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Abstract: For several decades, carbon fibers have been used for lightweight engineering in aircraft
automotive and sports industries, mostly based on high-quality polyacrylonitrile (PAN). We inves-
tigated a novel PAN-based precursor fiber (PF) modified with a polycyclic aromatic hydrocarbon,
namely hexabenzocoronene (HBC), which is expected to improve the thermal conversion process and
to create a carbon fiber (CF) with enhanced mechanical properties. For this purpose, the novel PF and
a spun-like homopolymeric PAN-based PF were thermally stabilized and carbonized in continuous
lab-scale plants. The effect of the additive HBC on the conversion processes, fiber diameter and
shape, density, and mechanical properties were investigated. The results showed that HBC seems to
support stabilization reactions, and HBC/PAN-based PF show potentially higher stretchability of PF
and stabilized fiber. The modified CF showed an improvement in Young’s modulus of about 25%
at the same tensile strength compared to the unmodified PAN-based CF, resulting from enhanced
crystalline orientation. The results showed a high potential of the HBC/PAN for energy-efficient
production. In particular, the influence on tensile strength and modulus under optimized process
conditions, as well as the possibility to use low quality PAN, need to be further investigated.

Keywords: carbon fiber (CF); precursor fiber (PF); hexabenzocoronene (HBC); polycyclic aromatic
hydrocarbon (PAH); precursor modification; polyacrylonirile (PAN); stabilization; carbonization;
nano additive

1. Introduction

Due to their exceptional properties, carbon fibers (CFs) are widely used in high-
technology fields such as in aerospace, automotive, and the construction industry [1,2].
CFs based on polyacrylonitrile (PAN) represent the largest market share, with more than
90% [3]. During the conversion process from a homopolymeric PAN to a CF, a thermal
runaway reaction can occur. To prevent this, copolymers are commonly used, which are
expensive and have low availability.

Furthermore, as alternatives, nanoadditives such as graphene and carbon nanotubes
(CNTs) were developed for precursor fiber (PF) modification [4–6]. They led to improve-
ments in various properties including increased Young’s modulus and tensile strength [4,6],
thermal conductivity, and reduction of thermal shrinkage [4,7–10].
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Polycyclic aromatic hydrocarbons (PAHs), which can be regarded as small fragments of
graphene and CNTs, have not yet been used as additives for similar property improvements.
Due to high stability, unique aggregation behavior, as well as straightforward synthetic
access, hexa-peri-hexabenzocoronene (HBC), which consists of 13 fused benzene rings,
is one of the most investigated fully benzenoid PAHs [11]. HBC can self-assemble into
columnar superstructures due to the π-π interactions. Consequently, the self-organization
of the HBC molecules could probably support the fiber formation.

In this study we modified precursor material using the additive HBC and investigated
its influence on PAN-based CF production and fibers. Therefore, the HBC was synthesized,
then the PAN-based and HBC/PAN-based precursor fibers were spun and subsequently
converted in continuous stabilization and carbonization lines. The fibers were then ana-
lyzed with focus placed on processability, structure and mechanical properties, especially
stretchability during stabilization, stabilization degree, and crystallite size, as well as tensile
strength, Young’s modulus, and density. Thus, the possibility of creating high-performance
CFs based on HBC-modified low-quality PAN should be determined.

2. Experimental
2.1. Materials

PAN powder was purchased by DOLAN GmbH (Kelheim, Germany) and consisted of
at least 99.5 wt.% of acrylonitrile (molar weight of ~200,000 g/mol). BCD Chemie GmbH
(Leipzig, Germany) provided Dimethylformamide (DMF) at a technical grade. HBC was
synthesized (Appendix A) in two steps based on the commercially available diphenylacety-
lene (Figures A1 and A2). The synthesized Hexaphenylbenzene (HPB) and HBC were
characterized by nuclear magnetic resonance (NMR) spectroscopy (Figures A3 and A4) and
high-resolution matrix-assisted laser desorption/ionization time of flight (HR-MALDI-TOF)
(Figures A5 and A6).

2.2. Spinning Solution and Wet-Spinning Process of Precursor Fibers

The reference spinning solution was prepared from 18 wt.% PAN and 82 wt.% DMF.
DMF was precooled and then PAN was added. The HBC-PAN blend solution was prepared
analogously to the reference and an additional 0.1 wt.% HBC was added. The mixtures were
stirred at 70 ◦C for 2 h until complete dissolution was achieved. Afterward, the polymer
solutions were degassed under vacuum for 12 h. The fiber spinning was conducted with
a pilot scale wet-spinning plant (Fourné Polymertechnik GmbH, Alfter, Germany) [12],
consisting of one coagulation bath, three washing baths, one drying, and one sizing unit
as well as a winder. The spinning solutions were heated to 70 ◦C and extruded through a
filter (50 µm) and a spinneret with 1008 holes with 70 µm hole diameters. The spinneret
was immersed in the coagulation bath and the filaments were precipitated at 15 ◦C in a
solution of 14 wt.% water and 86 wt.% DMF. The fibers were washed in three water baths
at 60–80 ◦C and stretched to a total draw ratio of 1:4.0. Finally, the fibers were dried and
wound in lengths of at least 400 m. Table 1 shows the detailed spinning parameters.

Table 1. Spinning parameters of precursors.

PAN-Based Fiber HBC/PAN-Based Fiber

Concentration Homogeneous PAN 18 wt.% PAN 18 wt.% + HBC 0.1 wt.%
Dope temperature 70 °C

Stretching ratio 1:4
Coagulation bath temp. 15 ◦C

Linear density 188.2 tex 210.3 tex

2.3. Stabilization and Carbonization of PAN and HBC/PAN Fibers

The PFs were thermally converted in two continuous lab-scale plants: a stabilization
line and a carbonization line. Both lines were located in an ISO 8 class clean room for
controlled ambient conditions [13]. The stabilization line was a lab-scale plant for the
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thermal oxidative conversion of PFs to CF. The fibers were stabilized in four heating zones
at 220 ◦C, 235 ◦C, 255 ◦C, and 275 ◦C with a temperature gradient of ±5 K per heating zone
and a total dwell time of 60 min. Dwell time and stretching were controlled by the speed
of the winders. Three tension force sensors, each on the trios (between the unwinder and
heating zone 1, between heating zones 1 and 2, between heating zone 4 and the rewinder)
gave information about the stretching forces within the system. Heating zones 1, 2, and
4 were passed seven times in parallel and heating zone 3 was passed six times due to the
geometry of the system.

The selected forces and temperatures were based on the results of differential scanning
calorimetry (DSC) and dynamic mechanical analysis (DMA), and previous knowledge of
the conversion of PF at the stabilization and carbonization plant of the RCCF. The fibers
were converted with a defined strain, which is expressed as a stretch in percent in Table 2.

Table 2. Strain conditions for continuous stabilization line.

Trio 1 >
DuoHZ1

DuoHZ1
> Trio2

Trio2 >
DuoHZ2

DuoHZ2 >
DuoHZ3

DuoHZ3 >
DuoHZ4

DuoHZ4
> Trio3

Total
Strain

Strain (%) −4.16 0.60 0.99 0.3 0.32 1.41–1.44 −0.54
HZ: Heating zone.

Carbonization took place in the tailor-made continuous carbonization plant of the
RCCF in a temperature range of up to 800 ◦C in the low-temperature oven and up to
1400 ◦C in the high-temperature oven, see Table 3. The fiber passed the low-temperature
oven, coupling element, and high-temperature oven in this order. The ovens have four
zones each with rising temperatures. The tensile forces were regulated by varying the
entry speed.

Table 3. Parameter specification for continuous carbonization process.

Parameters Low-Temperature
Oven Coupling Element High-Temperature

Oven

Temperature (◦C) 450/550/650/800 400 900/1050/1200/1400
Tension (cN) 200–900

Dwell Time (min) ≈4.5 - ≈5

2.4. Characterization

Enthalpy and thermomechanical analysis were used to characterize the thermome-
chanical behavior of the PF material.

The mass density of PFs, stabilized fibers (SFs), and CFs were measured using DIN
65,569 flotation method for density measurements. The test liquid was a mixture of acetone
and dibromomethane.

The thermomechanical properties were pre-analyzed using a DMA (DMA 2980, TA
Instruments, Dallas, TX, USA) before stabilization to identify critical thermal behavior of
the PF and to predetermine a possible process parameter window. The experiments took
place under ambient conditions. A small piece of paper was placed between the fiber and
the metal to prevent the fiber from being cut off at the clamp.

The DSC (DSC1, Mettler Toledo, Columbus, OH, USA; Greifensee, Switzerland, soft-
ware STARe systems) was used to identify the thermal behavior of PFs and SFs. For each
test, about 3 mg of material were used. According to the atmosphere in the stabilization
facilities and in accordance with previous experiments, the DSC experiments were con-
ducted in air with a heating ramp of 5 K/min between room temperature and 400 ◦C with
40 mL/min airflow in a 40 µL aluminum disc. To calculate the stabilization index (SI) of
the fiber, the resulting enthalpy graph was integrated between 230 ◦C and 380 ◦C. The
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SI is calculated from the initial enthalpy H0 of the PF and the residual enthalpy Hr of the
SF [14–16]:

SI =
∆H0 − ∆Hr

∆H0
·100% (1)

A mechanical tester for single filaments (FAVIMAT+, Textechno, Mönchengladbach,
Germany) was used to measure the mechanical properties of the CFs. Each fiber was tested
with 30 filaments with a test speed of 2 mm/min (ISO 11566 [17]) and a gauge length
of 20 mm (DIN EN ISO 5079 [18]). The software FAVIMAT+ (v.3.0.2671) estimated the
filament-specific mechanical properties. From this, the density related values could be
calculated: tensile strength, Young’s modulus, and elongation at breakage.

The chemical structure of SFs and PFs were analyzed with a FT-IR-ATR spectroscopy
(Fourier-transformed infrared attenuated total reflection). Each fiber was measured at
least twice and scanned 128 times. Before analysis, the PFs were washed with deionized
water and dried to remove the sizing applied after spinning. The cyclization index, CI,
was calculated from the transmission spectra at the following two intensities: the intensity
of the peak caused by the C = N bond at about 1581 cm−1 and the C ≡ N bond around
2240 cm−1 [19–23].

CI =
0.29 × I(C = N)

I(C ≡ N) + 0.29 × I(C = N)
·100% (2)

The crystal structure PFs and CFs were investigated by means of X-ray diffraction
analysis (XRD, SmartLab, Rigaku, Japan, software PDXL v.2.1.3.6). XRD was performed
with a scanning speed of 5◦/min with a range of 10–60◦. The laser was operated with a Cu
Kα radiation (λ = 1.5406 Å) of 45 kV and 200 mA. The 2D wide angle XRD analysis (WAXD,
D8 DISCOVER, Bruker, Billerica, MA, USA) was conducted for the degree of crystalline
orientation in the operating voltage and current of 40 kV and 40 mA, respectively. The
samples were exposed to the X-ray beam for 120 s. The orientation factor, f, was calculated
using the following equation [24], with full width half maximum (FWHM):

f =
180 − FWHM

180
(3)

3. Results and Discussion
3.1. Mechanical Properties and Thermal Behavior of PAN and HBC/PAN Precursor Fibers and
Stabilized Fibers

DMA and DSC were used to examine the thermal and mechanical properties of PAN-
and HBC/PAN-based PFs. Three stretching experiments were conducted using DMA to
identify possible parameters for continuous stabilization. The first experiment provides the
diagram in Figure 1, which shows the stretch-strain curves of both PFs.

Since continuous stabilization systems are stretch controlled, the PFs were stretched in
the DMA and the resulting force was measured. The HBC/PAN-based PF can be stretched
up to 1.5% at room temperature before a force resultant is measured at the DMA. In contrast,
the PAN-based PF shows an increase in the stress-strain curve already at the beginning
of the stretching. Thus, HBC/PAN-based PF shows a higher stretching tolerance and,
accordingly, a potentially higher stretch ability. The time-delayed responses to deformation
suggest crystallinity differences between the two PFs, which will be discussed in the
background of further experiments. Each PF can withstand a stretching of at least 9% at
room temperature. Due to the maximum possible tensile force of 18 N of the test facility, no
maximum value for stretching could be determined.

An additional experiment with the DMA was conducted to provide information about
the applicable force range within the first heating zone of the continuous stabilization line
(Figure 2).
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Figure 1. Stress-strain diagram for determination of the maximum stretching of PAN- and HBC/PAN-
based PFs at room temperature using DMA (preload force at 0.2 N).
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Figure 2. Tensile force test simulating different loads in heating zone 1 in the DMA; comparison of
the shrinkage behavior of PAN- and HBC/PAN-based PFs.

The DMA oven chamber was heated up from room temperature to 220 ◦C and kept at
a constant temperature for 15 min, approaching the conditions of continuous stabilization
in the first heating zone. Meanwhile, constant forces between 0 N and 3 N were applied
to investigate the possible stretching. Both fibers shrink at a load of 0.1 N and 0.2 N and
rupture after a few minutes at a load of 2 N and 3 N. The tests with 0.2 N and 1 N tensile
force reached a steady-state stretching and were selected as process limits for both PFs.
When heated under a load of 1.5 N, the HBC/PAN-based PF can be stretched by up to
70%, whereas the unmodified PF constricts and finally breaks after only 10 min. The
HBC thus seems to improve the elasticity of the fiber. This indicates that the HBC/PAN-
based PFs could be more stretchable also under increased temperature and therefore reach
a higher PAN precursor polymer orientation similar to the behavior in CNT/PAN [25].
For direct comparison, 0.2 N and 1 N have been selected as process limits in continuous
thermal conversion.

The third investigation using DMA should provide information about the different
shrinkage behavior of PAN- and HBC/PAN-based PFs to better control the continuous
stabilization process, especially during heat up (Figure 3).
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Figure 3. Comparison of shrinkage behavior of PAN- and HBC/PAN-based PFs during heat treatment
(via dynamic mechanical analysis).

Starting at room temperature, the fiber was heated to 290 ◦C with a constant force
of 0.2 N, which has been previously determined as a lower process limit for steady-state
conversion in DMA (see Figure 2). HBC/PAN-based PF shrank between 50 ◦C and 150 ◦C
significantly more than PAN-based PF at same loads. Afterward, the fibers elongated up to
about 250 ◦C whereas the length increase of HBC/PAN-based PF is higher than for PAN
fiber. However, with a constant 290 ◦C, the fiber lengths approached a constant value of
−16% for both PFs. Due to the further, yet weak, shrinkage of the fibers, even after 90 min,
the fibers did not seem to be fully reacted nor respectively stabilized.

According to the studies of Fitzer and Müller (1971) [26], Fitzer and Heine (1986) [27],
and Meinl et al. (2016) [28] the fiber shrinkage between 50–150 ◦C is referred to as the
physical shrinkage of the fibers due to entropic relaxation. The area between 225 and 300 ◦C
refers to the chemical shrinkage of the fibers. Since HBC/PAN-based PF was shrinking at
50–150 ◦C stronger than the PAN-based PF, there seems to be a more intensive entropic
relaxation of the polymer chains due to incorporated HBC in the fiber. HBC probably
interferes as a foreign molecule with agglomeration during coagulation in the spinning
process. The modified fibers would therefore have a higher residual shrinkage potential,
which confirms the observation of the DMA analysis. The chemical shrinkage was less
pronounced for HBC/PAN-based PF, which means that the crystallization reaction is less
intense for HBC/PAN-based PF. Therefore, HBC in the polymer seems to have a positive
effect on creating a uniform structure in the fiber.

DSC was used to investigate the influence of HBC on thermal behavior of PF and SF
(Figure 4). Both PFs heat flow graphs show the typical curve for PAN-based PF with a
main peak at about 300 ◦C and a shoulder at about 340 ◦C [10], whereas HBC/PAN shows
a main peak that is more pronounced and shifted to lower temperatures.

Moreover, a third peak at around 190 ◦C can be observed for the two PFs. In particular,
the 190 ◦C peak appears much flatter for HBC/PAN-based PF than for its unmodified PF.
Attributing this peak to the cyclization reaction [29], the nanoadditive would inhibit the
formation of ring structures within PAN. Disrupted PAN agglomeration means larger steric
vacancies between PAN polymer chains resulting in a diminished cyclization reaction. The
results fit with the observed larger physical shrinkage for HBC/PAN-based PF during heat
up (Figure 3). The 190 ◦C peak is not visible in the heat flow graphs of both SFs. Obviously,
the reaction occurring in this temperature range is completely finished after continuous
stabilization. Furthermore, it can be observed that the same amount of HBC/PAN-based PF
releases less energy than PAN-based PF, which could facilitate the dissipation of reaction
heat in industrial production. A similar effect was observed by Chae et al. [6], according to
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which PAN/CNT fibers have developed less heat during enthalpy studies compared to
PAN fibers.
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Figure 4. Enthalpy study showing heat flow diagrams of PAN (black)- and HBC/PAN (red)-based
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Based on the heat flow curves the enthalpies could be estimated from which the
SI was calculated using Equation (1), shown in Table 4. A 6.8% increase in SI for the
modified material can be observed compared to the reference material. Therefore, it could
be assumed that HBC accelerates the stabilization reaction. The result of the density test
supports this thesis, as the HBC/PAN reached a higher density than the PAN-based SF. Still,
the large standard deviation of the SI of HBC/PAN suggests a greater inhomogeneity of the
modified fiber compared to the PAN fiber. Despite the presumably greater inhomogeneity
of the fiber, the DMA results show a better stretchability of the modified PF, which is a basic
prerequisite for high-tensile CFs. A more homogeneous HBC distribution in PAN could
therefore result in an even higher stretchability of the HBC/PAN-based PF. This should, in
turn, further improve the mechanical properties of resulting CF.

Table 4. Stabilization index, cyclisation index, and density of PAN- and HBC/PAN-based SFs.

SF Basis SI in % CI in % Density in g/cm3

PAN 45.9 ± 2.6 40.2 1.23 ± 0.02
HBC/PAN 52.7 ± 11.1 40.2 1.27 ± 0.02

3.2. Structural Analysis of PAN- and HBC/PAN-Based PFs and SFs Using FT-IR and XRD

Spectral investigations using FT-IR were performed to detect differences in the chemi-
cal structure by adding HBC to PAN. Figure 5 shows the FT-IR spectra of the PFs and their
corresponding SFs. The measurement was performed perpendicular to the fiber surface
because the radiation detects material up to a penetration depth of 200 nm. Since the fibers
have a diameter of up to 10 µm, only the outer part of the fiber, i.e., the skin, was measured.
If no HBC molecule can be identified from the FT-IR spectra, the HBC molecules ought to
be located further in the core of the fibers, which could be explained by shear forces during
the spinning process (when the material is extruded from the nozzles). Clearly visible are
the peaks of the nitrile groups C ≡ N at 2241 cm−1 and C = N at 1580 cm−1 [23,30,31],
which are marked with vertical dotted lines.
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Figure 5. FT-IR spectra of PAN- and HBC/PAN-based PFs and SFs.

The CI could be determined from these peaks, using Equation (2), listed in Table 4. The
CI, also called extent of reaction (EOR), is an indicator of the progress of the stabilization
reaction [22,32,33]. The CIs of HBC/PAN and PAN are identical, which means that the
thermal stabilization can proceed unaffected by the addition of HBC. However, the peak at
around 2363 cm−1, which can be associated with ionic amines C = NH+ [30], seems to be
diminished for HBC/PAN-based SF compared to PAN-based SF. Additionally, the peak at
about 2940 cm−1, attributed to the asymmetric C-H stretching of the -CH2 groups in the
PAN structure, appears reduced for the HBC/PAN-based SF compared to the PAN-based
SF which may be related to dehydration reactions [30]. Since calculation of the CI is not
affected by these functional groups, the stabilization process does not seem to be influenced
by the addition of HBC, yet they should still be considered in following investigations.

XRD was performed as a further structural analysis. The X-ray diffractograms were
each normalized. Figure 6 shows the different shape of the spectral curves of the X-ray
diffractograms of the two precursor types.
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Figure 6. X-ray diffractograms of PAN- and HBC/PAN-based PFs.

The dominant peak for both fibers is at 2θ ≈ 17◦. This peak and the peak at 29.6◦

can be attributed to the (100) plane and the (110) plane of the fiber diffraction pattern of
PAN with hexagonal packing [34]. The estimated curves of HBC/PAN-based PF show less
pronounced peaks in the (100) and (110) plane than for the PAN-based PF. Furthermore, the
peaks of HBC/PAN appear broader and show a slight shift to smaller angles compared to
PAN. Accordingly, the proportion of amorphous areas is more pronounced for HBC/PAN-
based PF. Thus, the XRD results show a lower crystalline content of the HBC/PAN-based
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PF compared to the unmodified PF. These results match the results of the DMA, according
to which HBC disturbs agglomeration during coagulation (Figure 3).

In contrast to this, the 1D XRD of PAN- and HBC/PAN-based CFs appeared equal
(Figure A7a in Appendix B). Therefore, an effect of HBC on the formation of graphite
structures was not evident here. Only the more precise 2D-XRD scans show differences in
the two CFs investigated (Figure A7b in Appendix B), which are also visible in the evalu-
ated spectral curves shown in Figure 7. Narrower FWHMs of the novel HBC/PAN-based
CFs are visible, which indicate a higher orientation in crystal structure. Likewise, the de-
creased orientation factor of the modified PF (Table 5) confirms the structural improvement,
calculated using Equation (3).
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Table 5. Orientation factor of PAN- and HBC/PAN-based PFs and their corresponding CFs.

PF CF
PAN HBC/PAN PAN HBC/PAN

Orientation
factor, f 0.65 0.69 0.75 0.77

3.3. Mechanical Properties and Density of PAN- and HBC/PAN-Based Fibers

Diameter analyses and single filament tensile tests were carried out to determine the
mechanical properties of the PFs and CFs. Microscopy images of both CFs in Figure 8 show
an approximately circular cross-sectional area. An exemplary SEM image of a HBC/PAN-
based CF is presented in Figure A8 including the method in Appendix C.
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Due to low stretching in stabilization and carbonization, relatively large diameters of
9.0 ± 0.9 µm for PAN- and 7.8 ± 0.7 µm for HBC/PAN-based CFs were achieved compared
to industrial CF with diameters of ~7 µm, e.g., T300. The diameter of HBC/PAN-based
CFs is smaller than that of PAN-based CFs due to the shrinkage behavior of the PF during
heat up, shown in Figure 3. HBC/PAN-based PF showed an increased physical shrinkage
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compared to PAN-based PF, which is accompanied by a decrease in thickness in the radial
direction, i.e., a reduction in diameter.

Table 6 gives an overview of the mechanical properties of PFs and their resulting
CFs. The two different PFs start at about the same textile properties: tensile strength of
HBC/PAN-based PF is slightly higher than that of PAN-based PF whereas the Young’s
modulus is similar. After stabilization and carbonization, both CFs exhibit tensile strengths
of about 1900 MPa and at least a Young’s modulus of 150 GPa. HBC/PAN-based CF shows
an improvement in Young’s modulus of about 38 GPa, which means an improvement
of about +25%. This improvement could be explained by the enhanced orientation in
the crystal structure of HBC/PAN-based CF shown in the 2D XRD results against the
PAN-based CF in Figure 7.

Table 6. Mechanical properties of PAN- and HBC/PAN-based PFs and their resulting CFs.

PF Basis Tensile Strength
in MPa

Young’s Modulus
in GPa

EAB
in %

Density
in g/cm3

PF
PAN 270 ± 20 7.1 ± 0.5 30.1 ± 6.5 1.15 ± 0.02

HBC/PAN 300 ± 30 7.6 ± 1.1 33.8 ± 7.0 1.16 ± 0.02

CF
PAN 1890 ± 346 152.5 ± 10.1 1.3 ± 0.2 1.51 ± 0.02

HBC/PAN 1933 ± 278 191.0 ± 11.3 1.1 ± 0.2 1.64 ± 0.02

Densities of PAN- and HBC/PAN-based PFs and CFs were estimated and listed
in Table 6. Both PFs started with a mass density of approx. 1.15 g/cm3 and a linear
density of 188.2 tex for PAN-based PF and 210.3 tex for HBC/PAN-based PF, respectively.
After stabilization, an increased density for the modified fiber can be seen (Table 4). This
difference in densities increases with the carbonization step. The observation complements
the previously suspected support of the nanomaterial in the conversion of the fiber, which
includes enhanced stabilization reactions as well as the formation of graphitic structures.
However, both fibers did not reach the ideal SF density value of 1.38–1.42 g/cm3 [27] for
higher mechanical properties. Future studies should investigate the impact of HBC content
and heat-treatment processes on the structure of high-performance CF.

4. Conclusions and Outlook

In this work, we reported a novel PAN-based PF, which was modified by HBC. The
novel HBC/PAN-based PF showed improved thermomechanical behavior compared
to PAN-based PF. HBC as an additive seemed to support stabilization reactions, and
HBC/PAN-based fibers showed potentially higher stretchability of PF and SF. With greater
stretching and thus smaller diameters, an even higher positive impact on the mechanical
properties of the resulting CF is expected. The modified CF improved the orientation of
crystal structure evident in the 2D XRD result and achieved an increased Young’s modulus
compared to PAN-based CF while maintaining tensile strength. In following studies, the
spinning process for a more homogeneous distribution of HBC in PF should be investigated.
Furthermore, optimized stabilization conditions and the influence of the HBC content to
determine the supporting effect of HBC on structure formation will be the object of future
studies. Moreover, alternative stabilization methods, such as plasma treatment, should be
examined to reduce both the duration of stabilization and, thus, energy consumption.

This study could pave the way for manufacturing PAN fibers modified with various
PAHs, which improve the thermomechanical properties during conversion to CF and
result in a CF with a higher Young’s modulus. This can open up new ways to tailor CF
properties through the interaction between raw material composition, process parameters,
and structure formation.
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Appendix A

Appendix A.1. Synthesis of HBC (1)

The reactions were performed using standard vacuum-line and Schlenk techniques;
work and purification of all compounds were performed under air and with reagent-
grade solvents. Column chromatography was performed with silica gel (pore size
60 Å, 70–2230 mesh, 63–200 µm from Sigma Aldrich, St. Louis, MO, USA) and silica-
coated aluminum sheets with fluorescence indicator from Merck were used for the thin
layer chromatography.
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Figure A1. Reaction scheme of the solution synthesis of Hexaphenylbenzene (3).

Hexaphenylbenzene (3) was synthesized according to the literature procedure [35]
and achieved with a yield of 63%.

Hexaphenylbenzene (HPB)(3): 1H−NMR (600 MHz, CD2Cl2): 6.93–6.82 (m, 30H)
ppm. 13C−NMR (151 MHz, CD2Cl2): 141.1, 140.6, 131.7, 126.8, 125.5 ppm. The 1H-
and 13C-NMR spectra of HPB (3) fits with the literature [36]. HR−MS (HR-MALDI-ToF):
m/z ([M]+) = 534.2335; calcd. for C42H30: m/z = 534.2347; error = −2.25 ppm.
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Figure A2. Reaction scheme of the solution synthesis of Hexabenzocoronene (1).

Hexabenzocoronene (1) was synthesized according to the literature procedure [35]
and achieved with a yield of 70%.

Hexabenzocoronene (1): HR−MS (HR-MALDI−ToF): m/z ([M]+) = 522.1400; calcd.
for C42H18: m/z = 522.1408; error = −1.53 ppm.

Appendix A.2. NMR Spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy: All 1H and 13C-NMR measurements
were recorded on a BRUKER AVANCE III 600 at 25 ◦C using standard pulse programs.
Chemical shifts are reported as δ-values in ppm. Coupling constants (J) are given in
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Hertz (Hz). Chemical shift was referenced in regard to δ dichloromethane-d2 CD2Cl2
(δ(1H) = 5.32 ppm, δ(13C) = 53.8 ppm). The following abbreviation is used to describe peak
patter as appropriate: m = multiplet.
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Appendix A.3. High-Resolution Mass Spectrometry of HPB (3) and HBC (1)

HR-MALDI-TOF MS spectra were recorded on a Bruker Autoflex Speed MALDI-TOF
MS (Bruker Daltonics, Bremen, Germany) with Dithranol as the matrix. The preparation
for all samples was performed in solid state.
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Appendix C. SEM Imaging

To investigate the cross-section of CF, scanning electron microscopy (SEM, NOVA
NanoSEM 450, FEI, Hillsboro, OR, USA, software xTMicroscope Control v.6.3.0) with an
acceleration voltage of 10 kV was performed. To increase the contrast, the samples were
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coated with platinum for 50 s in an ion sputtering coater. The current for the coating process
was 5 mA. The picture was taken with a magnification of 35,000× in a vacuum chamber.
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