the transmission band was as wide as 350 nm for the
fundamental mode of the HCF. The spectrum of optical losses is not smooth at the long
wavelength edge of the fiber transmission band. This effect is due to resonant coupling
between the core and cladding modes. Since such mode coupling is different for different
propagating modes, the smoothness of the optical loss spectra depends on the particular
mode under consideration.
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Figure 2. (a) Optical loss spectrum calculated for the fundamental (HE11) and two higher-order
modes of the fiber (HE21 and HE31). The SEM-image of the revolver fiber cross-section is shown on
the left inset. Near-field intensity distribution measured at the fiber output is shown on the right
inset. (b) The calculated intensity distributions for the lowest order modes (HE11, HE21, HE31) of
the fiber. (c) Group velocity dispersion β2 of the fundamental mode as a function of wavelength at
various xenon pressures.

The group velocity dispersion β2 as a function of wavelength was calculated for
different pressures of Xe, taking into account both xenon dispersion [21] and waveguide
dispersion of the HCF fundamental mode (Figure 2c). The zero dispersion wavelength
shifts from 0.89 to 1.18 µm as the xenon pressure increases from 0 to 50 atm (Figure 3a).
The quadratic dispersion at pump wavelength (1.03 µm) increases monotonically with
pressure, reaching the zero value at a xenon pressure of 15 atm and a maximum value of
+2.23 ps2/km at a pressure of 50 atm (Figure 3b).
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Figure 3. (a) Zero dispersion wavelength λ0 as a function of xenon pressure for the fundamental
mode of the fiber. (b) Group velocity dispersion β2 for the fundamental mode at a pump wavelength
of 1.03 µm as a function of the xenon pressure.

3. Results and Discussion

The pulse spectra at the output of the revolver fiber were measured at various input
pulse energies and xenon pressures. Qualitatively different spectra were observed at xenon
pressures of 15 and 40 atm (Figure 4), which correspond to the zero dispersion (β2 = 0) and
all-normal dispersion case, respectively. By the zero dispersion case, we mean the case
when the xenon pressure is chosen so that the value of dispersion β2 equals zero at the laser
wavelength (1.03 µm). In turn, the all-normal dispersion case implies that gas pressure
is high enough to provide a positive value of β2 in the whole spectral range involved in
the experiment.
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input pulse energy of 3.8 µJ, and (b) xenon pressure of 40 atm and input pulse energy of 1.5 µJ.

For the case of zero dispersion at 1.03 µm, the output spectrum has a symmetrical
shape with intensity increasing at the edges of the spectrum (Figure 4a), which is the classi-
cal spectral shape induced by pure self-phase modulation without changes of the pulse
shape and duration. A different spectral shape is observed at a xenon pressure of 40 atm
(Figure 4b). In this case, the spectrum becomes asymmetric with respect to the central
wavelength of the initial laser pulse (1.03 µm) and shifts to the short wavelength region.
Such a transformation of the output spectrum is typical when self-phase modulation is
accompanied by self-steepening of the trailing edge of the pulse, resulting in an intense
short-wavelength component [19]. Self-steepening of optical pulses is a consequence of
the intensity dependent group velocity dispersion, which increases with xenon pressure.
Although pulse self-steepening can produce wider spectra, it does not help in achieving ex-
tremely short pulses at the post-compression stage. The frequency chirp of the pulse during
the steepening of the trailing edge becomes significantly nonlinear and, as a consequence,
the compression quality drops sharply.

Although optical pulses at the hollow-core fiber output have wide spectra (Figure 4),
the pulse duration is far from a transform-limited value, and the use of the mirror-based
post-compressor is necessary in order to shape the pulses in time. Based on the measured
output spectra, we have calculated the transform-limited pulse duration that can be poten-
tially obtained after the pulses will pass the external compressor based on chirped mirrors
(see Figure 1). Figure 5 shows the calculated transform-limited pulse duration as a function
of the input pulse energy for xenon pressures of 15 atm (Figure 5a) and 40 atm (Figure 5b).
The calculated values present the shortest pulse durations that can be achieved at the
output of an external pulse compressor based on chirped mirrors. The figures also show
the energy transmission through the fiber, which is equal to the ratio of the pulse energy at
the fiber output to the energy of the input pulse. Both propagation losses and efficiency of
energy coupling into the hollow core contribute to the transmission of the fiber.
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The duration of transform-limited pulses decreases with the input pulse energy due
to SPM-induced spectral broadening of propagating pulses (Figure 5). Starting at a certain
pulse energy, the transform-limited pulse duration reaches a minimal value of about 10 fs
and does not change with further energy growth of input pulses. Note, the minimal pulse
duration has the same value for both zero dispersion (Figure 5a) and all-normal dispersion
(Figure 5b) cases. Such a dependence may indicate that the spectral width of output pulses
is limited by some mechanism, which could be the bandwidth of the HCF transmission
band (Figure 2a).

The assumption above is confirmed by the following facts. First, the energy transmis-
sion of the fiber starts dropping down when the pulse duration limit is reached (Figure 5).
Of note, the transmission decrease cannot be caused by self-focusing of the propagating
pulse, as the critical power required for self-focusing in the xenon at a pressure of 40 atm
is equal to ~50 MW [22], while no more than 10 MW of peak power was used in the
experiments at this pressure.

The second observation is that the pulse energy Ep (and, consequently, the pulse
intensity Ip), at which the pulse duration reaches the minimal value, was observed to be
inversely proportional to xenon pressure Ep~IP~1/PXe. For example, pulse energies of
4 and 1.5 µJ were required to reach the 10 fs duration limit at xenon pressures of 15 and
40 atm, respectively. At the same time, the nonlinear refractive index n2 is proportional
to xenon pressure n2~PXe. Thus, the strongest spectral broadening ∆ω induced by SPM is
independent on gas pressure (∆ω~Ip × n2 = const), which means that the shortest possible
duration of transform-limited pulses should be the same for any xenon pressure.

Importantly, the low loss transmission band of the HCF calculated for the funda-
mental mode is as high as 350 nm (Figure 2a), while the pulse duration limit of 10 fs for
sech2-shaped pulses corresponds to a pulse bandwidth of only about 100 nm. What pre-
vents the nonlinear spectral broadening to cover the whole transmission band of the fiber
is not absolutely clear. A possible explanation for this discrepancy could be an excitation of
higher-order modes when coupling the laser beam into the hollow-core fiber. Indeed, if a
non-negligible fraction of input pulse energy is launched into the higher-order modes, the
effective transmission bandwidth of the HCF will be reduced since higher-order modes
have narrower transmission bands compared to the fundamental mode, as can be seen in
Figure 2a. To check this assumption, the near-field beam profile was measured (Figure 2a,
right inset). Although a Gaussian-like beam profile was observed, the excitation of the
higher-order modes cannot be excluded, since the most easily excited higher-order modes
such as HE21 and HE31 have a donut-shaped intensity distribution (Figure 2b), which makes
it difficult to distinguish the higher-order modes in the presence of the fundamental mode.
Therefore, in our experimental conditions, the minimum possible duration of a compressed
pulse is about 10 fs, and we believe this value is determined by the transmission bandwidth
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of the fiber, taking into account excitation of higher-order modes. More detailed studies
accompanied by numerical simulations are required to clarify this point.

Experiments on the temporal compression of spectrally broadened pulses were carried
out using a multi-pass system of two chirped mirrors at the HCF output. The chirped
mirrors (Layertec) were 40 × 10 mm2 in size and had a group dispersion delay value
of about −100 fs2 in the spectral range of 920–1150 nm. The maximum of 20 reflections
from the surface of the mirrors was possible in our experimental conditions at a distance
between the mirrors of 12 cm. The power transmission through the chirped mirror system
exceeded 90%.

By optimizing the number of reflections when operating in the zero dispersion region
at a xenon pressure of 15 atm, the output pulse was compressed to a duration of 13.3 fs
(Figure 6a). The number of reflections in this case was 10, and the introduced value of the
group delay dispersion was about −1000 fs2. Calculations show that this dispersion value
is sufficient for a positively chirped 220-fs-long pulse that has a spectrum corresponding to
a 10-fs-long sech2-shaped pulse, and can be compressed to its transform-limited value of
10 fs. These estimates are in good agreement with the experimental data. Uncompensated
nonlinear chirp of the output pulses could be the reason for the pedestal that was observed
in autocorrelation traces (Figure 6).
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The energy of the laser pulse at the entrance to the HCF varied within 3.8–4.0 µJ.
Taking into account the transmission of the chirped mirrors system, the energy efficiency
of the compressor as a whole was 70%. The compression quality factor in this case was
QC ≈ 1.8, which corresponds to the compression quality for a phase-modulated Gaussian
pulse [23]. A further increase in the laser pulse energy led to a decrease in the compression
quality, while maintaining the duration of the pulse peak. This effect can be related to the
fact that the width of the pulse spectrum begins to exceed the spectral band of the chirped
mirrors used. For example, at a laser pulse energy of 5 µJ, the compression quality dropped
to 1.

Similar results were obtained when the xenon pressure was varied in the range of
15–20 atm, which is close to a zero dispersion regime of pulse propagation. However, for
the xenon pressures higher than 20 atm, the dispersive spreading of the pulse becomes
significant, and a larger number of reflections from chirped mirrors is required to compress
the pulse in time, since a larger value of the group delay dispersion needs to be compensated.
In particular, at the maximum xenon pressure realized in the experiment (40 atm), the
number of reflections from chirped mirrors has to be increased up to the maximum possible
value, which is 20 in our experimental conditions. In this case, the shortest pulse duration
was measured to be 26 fs (Figure 6b), which is limited by a net value of the negative group
delay dispersion that can be achieved in our chirped mirror system. The energy of the
laser pulse was 1.5 µJ. As estimates [24] show, in this case, the duration of the pulse with
the spectrum shown in Figure 4b increases to ~500 fs at the fiber output, which makes it
necessary to increase the introduced value of the negative group delay dispersion above
the maximum value available in our setup.
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One should note that chirped mirrors as negative dispersion elements for temporal
pulse compression enable high energy efficiency of the compressor and small overall
dimensions of the device. Importantly, the value of a negative group delay that is introduced
by a reflection from a chirped mirror decreases with increasing the spectral bandwidth of
the mirror. Then, to obtain few-cycle optical pulses with a high compression quality, it is
desirable to use as short pulses as possible at the input to the chirped mirror system. In
a hollow-core fiber compressor, this can be done by operating in the zero group velocity
dispersion region by selecting the gas pressure. In this case, the pulse energy variation
should be accompanied by a change in the length of the hollow-core fiber.

4. Conclusions

Temporal pulse compression based on single-step nonlinear spectral broadening in
a xenon-filled revolver fiber followed by a chirped mirror system is investigated. The
maximum compression of femtosecond pulses is achieved at a xenon pressure of 15 atm
that tunes a zero dispersion wavelength to match the central wavelength of the input
pulse (λZDW ≈ 1.03 µm). A 250 fs ytterbium laser pulse is compressed to 13.3 fs. The
energies of input and compressed pulses were 3.8 and 2.7 µJ, respectively, demonstrating
an energy efficiency of 71%. The compression quality factor, i.e., the ratio of the energy in
the compressed part of the pulse to the energy of the uncompressed pedestal, was about 1.8.

The results obtained show a valuable improvement compared with previous results
in xenon-filled capillaries [20], where achieving the shortest duration of a compressed
pulse (17 fs) was inevitably accompanied by energy efficiency reduction (down to 40%). By
providing low optical loss and more freedom in dispersion control, the gas-filled revolver
fibers allow shorter pulses to be achieved without compromising the energy efficiency of
pulse compression. A few works based on gas-filled hollow-core fibers had demonstrated
pulse compression to shorter duration compared with the current work; however, those
results were achieved in a two-step compression scheme, which adds significantly to the
system complexity [17].
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