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Abstract: The use of the innovative material of Carbon Fiber-Reinforced (C-FRP) ropes as external
near surface mounted reinforcement for the strengthening of reinforced concrete beam-column joints
is studied. The ropes are diagonally applied forming external X-type reinforcements on both sides of
the joint body. The efficiency of the technique is mainly based on the assumption that the confinement
of the joint body due to the applied X-shaped ropes and the contribution of the ropes as shear
reinforcement are efficient enough to reduce the shear deformations observed in the joint core during
the seismic excitation. Thereof the experimental measurements of the shear deformations of nine
full scale beam-column joints tested in cyclic deformations are elaborated and presented herein. The
specimens are sorted in two groups. Specimens of group A have been designed in the way that
damage is mainly expected in the beam. On the other hand, in order to investigate the efficacy of
the use of the ropes for substandard joints the group B specimens have been designed in the way
that cracks and some damages are expected to develop in the joint body. Systematic and extended
comparative presentations for specimens with and without ropes proved in all the examined cases
that the externally mounted C-FRP ropes kept the joint body intact and substantially reduced the
shear deformations especially in high drifts. Moreover, the influence of the externally mounted
X-shaped C-FRP ropes on the seismic behaviour of these specimens is also examined in terms of the
developing principal tensile stresses inside the joint body. From the comparisons of the principal
stresses developing in specimens with and without X-form C-FRP ropes it became quite obvious
that the ropes kept the joint body intact and allowed the development of higher values of principal
stresses comparing with the stresses developing in specimens without ropes.

Keywords: strengthening of beam-columns; FRP ropes; shear deformations

1. Introduction

Research on the efficiency of strengthening techniques for reinforced concrete elements
constitutes a scientific field of utmost importance due to the vital issue of the structures’
safety in seismic prone areas and due to the relevant huge financial interests.

Easily applied techniques for the strengthening of reinforced concrete joints aiming
at reducing repair time have been recently reported [1]. Reinforced concrete structures
are usually designed and constructed with steel bars as reinforcement. Nevertheless, new
materials like Fiber Reinforced Polymers (FRPs) in the form of sheets or bars have also
been reported for the strengthening or rehabilitation of deficient or damaged reinforced
concrete elements [1–11]. A review with an extensive database extracted from the literature
about tested beam-column joints strengthened with FRPs are presented in a state-of-the-art
report by Pohoryles et al. [5]. Murad et al. [6] proposed the application of FRP sheets for
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the rehabilitation of beam-column joints made of recycled concrete. Further, an experi-
mental investigation of the effectiveness of the use an innovative anchor for FRP sheets
externally applied for the strengthening of beam-column joints has been experimentally
investigated [8,9]. Furthermore, experimental works considering near surface mounted
(NSM technique) fiber reinforced plastics have lately been reported [12–16]. A state-of-
the-art report for near surface mounted FRPs has also been published [17]. Strengthening
techniques using steel products mounted on the surface of concrete elements have also
been reported [18–21]. Further, analytical approaches have been proposed, too [22,23].

Recently the application of fiber reinforced plastics in the form of flexible ropes
has been tested as external reinforcement for the strengthening of reinforced concrete
elements [24,25]. In particular Karayannis and Golias [26,27] have used Carbon Fiber-
Reinforced Plastics (C-FRP) ropes for the strengthening of exterior beam-column yielding
useful and promising conclusions. In this case C-FRP ropes are usually applied diagonally,
forming external X-shape reinforcements on both sides of the joint. In general, it is stressed
that research on the strengthening and repair methods is really a challenging field consider-
ing the financial implications after severe seismic events and the fact that the main tool of
research in this field is the experiment and especially the testing of real scale specimens. On
the other hand, it is emphasized that the use of the externally mounted carbon fiber ropes
has an “easy-to-apply character of its application” in comparison to other well-known
strengthening techniques like the application of reinforced concrete jacketing, the shotcrete
jacketing and others. The efficiency of the technique is mainly based on the assumption
that the confinement of the joint body due to the applied X-shaped ropes is efficient enough
to reduce the shear deformations observed in the joint core during the seismic excitation.
Therefore, in this work an attempt for the study of the influence of the ropes on the observed
shear deformation of exterior beam-column joints is presented. The attempted investigation
is based on experimental data acquired from an extended experimental project initial results
of which have recently been published by the authors [27].

2. Design Purpose of the Joint Specimens
2.1. Characteristics of Specimens—Materials

The characteristics of the specimens have been chosen to be suchlike the ones of the
columns and the beams of common structures. The total length of the column part is equal
to 3.0 m and its cross-section is 350/250 mm whereas the length of the beam is 1.875 m
and its cross-section is 350/250 m. Dimensions and the positions of the reinforcements are
presented in Figure 1 whereas the amounts of reinforcements are given in Table 1.

Table 1. Reinforcements of beam-column specimens.

Reinforcements JA0 JA0F2x2b JA1 JA1F2x2b JB0 JB1 JBX JB1Fx JB2F2x2b
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Figure 1. Geometry and steel reinforcement for the specimens (dimensions in mm): (a) JA1, (b) JBX, 
(c) JA0, (d) JB1, (e) JB1FX, (f) JA1FXb. 

  

Figure 1. Geometry and steel reinforcement for the specimens (dimensions in mm): (a) JA1, (b) JBX,
(c) JA0, (d) JB1, (e) JB1FX, (f) JA1FXb.

The purpose of the beam-column specimens is the study of the application of diag-
onally placed C-FRP ropes on each one of the two sides of the joints as strengthening
technique (NSM technique) [12–17,26–29].

In this direction the shear deformations of nine full scale specimens of exterior beam-
column joints under cyclic loading are presented and examined. The attempted investiga-
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tion is mainly based on the observed shear deformations of the joint body. The specimens
are sorted into two groups (Table 1); group A and group B.

For the compressive strength of concrete supplementary compression tests of six
cylinders (150 × 300 mm) were performed; mean value of compressive strength was found
fcm = 34 MPa. The steel reinforcement was B500C with mean tensile strength fy = 550 MPa.
The C-FRP rope used for the strengthening of specimens JA0F2x2b, JA1F2x2b, JB1Fx and
JB1F2x2b is a bundle of unidirectional carbon fibers with tensile strength equal to 4000 MPa,
modulus of elasticity equal to 240 GPa and cross-section area > 28 mm2, according to
manufacturer’s data (SikaWrap® FX-50 C, SIKA HELLAS SA). Two types of epoxy resins
were used: resin type A (Sikadur®-52) for the impregnation of dry fibers and type B (Sika
AnchorFix®-3+) for the anchorage of system.

2.2. Examination of the Expected Damage

Detailed examination of the nature of the expected damage of the joint specimens was
performed based on a well-known model by Tsonos [30–33]. This model [30] describes an

approach for the determination of the ultimate shear τult and the factor γult = τult/
√

f′cd.

Factor γult is then compared to the developing shear γcal where γcal = τcal/
√

f′cd. From
this comparison, for group A specimens, it can be seen that γcal�γult. Thereunder, it can
be deduced that the damage is expected to be located in the beam of the specimens and the
joint body to remain intact. On the other hand, for the group B specimens, the value of γcal
was little less than the value of the ultimate shear γult concluding that the cracking system
is expected to be developed both in both the beam and the joint body. These predictions
were experimentally verified.

2.3. Group A Specimens

Group A comprises 4 specimens; two specimens of group A, specimens JA0 and JA1 are
the reference specimens whereas the other two specimens (JA0F2x2b and JA1F2x2b) have
been strengthened with C-FRP ropes diagonally placed as external superficial reinforcement
for the strengthening of the joint.

Specimens of group A have been designed in the way that the damage is mainly
expected to be located in the beam and not within the joint body (capacity design of frames).
They represent common cases of existing structures that have to be strengthened for a
reason. The adopted strengthening scheme has been chosen to improve the strength and
ductility of the beam-column joint as a whole. The purpose of group A specimens is to
experimentally study the efficacy of the use of ropes as external reinforcement to strengthen
exterior beam-column connections designed to withstand seismic actions without signifi-
cant damage in the joint body.

2.4. Group B Specimens

Group B comprises 5 specimens (Table 1); specimens JB0 and JB1 are the reference
ones and JB1Fx and JB2F2x2b have been strengthened with C-FRP ropes. Specimen JBX
(Figure 1b) has been constructed with steel bars diagonally (X-type) placed in the joint body
as shear reinforcement of the beam-column joint. Comparing the shear deformations of
specimen JBX with the shear deformations of specimen JB0, useful conclusions about the
effectiveness of the X-type reinforcement as shear reinforcement of the joint is evaluated.

In order to investigate the efficacy of the use of the ropes as external strengthening
technique for substandard joints the group B specimens have been designed in the way
that cracks and some damages are expected to develop in the joint body.

The maximum shear force enforced in the joint by the 4 bars (14 mm diameter) of
the tensile reinforcement of the beam is Vjhd = 320 kN and therefrom the shear stress
is τ = 3.67 MPa. Further, it is calculated that for the specimens holds ΣMc/MRb = 1.43.
According to ACI 318 external joints have to satisfy the relationship ΣMc/MRb > 1.40.



Fibers 2022, 10, 28 5 of 16

Thereunder cracks are expected in the beam but since ΣMc/MRb = 1.43 is almost equal to
the critical value 1.40 cracks and damage are also expected in the joint body.

3. Test Setup and Measurement of Shear Deformations

Test setup and the applied loading history are presented in Figure 2 [26,27]. Defor-
mations of the specimen are presented in terms of Story Drift (SD). In general, the term
drift represents the ratio between the imposed displacement and the beam length from the
loaded end to the column centerline [27,34,35]. In the tested specimens drift is calculated
based on the observed deformation ∆` at each loading step as follows:

∆`/(`b + hc/2)= ∆`/(1.525 + 0.35/2) = ∆`/1700 mm

Fibers 2022, 10, x FOR PEER REVIEW 5 of 16 
 

In order to investigate the efficacy of the use of the ropes as external strengthening 
technique for substandard joints the group B specimens have been designed in the way 
that cracks and some damages are expected to develop in the joint body. 

The maximum shear force enforced in the joint by the 4 bars (14 mm diameter) of the 
tensile reinforcement of the beam is Vjhd = 320 kN and therefrom the shear stress is τ = 3.67 
MPa. Further, it is calculated that for the specimens holds ΣMc/MRb = 1.43. According to 
ACI 318 external joints have to satisfy the relationship ΣMc/MRb > 1.40. Thereunder cracks 
are expected in the beam but since ΣMc/MRb = 1.43 is almost equal to the critical value 1,40 
cracks and damage are also expected in the joint body. 

3. Test Setup and Measurement of Shear Deformations 
Test setup and the applied loading history are presented in Figure 2 [26,27]. Defor-

mations of the specimen are presented in terms of Story Drift (SD). In general, the term 
drift represents the ratio between the imposed displacement and the beam length from 
the loaded end to the column centerline [27,34,35]. In the tested specimens drift is calcu-
lated based on the observed deformation Δℓ at each loading step as follows: 

Δℓ/(ℓb + hc/2)= Δℓ/(1.525 + 0.35/2) = Δℓ/1700 mm 

 
Figure 2. Test setup and instrumentation for the measurement of shear deformation of the joint body 
of the tested specimens. 

Shear deformations of the joint body of the beam-column connections are measured 
using two string LVDTs externally mounted on the joint panel. These LVDTs are diago-
nally placed in order to record the elongation and the shortening of the diagonals of the 
orthogonal joint panel at each step of the loading as it can be observed in Figure 3a,b. 

Figure 2. Test setup and instrumentation for the measurement of shear deformation of the joint body
of the tested specimens.

Shear deformations of the joint body of the beam-column connections are measured
using two string LVDTs externally mounted on the joint panel. These LVDTs are diago-
nally placed in order to record the elongation and the shortening of the diagonals of the
orthogonal joint panel at each step of the loading as it can be observed in Figure 3a,b.
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Figure 3. Measurement of the shortening (a) and the elongation (b) of the diagonals of the joint body
using two string LVDTs diagonally mounted on the joint panel.

The developing shear deformations due to seismic actions of the joint body of a beam-
column connection is a valuable measure that indicates the cracking and microcracking
state of the material and hence the level of the developing damage. This measure is very
useful for the evaluation of the efficiency of strengthening techniques applied for the
improvement of the beam-column response to seismic actions.

The joint shear deformation is estimated from the diagonal shortening (∆2 in Figure 3b)
and the diagonal elongation (∆1 in Figure 3a) of joint body as measured using two string
displacement transducers diagonally mounted on the joint panel.

From the elongation ∆1 of diagonal AC as measured by LVDT1 (Figure 3a) the shear
deformation is extracted. It is equal to γ1 = δ/h1 where h1 = L1cosϕ1 and L1 is the length of
the diagonal string LVDT1, and from the orthogonal triangle CC′C′′ it can be deduced that

∆ = ∆1/cos(90 − ϕ1) = ∆1/sinϕ1 (1)

Thus, it is deduced that

γ1 = (∆1/sinϕ1)/(L1cosϕ1) = ∆1/(sinϕ1cosϕ1) = 2∆1/sin2ϕ1 (2)

Similarly, from the shortening ∆2 of the diagonal BD and the orthogonal triangle BB′B′′

it can be yielded that
γ2 = 2∆2/sin2ϕ2 (3)

From the rectangular shape of the geometry of the joint panel of the specimens it can
be accepted that L1 is more or less equal to L2 and ϕ1 ≈ ϕ2.

In this case let L = L1 = L2 and ϕ = ϕ1 = ϕ2, hence the average value of the shear
deformation γavg in rad can be approximately expressed as

γavg =
γ1 + γ2

2
→ γavg =

∆1 + ∆2

L sin 2ϕ
(4)

4. Test Results and Evaluation
4.1. Shear Deformations—Comparative Presentation and Remarks

The maximum absolute values of the joint shear deformations have been calculated
using relationships 1–4 and based on the observed tested measurements of shortening
and elongation of diagonals of the joint panel recorded by the diagonal two string LVDTs
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(Figure 3). Comparative presentations of the shear deformations of the tested specimens
are presented in Figures 4–8.
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Figure 4. Comparative presentation of the observed joint shear deformations of specimens JA0,
JA1, JB0 and JB1. Group B specimens (solid lines) exhibited higher values of shear deformations as
expected since cracking system and damages are located in the joint body and the beam. On the
contrary in group A specimens the cracks and damages are located in the beam only; therefore, shear
deformations of the joint body remained low even in high story drifts.
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Figure 5. Comparative presentation of the observed joint shear deformations of specimens JB0 and
JB0X. The influence of the X-shape steel reinforcement placed in the joint body of the specimen JB0X
is apparent. In high story drifts (2–4%) X steel reinforcement kept the joint body intact and efficiently
reduced the shear deformations.
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Figure 6. Comparative presentation of the observed joint shear deformations of specimens JB1 and
JB1FX. The influence of the X-form C-FRP ropes external mounted on the joint body of the specimen
JB1FX is apparent. In high story drifts (2–4%) the externally mounted C-FRP ropes kept the joint
body intact and efficiently reduced the shear deformations.
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Figure 7. Comparative presentation of the observed joint shear deformations of specimens JB1 and
JB2F2X2b. In high story drifts (2–4%) the externally mounted C-FRP ropes kept the joint body intact
and efficiently reduced the shear deformations.
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Figure 8. Specimen JB1 after the testing. The main damage has been located in the joint body.

Figure 4 presents a comparative examination of the observed shear deformations for
specimens JA0, JA1, JB0 and JB1. Specimens JB0 and JB1 exhibited higher values of shear
deformations as expected since cracking system in these cases developed in the joint body
and the beam. In group A specimens (JA0 and JA1) cracks and damages are located only
in the beam and consequently shear deformations of the joint body remained low even in
high story drifts.

In Figure 5 the influence of the X-shaped steel reinforcement of the joint (specimen
JB0X) on the shear deformations of the joint is studied. Comparative presentation of the
observed joint shear deformations of specimens JB0 and JB0X can be shown in Figure 5. The
strong influence of the X-shape steel reinforcement placed in the joint body of the specimen
JB0X is apparent. In high story drifts (2–4%) the diagonal steel reinforcement kept the joint
body intact and efficiently reduced the shear deformations compared to the shear deforma-
tions developed in reference specimen JB0 without the diagonal steel reinforcement.

In Figure 6 the influence of the C-FRP ropes externally mounted at both sides of the
joint body of the specimen JB1Fx on the shear deformations of the joint panel is examined.
The shear deformations of specimen JB1Fx are compared to the ones of the reference
specimen JB1. Specimen JB1 has the same characteristics with specimen JB1Fx but the
C-FRP ropes. From the comparative presentation (Table 2 and Figure 6) of the observed
joint shear deformations of specimens JB1 and JB1Fx it can be observed that the X-form
C-FRP cords substantially improved the behavior of the joint in specimen JB1Fx. In fact the
ratios of the measured shear deformations of the strengthened specimen JBIFX over the
shear deformations of the reference unstrengthened specimen JB1 were 0.77, 0.25, 0.13 and
0.28 for drifts 1.5%, 2.0, 3.0 and 4.0, respectively. Thereupon, it can be observed that in high
story drifts (2–4%) the externally mounted C-FRP cords kept the joint body of specimen
JB1Fx almost intact (Figures 8 and 9) and efficiently reduced the shear deformations.
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Table 2. Measured shear deformations γavg of specimens JB1 and JB1FX.

Shear Deformations γavg rad × 10−4

Drift JB1 JB1FX

1.5 1.139 0.875
2.0 3.899 0.981
3.0 18.262 2.291
4.0 27.797 7.902

Fibers 2022, 10, x FOR PEER REVIEW 10 of 16 
 

 
Figure 8. Specimen JB1 after the testing. The main damage has been located in the joint body. 

 
Figure 9. Specimen JB1FX after the testing. CFRP ropes have been applied diagonally on the joint 
body forming external X-shape reinforcement. Cracks mainly appear at the beam and very few at 
the joint body. The joint body remained almost intact after the loading. 

Comparative presentation of the observed joint shear deformations of specimens JA0 
and JA0F2X2b is shown in Figure 10. Both specimens belong to group A and in both cases 

Figure 9. Specimen JB1FX after the testing. CFRP ropes have been applied diagonally on the joint
body forming external X-shape reinforcement. Cracks mainly appear at the beam and very few at the
joint body. The joint body remained almost intact after the loading.

Comparative presentation of the observed joint shear deformations of specimens JB1
with specimen JB2F2X2b is presented in Figure 9. Thereupon, the ratios of the measured
shear deformations of the strengthened specimen JB2F2X2b over the shear deformations of
the reference unstrengthened specimen JB1 were 0.18, 0.17, 0.24 and 0.24 for the drifts 1.5%,
2.0, 3.0 and 4.0, respectively. In this case the externally mounted C-FRP ropes kept the joint
body and part of the beam of JB2F2X2b almost intact throughout the testing procedure and
efficiently reduced the shear deformations.

Comparative presentation of the observed joint shear deformations of specimens JA0
and JA0F2X2b is shown in Figure 10. Both specimens belong to group A and in both cases
the joint body remained intact during the test. Nevertheless, even in this comparison it
is observed (Figure 10) that the externally mounted C-FRP ropes of specimen JA0F2x2b
substantially reduced the shear deformations.
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Figure 10. Comparative presentation of the observed joint shear deformations of specimens JA0
and JA0F2X2b. The specimens belong to group A and in both cases the joint body remained intact.
Nevertheless, even in this comparison it is observed that the externally mounted C-FRP reduced the
shear deformations.

4.2. Principal Stresses—Comparative Presentation and Remarks

The influence of the X-type steel reinforcement placed inside the joint body of specimen
JBX on the behaviour of the specimen is examined in terms of the developing principal
stresses at each drift step of the testing procedure [26,27,36,37]. Furthermore, the influence
of the externally mounted X-shaped C-FRP ropes on the joint body of the specimens JBFX
and JB2F2x2b on the behaviour of these specimens in terms of the developing principal
tensile stresses inside the joint body at each drift step of the testing procedure is also
examined herein.

The principal stresses are calculated based on the normal stress σp and the shear
stress τ developing in the joint body at each step of the testing procedure according to
the relationships

σ1,2 =
σp

2

√
σp

4
+ τ2 (5)

where
σp =

Nc + P
Acol

and τ = Vjh/(bchc)

Nc is axial force acting on the column of the specimen, P the loading force imposed by
the load cell actuator (Figure 2), Vij the shear induced in the beam-column body through
the beam and bc, hc the dimensions of the column cross-section.

The values of the principal stresses characterize the damage state of the specimen as a
whole. During the testing high values of the principal stresses at a loading step indicated a
low level of damage at this level of loading. Furthermore, in case the damage is located in
the joint body (and not at the beam) the principal stresses characterize the damage level in
the joint body. High principal stresses indicate low damage level in the joint at the specific
loading step.

Comparative presentation of the developed principal stresses of specimens JBX, JBFX
and JB2F2X2b with the principal stresses of the reference specimen JB1 are presented in
Figures 11–13.
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Figure 11. Principal stresses developing in the joint body of specimen JB1X during the testing are
presented and compared to the ones of the reference specimen JB1.
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Figure 12. Principal stresses developing in the joint body of specimen JB1FX during the testing are
presented and compared to the ones of the reference specimen JB1.
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Figure 13. Principal stresses developing in the joint body of specimen JB2F2X2b during the testing
are presented and compared to the ones of the reference specimen JB1.

In Figure 11 the principal stresses of specimen JBX developed during the 1st, 2nd
and 3rd loading cycle of each loading step are compared with the corresponding ones of
reference specimen JB1. The influence of the X-shape steel reinforcement placed in the joint
body proved to be vital. In 2nd and 3rd loading cycles and especially in high story drifts
(3–4%) this reinforcement kept the joint body intact and the values of the principal stresses
remained high.

In Figure 12 the principal stresses of specimen JB1FX developed during the 1st, 2nd
and 3rd loading cycle of each loading step are compared with the corresponding ones
of reference specimen JB1. The influence of the X-shape C-FRP ropes mounted on both
sides of the joint body proved to be very important. In 2nd and 3rd loading cycles and
especially in high story drifts (3–4%) the values of the principal stresses of specimen JB1FX
remained high compared to the ones of reference specimen JB1 indicating that the external
strengthening C-FRP ropes kept the joint body of the JB1FX intact whereas the joint body
of the JB1 severely damaged.

Finally, in Figure 13 the principal stresses of specimen JB2F2X2b developed during
the 1st, 2nd and 3rd loading cycle of each loading step are presented. These stresses are
compared with the corresponding ones of the unstrengthened reference specimen JB1.
The influence of the X-shape C-FRP ropes mounted on both sides of the joint body and
the beam proved to be very important. In 2nd and 3rd loading cycles and especially
in high story drifts (3–4%) the external strengthening reinforcement kept the joint body
almost intact and the values of the principal stresses remained high compared to the
ones of reference specimen JB1. These observations indicate that the externally applied
strengthening C-FRP ropes kept the joint body of the JB2F2X2b intact whereas the joint
body of the JB1 severely damaged.
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5. Concluding Remarks

The effectiveness of the innovative strengthening technique of beam-column joints
with externally applied C-FRP ropes is examined in terms of the developing shear defor-
mations of the joint body and the study of the tensile principal stresses. The technique is
fast and easy to apply whereas the structure’s original dimensions and geometry remains
unchanged. Further, the structure’s mass does not change significantly and therefore the
dynamic characteristics also remain the same. Nine full scale beam-column joints tested in
cyclic loading and the measured shear deformations of their joint body are elaborated and
presented in this work. The following concluding remarks have been drawn:

• From the comparative presentation of the observed joint shear deformations of spec-
imens JB1 and JB1Fx it can be observed that the X-form C-FRP cords substantially
improved the behavior of the joint in specimen JB1Fx. The ratios of the measured shear
deformations of the strengthened specimen JBIFX over the shear deformations of the
reference unstrengthened specimen JB1 were 0.13–0.28 for high story drifts (2.0–4.0).
Thereupon, it can be observed that the externally mounted C-FRP cords kept the joint
body of specimen JB1Fx almost intact and efficiently reduced the shear deformations.

• Systematic and extended comparative presentations of the shear deformation of spec-
imens with and without ropes proved in all the examined cases that the externally
mounted C-FRP ropes kept the joint body almost intact and substantially reduced
the shear deformations especially in high drifts. Thus, it can be concluded that the
application of the C-FRP ropes for the strengthening of beam—column connections
either designed according to modern codes or deficient ones proved to be an efficient
and easy to apply technique.

• Moreover, the influence of the externally mounted X-shaped C-FRP ropes on the
seismic behaviour of these specimens has been also examined in terms of the devel-
oping principal tensile stresses inside the joint body. From the comparisons of the
principal stresses developing in specimens with X-form C-FRP ropes to the reference
specimen JB1 it has been yielded that in all the examined cases the ropes kept the
joint body intact and allowed the development of higher values of principal stresses
comparing to the stresses developing in specimen JB1 without ropes where the joint
body severely damaged.
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