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Abstract: Fiber laser sources in the spectral range near 1.7–1.8 µm are in highly demand for a lot of
applications. We propose and theoretically investigate a dual-wavelength switchable Raman tungsten-
tellurite fiber laser in the 1.7–1.8 µm range which can produce two stable modes at frequencies
separated by ~7 THz with a pump at 1.55 µm. The Raman waves shifted by 19.8 THz (mode 1) and
27.5 THz (mode 2) from the pump frequency can be generated near two different maxima of the
Raman gain spectrum (gain is higher at 19.8 THz and twice lower at 27.5 THz). We numerically
simulate two-mode Raman lasing with allowance for energy transfer from the pump wave to modes 1
and 2, and from mode 1 to mode 2 due to inelastic Raman scattering. Diagrams of generation regimes
depending on system parameters are constructed. We demonstrate controlled switching between
two modes by changing the pump power. For the same intracavity losses for both Raman modes at
relatively low pump powers, only mode 1 is generated. At medium pump power, generation occurs
simultaneously in both modes. At relatively high pump power, only mode 2 is generated near the
weaker maximum. This effect seems surprising, but a rigorous explanation with allowance for the
nonlinear interaction between mode 1 and mode 2 is found. When losses for one of the modes change,
switching of the generated regimes is also predicted.

Keywords: Raman fiber laser; Raman gain; dual-wavelength laser; tungsten-tellurite glass fiber; mode
competition

1. Introduction

The spectral range near 1.7 µm has unique properties. There are absorption peaks of
different bio-molecules in this range. Moreover, there are absorption peaks of O–H, C–O,
N–O, and C–H bonds near 1.7 µm. At the same time, this range belongs to the valley between
the absorption bands of water. For these reasons, 1.7 µm fiber laser sources find applications
in bio-imaging and medical treatment [1–3], gas sensing [4], material processing [5], and so
on. There are different ways to obtain laser waves in the 1.7 µm range based on optical fiber
technologies, with certain advantages and disadvantages. For instance, these are Tm-doped
fiber lasers and amplifiers [6,7], Bi-doped fiber lasers and amplifiers [8,9], light convert-
ers based on Raman soliton self-frequency shift in nonlinear fibers [10,11], and Raman
lasers [12–14]. In contrast to population inversion lasers that generate in the wavelength
bands corresponding to radiative transitions and require certain pump wavelengths, Raman
lasers have no such restrictions. This can be highly promising for the development of widely
tunable lasers (in the presence of tunable pump sources) [15]. The development of nonlinear
fiber sources based on Raman-assisted effects has attracted increasing attention in recent
years [16–18]. In addition to silica fibers, tellurite fibers seem to be prospective nonlinear
media by virtue of a large Raman gain and a large Raman shift of tellurite glasses [19–22].

As a rule, in experimental and theoretical works devoted to continuous-wave (CW)
tellurite fiber Raman lasers, fibers based on zinc-tellurite glasses are studied [19,23,24]. For
zinc-tellurite glasses, the Raman gain spectrum has two main maxima located near 430
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and 740 cm−1, and the gain near the maximum at 740 cm−1 is approximately twice as
high [19–21,25]. In this case, Raman lasing occurs near the peak at a frequency shifted by
740 cm−1 relative to the pump. Due to the large frequency shift, high Raman gain, sufficiently
high damage threshold, and wide transparency band with a red border of ~5–5.5 µm, zinc-
tellurite glasses are very promising for use in cascade Raman lasers, especially in the mid-IR
range [23]. Such schemes were theoretically studied, for example, in [23,24], where only
one Raman wave was considered in each order. In this case, the frequencies of Raman
waves in successive cascades differ by ~22 THz (740 cm−1). However, there are other known
compositions of tellurite glasses for which, in contrast to zinc-tellurite glasses, the Raman
response function contains three distinct maxima. For tungsten-tellurite glasses, the first
maximum is also located at about 430 cm−1, the second maximum at about 650–750 cm−1,
and the third maximum at about 920–940 cm−1 [20,22]. Thus, tungsten-tellurite glass Raman
lasers are promising for generation of the Stokes waves shifted by large values of 20 THz
and 27 THz (in the first cascade) from the pump frequency. For comparison, the Raman shift
in the first cascade for silica and germanate glasses is ~13 THz [26,27], for As40S60 glasses it
is ~10 THz [28], and for As40Se60 glasses it is ~7 THz [28].

The Raman response function of the considered tungsten-tellurite (87.5TeO2–12.5WO3)
glass is shown in Figure 1 according to experimental data presented in [20]. However,
depending on the exact composition of the glass (the content of TeO2 and WO3 and other
oxides), the gain near the third maximum (near 27.5 THz) can be either lower [20] or
higher [22] than the gain near the second maximum (near 19.8 THz). Such a complex form
of the Raman response function can lead to complex and counterintuitive dynamics of
Raman lasing with mode competition, especially if the second maximum is larger than the
third one. More recently, photonic devices based on tungsten-tellurite glasses have made it
possible to discover a new regime of dual-wavelength Raman generation with a frequency
separation between waves of about 6–7 THz. The nontrivial dynamics of Raman waves in a
spherical microresonator made of tungsten-tellurite glass was experimentally demonstrated
and theoretically explained, taking into account the competition of nonlinearly coupled
modes, leading to such dual-wavelength lasing at wavelengths of 1.73 µm and 1.8 µm with
a pump at 1.55 µm [29].
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Figure 1. Raman gain spectra of TeO2-WO3 (magenta) and SiO2 (black) glasses. Raman spectrum of
SiO2 glass is multiplied by 10.

In this work, we propose and theoretically investigate a CW multi-watt Raman fiber
laser based on a tungsten-tellurite glass fiber which can generate two stable modes at
frequencies separated by 7 THz. Such a laser may be of interest for many applications,
including spectroscopy, remote sensing, medical treatment, the generation of terahertz
radiation, and so on. We demonstrate controlled switching between two modes by changing
the pump power. For the same intracavity losses for both Raman modes, at relatively
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low pump powers, only the mode near the 2nd maximum of Raman gain (shifted by
~20 THz from pump frequency) is generated. At medium pump powers, generation occurs
simultaneously in both modes near the 2nd (shifted by ~20 THz) and near the 3rd (shifted by
~28 THz) maxima. At relatively high pump powers, only the mode near the 3rd maximum
(shifted by ~28 THz) is generated. The generation of a wave near the 3rd weaker maximum
of the Raman gain in the absence of generation near the stronger 2nd maximum seems
to be a surprising effect which, however, finds a rigorous explanation with allowance
for the nonlinear interaction between these waves. When the losses for one of the modes
change, switching between the generated regimes can also be observed. The study of
dual-wavelength switchable generation in a tellurite fiber laser, in which both waves are
located in the first cascade relative to the pump, was performed for the first time, although
the experimental observation of non-laser multiple Raman peaks in a tellurite fiber was
experimentally reported in [21]. CW Raman lasers based on tungsten-tellurite fibers have
not been previously studied, to the best of our knowledge. The maximum Raman gain
in tungsten-tellurite glasses is notably higher than that in zinc-tellurite glasses and is
2 orders of magnitude higher than that in silica and germanate glasses [20,22,27]. Thus,
for TeO2-WO3(-Bi2O3) glass, Raman gain can be 80–120 times higher than the maximum
value for silica glass [20,22]. Using a realistic design and experimental data from [20,29], we
numerically demonstrate the prospects of using tungsten-tellurite fibers for CW multi-watt
dual-wavelength switchable Raman lasers in the 1.7–1.8 µm range with a commercially
available Er:fiber pump at 1.55 µm.

2. Materials and Methods
2.1. Conceptual Scheme

We have considered dual-wavelength Raman generation in tungsten-tellurite fiber
lasers with a pump wave at 1550 nm that is readily achievable, for instance, using commer-
cial or customized Er:fiber lasers. The developed model includes two Raman waves in the
first cascade relative to the pump wave: mode 1 at 1727 nm and mode 2 at 1807 nm. These
modes are down-shifted from the pump frequency by 19.8 THz and 27.5 THz, respectively,
corresponding to the 2nd and 3rd maximums of the Raman gain spectra in Figure 1 [20].
Mode 1 and mode 2 are amplified by the pump; moreover, they nonlinearly interact with
each other. Mode 1 amplifies mode 2 due to stimulated inelastic scattering with gain pro-
portional to the Raman function at the difference frequency (27.5 THz–19.8 THz) = 6.7 THz.
The mode interaction is illustrated schematically in Figure 2a.
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Figure 2. (a) Scheme of dual-wavelength Raman lasing taking into account Raman energy transfer:
from 1550 nm pump to mode 1 at 1727 nm, from pump to mode 2 at 1807 nm, and from mode 1 to
mode 2. gRp1, gRp2, and gR12 are Raman gain coefficients: for mode 1 amplified by pump wave, for
mode 2 amplified by pump wave, and for mode 2 amplified by mode 1, respectively. (b) Scheme of
dual-wavelength fiber Raman laser. Pp

+ is the power of forward-propagating pump wave; P1,2
+ and

P1,2
− are the powers in mode 1,2 propagating in forward and backward directions, respectively. R01,02

and RL1,L2 are the reflection coefficients for mode 1,2 at the input and output fiber ends, respectively.

We assumed that a laser resonator for mode 1 and mode 2 can be formed either by two
pairs of Bragg gratings, or by mirrors, or reflective coatings applied to the fiber ends. The



Fibers 2023, 11, 84 4 of 11

specific implementation of the setup is not important here; only the reflection coefficients
from each reflector are substantial. The adopted variant is shown in Figure 2b. The residual
pump at the output fiber end did not return to the resonator.

2.2. Numerical Model

We analyzed fiber Raman lasers based on a tungsten-tellurite glass step-index fiber
with core diameter d = 6 µm and numerical aperture NA = 0.18, providing single mode
propagation for a pump wave at 1550 nm and Raman waves at 1727 and 1807 nm (with
V-parameters being 2.189, 1.965, and 1.878, respectively). The effective mode field areas Aeff
were calculated using the approximate analytical formula [26]:

Ae f f =
πd2

4

(
0.65 + 1.619V− 3

2 + 2.879V−6
)2

. (1)

The set and calculated fiber parameters used in modeling are given in Table 1.

Table 1. Parameters of the fiber Raman laser used in modeling.

Parameter Symbol Value

Fiber core diameter d 6 µm
Numerical aperture (core/cladding) NA 0.18

Pump frequency (λp = 1550 nm) fp 193.5 THz
Frequency of mode 1 (λ1 = 1727 nm) f1 173.75 THz
Frequency of mode 2 (λ2 = 1807 nm) f2 166.0 THz

Effective area at λp = 1550 nm Aeffp 39 µm2

Effective mode area at λ1 = 1727 nm Aeff1 47 µm2

Effective mode area at λ2 = 1807 nm Aeff2 51 µm2

Raman gain
(for mode 1 amplified by pump wave) gp1 13.5 × 10−4 (W cm)−1

Raman gain
(for mode 2 amplified by pump wave) gp2 6.3 × 10−4 (W cm)−1

Raman gain
(for mode 2 amplified by mode 1) g12 2.8 × 10−4 (W cm)−1

Fiber loss α
0.3 dB/m (for Figures 3–5);

0. . .3 dB/m (only for Figure 6)
Reflection coefficient for mode 1,2 at z = 0 R01,02 0.98
Reflection coefficient for mode 1,2 at z = L RL1,L2 0.05. . .0.95

The theoretical model describing cascade fiber Raman lasers of the nth-order with
allowance for only one mode in each cascade is well known [30]. Here, it is of principal
importance for us to take into account the Raman interaction between two modes in the
first cascade generated near the 2nd and 3rd maxima of the Raman gain spectra near
19.8 THz and 27.5 THz, respectively (Figure 1). That is why we generalize the system of
equations to include the Raman interaction between these nonlinearly coupled modes 1
and 2 according to the scheme in Figure 2a. We neglected cascade Raman lasing, for which
the expected Raman wavelengths should be about 2 µm and beyond in the second cascade.
We assumed that intracavity losses were high for second-cascade Raman waves since
the reflection coefficients in the resonator were small at the corresponding wavelengths
(which is easily achieved for Bragg gratings or selective dielectric mirrors). There was no
modulation instability in the system since the considered fiber has normal dispersion and
is not birefringent. Other possible four-wave mixing processes were also excluded. We
checked that phase-matching conditions between possible sets of wavelengths were not met.

Thus, the master equations for the evolution of a pump wave with a power of Pp
+(z)

propagating in the forward direction and modes 1,2 propagating in both the forward and
backward directions with powers P1,2

+(z) and P1,2
−(z), respectively, are written as [16,29,30]:
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dP+
p

dz
= −gp1

fp

f1

(
P+

1 +P−
1
)

P+
p − gp2

fp

f2

(
P+

2 +P−
2
)

P+
p − αP+

p (2)

±
dP±

1
dz

= gp1P+
p P±

1 − g12
f1

f2

(
P+

2 +P−
2
)

P±
1 − αP±

1 (3)

±
dP±

2
dz

= gp2P+
p P±

2 + g12
(

P+
1 +P−

1
)

P±
2 − αP±

2 , (4)

where α is the optical loss, gp1 (gp2) is the Raman gain of mode 1 (mode 2) directly from
the pump, and g12 is the Raman gain of mode 2 provided by mode 1 which depends on
the Raman gain function at the difference frequency f 2–f 1. The Raman gain for the fiber is
proportional to the Raman gain for the bulk glass (Figure 2a) inversely proportional to the
amplifying wavelength, and inversely proportional to half sum of the areas of amplifying
and amplified modes [26] (Table 1).

We assumed that the residual pump at the output end (z = L) was not recycled;
hence, the boundary conditions were written only for mode 1 and mode 2 considering the
reflection coefficients at the input (R01 and R02) and output (RL1 and RL2) ends:

P+
1 (0) = R01P−

1 (0) (5)

P−
1 (L) = RL1P+

1 (L) (6)

P+
2 (0) = R02P−

2 (0) (7)

P−
2 (L) = RL2P+

2 (L). (8)

To solve numerically the system of Equations (2)–(4) with the boundary conditions
(5)–(8) we used the Runge–Kutta method adapted for such kind of problems [30].

3. Results

We have numerically simulated and investigated in detail CW dual-wavelength switch-
able Raman lasing in the framework of the developed two-mode model. An example of
the evolution of pump power and intracavity powers of mode 1 at 1727 nm and mode 2 at
1807 nm for parameters of the system when two modes are generated simultaneously is
presented in Figure 3.

First, we studied the features of dual-wavelength Raman lasing for various pump
powers and output reflection coefficients for the fixed intracavity fiber length L = 1 m. A di-
agram of different generation regimes is displayed in Figure 4a. The horizontal green
dash-dotted line in Figure 4a corresponds to RL1 = RL2 = RL = 0.45. The output powers
in mode 1 and mode 2 as a function of the pump power obtained by moving along this
horizontal line are plotted in Figure 4b. The green pentagrams in Figure 4a,b show the
interfaces between Raman generation regimes. At very low pump powers, the generation
threshold is not reached for the Raman wave since the total losses exceed the gain. This
case is labeled “I” in Figure 4a,b. With increasing pump power, the gain grows, and the
generation threshold for mode 1 is first observed at the interface between areas I and II
(assuming that the fiber losses and the losses on reflectors at z = 0 and z = L are equal for
mode 1 and mode 2). In area II, only Raman mode 1 is generated, and the total losses for
this mode are compensated by the gain from the 1550 nm pump. As the pump is increased,
the power of mode 1 at 1727 nm grows, and the gain for mode 2 at 1807 nm from the pump
wave and from mode 1 also grows until it reaches total losses. The generation threshold
for mode 2 is reached at the interface between areas II and III in Figure 4a,b. There is also
area III in Figure 4a,b, where both modes coexist stably. In area III, the power of mode 1
decreases, whereas the power of mode 2 increases with increasing pump power. In this area,
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the pump transfers its power due to stimulated Raman scattering to both waves at 1727 nm
and at 1807 nm (according to Equations (2)–(4)); mode 1 also transfers power to mode 2
(according to Equations (3) and (4)). So, in area III, the total gain for each Raman mode
exactly compensates for its losses. There is also a counterintuitive area of parameters IV in
which only mode 2 is generated, although the Raman gain from the pump gp2 is less than
gp1. However, the explanation is that for mode 1, the total loss is determined not only by
the fiber loss and losses on reflectors but also by losses due to stimulated Raman scattering
into mode 2, which is seen from the term –g12(f 1/f 2)(P2

+ + P2
−)P1

±) in Equation (3). In area
IV, the total losses for mode 1 are higher than the Raman gain from the pump. In area IV
for mode 2, as for conventional (population inversion or Raman) single-color lasers, the
higher the pump power, the higher the output laser power [31]. Thus, by changing the
pump power at all other fixed parameters, one can control switching between the generated
CW Raman waves at 1727 nm and 1807 nm, as well as obtain dual-wavelength Raman
generation (Figure 4b).

We also investigated how the output reflectance affects the output Raman wave
powers. It is well known from the general theory of lasers that there is an optimal value
of the output reflection coefficient that provides maximum output laser power [31]. For
our two-mode system, we obtained the same results. We set a pump power of 7.5 W
and modeled the output powers in mode 1 and 2 as a function of the output reflection
coefficients RL1 = RL2 = RL (Figure 4c), which corresponds to the motion along the vertical
purple dash-dotted line in Figure 4a. Areas I, II, III, and IV are also shown in Figure 4c. In
area IV, the maximum output power in mode 2 is obtained for RL

opt ~ 0.75. In area IV, at
RL > RL

opt, the intracavity power is high, but the fraction of outcoupled power is relatively
small; at RL < RL

opt, the intracavity power is not high enough.
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Figure 4. (a) Diagram demonstrating different CW regimes for varied pump power and output
reflection coefficients RL1 = RL2 = RL: no Raman generation (area I), Raman generation only in mode
1 (area II), Raman generation in mode 1 and mode 2 simultaneously (area III), and Raman generation
only in mode 2 (area IV). (b) Output power of mode 1 and mode 2 as a function of pump power
modeled for RL1 = RL2 = RL = 0.45, corresponding to the green dash-dotted horizontal line in (a). (c)
Output power of mode 1 and mode 2 as a function of output reflection coefficient RL1 = RL2 = RL

modeled for pump power of 7.5 W, corresponding to the purple dash-dotted vertical line in (a).
Output powers in mode 1 (d) and in mode 2 (e) depending on pump power and output reflection
coefficients RL1 = RL2 = RL. The dashed curves in (d) and (e) correspond to the interfaces of Raman
regimes (a). All subplots were modeled for L = 1 m. The pentagrams in (a,b) and the triangles in (a,c)
mark the interfaces between the regimes.

The output powers in mode 1 and mode 2 vs. pump power and output reflection
coefficient are plotted in Figure 4d,e, respectively. The dash-dotted curves are the interfaces
between different regimes, as shown in Figure 4a. The maximum output power in mode 1
is achieved at the interface between regimes II and III. The higher the pump power, the
lower the optimal reflection coefficient for each mode. Figure 4d,e clearly demonstrate that
low reflection coefficients (i.e., high intracavity losses) are favorable for the generation of
mode 1 only, while high reflection coefficients (i.e., low intracavity losses) are favorable
for the generation only of mode 2. For dual-wavelength or switchable Raman lasing, the
reflection coefficient should be neither too low nor too high.

Next, we fixed the pump power at 10 W and simulated output powers in mode 1
and mode 2 as functions of intracavity fiber length and output reflection coefficients
RL1 = RL2 = RL. The diagram of Raman generation regimes for this pair of variables is
given in Figure 5a. The meaning of areas I, II, III, and IV is the same as in Figure 4a. We
plotted the output power in mode 1 (Figure 5b) and in mode 2 (Figure 5c) as a function
of fiber length for selected values of output reflection coefficients of 0.1, 0.2, 0.4, 0.7, and
0.9, which are shown by dash-dotted horizontal lines in Figure 5a. For the considered
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intracavity fiber lengths and small reflection coefficients, only mode 1 can be generated;
mode 2 is below the threshold. For a representative example of RL = 0.1, the horizontal line
in Figure 5a intersects only areas I and II. The maximum power in mode 1 is reached at
a certain length of about 2.7 m (Figure 5b). For RL = 0.2, the dash-dotted line intersects
three areas I, II, and III. Only mode 1 is observed in area II, and dual-wavelength lasing
is observed in area III. For other selected examples, RL = 0.4, 0.7, and 0.9, the dash-dotted
lines intersect four areas: I, II, III, and IV. Thus, all regimes are realized, including lasing
in mode 1 (area II), dual-wavelength lasing (area III), and lasing in mode 2 with complete
suppression of mode 1 (area IV). When the horizontal line intersects at least three areas I, II,
and III, the maximum output power in mode 1 is reached at the interface of areas II and III.
Maximum output power in mode 2 can be reached at longer intracavity fiber lengths. The
higher the reflection coefficient, the sharper the maxima for both modes.
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Figure 5. (a) Diagram demonstrating different steady-state regimes for varied intracavity fiber length
and output reflection coefficients RL1 = RL2 = RL: no Raman generation (area I), Raman generation
only in mode 1 (area II), simultaneous Raman generation in mode 1 and mode 2 (area III), and Raman
generation only in mode 2 (area IV). Output power of mode 1 (b) and mode 2 (c) as a function of
intracavity fiber length for different output reflection coefficients RL1 = RL2 = RL. All subplots were
modeled for a pump power of 10 W.

Then, we studied how fiber optical loss affects the features of a dual-wavelength Raman
laser. The diagram of Raman generation regimes as a function of pump power and fiber
loss is plotted in Figure 6a for the intracavity fiber length L = 1 m and RL1 = RL2 = RL = 0.7.
The meaning of areas I, II, III, and IV is the same as in Figures 4a and 5a. We plotted
the output power in mode 1 (Figure 6b) and in mode 2 (Figure 6c) as a function of pump
power for selected values of fiber loss of 0.1, 0.3, 0.5, 1, and 2 dB/m, which are shown by
dash-dotted horizontal lines in Figure 6a. The result that the higher the loss, the higher
the threshold powers for each regime is quite expected. At high losses, the conditions for
generating mode 1 are better, and at low losses, the conditions for generating mode 2 are
better (Figure 6b,c). At first sight, it may seem counterintuitive that, with larger fiber losses,
higher power can be achieved in mode 1. For example, the maximum out power is >2 W
for a loss of 2 dB/m and <1 W for 0.3 dB/m. Meanwhile, the explanation is very simple:
with increasing loss, the threshold for mode 2 becomes higher, and the maximum output
power of mode 1 is reached at a higher pump power. Note that the slope efficiency of mode
1 (in area II) is lower for higher losses, which agrees with the general theory. For Raman
lasing in mode 2, low fiber losses are preferable (Figure 6c).

Finally, we analyzed the case when output reflection coefficients are different for
mode 1 and mode 2, which may be done using selective mirrors or Bragg gratings written
for each wave. We fixed intracavity fiber length to be L = 1 m and RL1 = 0.7, while RL2 was
varied. The output powers in mode 1 and mode 2 as a function of pump power are plotted
in Figure 7a,b, respectively, for selected values, RL2 = 0, 0.1, 0.2, 0.4, 0.7, and 0.9. The higher
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RL2, the lower the threshold for mode 2. At the highest of the considered values RL2 = 0.9,
mode 1 is not excited, and only mode 2 can be generated since total losses for mode 1 are
higher than for mode 2 for any pump power. Thus, by varying the intracavity losses for
mode 2, it is possible to control and switch the generation regimes.
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4. Discussion

We theoretically considered dual-wavelength Raman tungsten-tellurite glass fiber lasers
with switchable modes operating in the 1.7–1.8 µm band with a pump wave at 1.55 µm
with allowance for energy transfer between Raman modes. Note that Raman lasing with
switching between modes 1 and 2 was previously experimentally observed in a tungsten-
tellurite glass microresonator [29]. The results obtained here are in qualitative agreement
with the experimental results of Ref. [29]. To the best of our knowledge, no experimental
implementation of Raman lasing in tungsten-tellurite glass fibers has been reported yet.

The proposed idea and the developed theoretical model can be exploited for other
operating wavelengths since diverse applications require laser sources in various spectral
ranges. The developed approach can be easily used in the entire transparency window of
tungsten-tellurite fibers. For instance, there is great interest in multi-watt laser sources at
1178 nm for further frequency doubling to produce yellow light at 589 nm [32]. Raman
generation at 1178 nm can be obtained by operating with mode 2 (frequency-shifted from
a 1.06 µm pump by 27.5 THz) using high-power Yb:silica fiber laser systems. Raman
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lasers are also of particular interest at wavelengths > 2.2 µm, where laser sources are less
developed than in the near-IR. For instance, with a pump at 2 µm available with Tm:silica
fiber lasers, dual-wavelength Raman generation in a tungsten-tellurite fiber at ~2.3 µm and
~2.45 µm is expected. With a pump at 2.8 µm, available with Er:ZBLAN fiber lasers, Raman
lasing at ~3.4 µm and ~3.8 µm is predicted. When developing Raman lasers outside the
1.7 µm spectral band considered in the work, the optimal parameters of a tungsten-tellurite
fiber and the scheme will change, but it is easy to calculate them in the framework of the
presented model.

5. Conclusions

To conclude, we proposed and theoretically studied a dual-wavelength switchable
Raman tungsten-tellurite fiber laser which can produce two stable modes at frequencies
separated by ~7 THz (at 1.73 and 1.8 µm with a pump at 1.55 µm). The Raman waves shifted
by 19.8 THz (mode 1) and 27.5 THz (mode 2) from the pump frequency can be generated
near two different maxima of the Raman gain spectrum (gain is higher at 19.8 THz and
twice lower at 27.5 THz). We developed a numerical model based on generalized coupled
equations for the evolution of powers of the pump wave and of modes 1, 2 with allowance
for the energy transfer from the pump wave to modes 1, 2 and from mode 1 to mode 2 due
to inelastic Raman scattering. We performed detailed numerical studies of dual-wavelength
switchable Raman lasing with varied parameters of the systems and investigated specific
features of the nonlinear behavior of the Raman waves. Diagrams of the generation regimes
vs. system parameters were plotted. It was shown that by varying pump power, the
following regimes may be implemented in the system: (I) no Raman lasing; (II) Raman
lasing only in mode 1; (III) simultaneous Raman lasing in modes 1,2; and (IV) Raman
lasing only in mode 2. We studied the influence of cavity fiber length, losses, and reflection
coefficients and found the corresponding dependences.

Therefore, the presented results demonstrating surprising nonlinear dynamics of two-
mode Raman lasing are interesting from a fundamental point of view and may be used as
guidance for developing an experimental system in a wide spectral range corresponding to
the transparency band of tungsten-tellurite glass.
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