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Abstract: The sustainable management of waste from agricultural crops represents an urgent chal-
lenge. One possible solution considers waste as possible secondary raw materials for specific uses.
Among these, the use of agricultural waste as a product for the assembly of panels for the sound ab-
sorption of living environments represents a particularly suitable solution. In this study, the acoustic
properties of the cocoa pod husk were evaluated, using silicone as a binder. Different proportions of
materials and thicknesses were evaluated. A Support Vector Machine (SVM)-based model with a
Gaussian kernel was then used to predict the acoustic performance of composite materials. The results
obtained suggest the adoption of this material for the acoustic correction of living environments and
this methodology for the prediction of the acoustic behavior of materials.

Keywords: natural materials; sound absorption coefficient; acoustic measurements; Support Vector
Machine (SVM); Gaussian kernel

1. Introduction

For the application of theories that aim to achieve sustainable agricultural derivatives,
it is necessary to consolidate the theoretical principles into feasible recommendations ap-
plicable to agricultural practices and the associated productive chain [1,2]. For this, it is
important to know which the detrimental effects generated by the different production
processes are to minimize their consequences in the different links of the chain. Numer-
ous investigations are being developed that aim to study the risks not only during the
production phase, but also by employing an analysis of the life cycle of the products. The
application of this knowledge must be carried out in such a way that the local economic
systems and the conservation of the environment are boosted, to close a circle that in
parallel contributes to generating an increase in the consumption and competitiveness
of eco-friendly products [3–5]. An important part of implementing the principles that
theorize about sustainability lies in the way in which the wastes generated in the early
stages of collection, handling, and extraction of agricultural products are treated. Ideally,
these wastes should come to be considered as products in themselves. Therefore, specific
uses must arise for these secondary raw materials so that they do not become waste prod-
ucts [6]. These new uses drive the application and consolidation of the concepts of “circular
economy” and “wealth-generating waste” for a healthier society that is more aware of
environmental problems [7].
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An example of a crop that generates a lot of waste is cocoa. The fruit from which cocoa
is extracted (Theobroma cacao L.), commonly called cob, has an oval shape, between 10 and
30 cm long and 7 to 12 cm wide (Figure 1) [8,9]. It consists of a rough bark almost 4 cm
thick [10], filled with an edible mucilaginous pulp, of a white-pink color, which surrounds
30 to 50 seeds, normally arranged in five rows [9]. Approximately 10% of the wet weight of
the fruit is used, and the rest is discarded [10]. The cocoa pod husk is the residue that is
obtained after extracting the cocoa pulp and the seeds and represents between 47 and 63%
of the total waste [10].
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The annual world cocoa production in 2021 was approximately 5 million tons, and
annual growth from 2019 to 2025 is estimated at 7.3% [11]. This production is expected to
generate 16 million biomass not suitable for chocolate production, considering as mentioned
above that much of the weight of the cocoa fruit is discarded [12]. Currently, Ecuador is the
fourth largest cocoa producer in the world, with 300,000 tons per year [13], and the first
producer of “Fine Aroma Cocoa”, with a production of approximately 60% of the global
volume of the international market [13].

The cocoa pod husk is a raw material that can be used in various ways [6]. The
ignorance of these uses among farmers leads to inappropriate waste management that
generates problems of bad odors and deterioration of the landscape [14]. In Ecuador, a
large part of the organic waste that accumulates in landfills comes from cocoa [15]. The
accumulation of this type of waste contributes to the spread of Phytophora spp., a parasite
that generates great economic losses among farmers and producers due to the rotting of
the cocoa pod [16]. Cocoa pod husk is an available, abundant, and sustainable resource
of bioproducts [17]. The most widespread uses of cocoa pod husk are as fertilizer for the
soil [18,19] and as animal feed [20–23]. Once dry, the cocoa pod husk has approximately
4% potassium, and, taking advantage of this component, the cocoa shell ash allows the
production of potassium hydroxide that has been used to make soap [24]. It can be treated
to obtain pectin, a natural product that is used by the food, cosmetic, and pharmaceutical
industries for its gelatinizing, thickening, and stabilizing properties [14,25]. The cocoa pod
husk is a source of protein, that can be used in the production of the hydrolase enzyme [26],
an enzyme with multiple uses in the pharmaceutical industry [27,28], for food technology
applications [29–31] and as laundry detergent [32,33]. Cocoa pod husk has been used
as an absorbent for removing Pb and Cu [34] from aqueous solutions [35], and also for
removing methylene blue (after being treated with sodium hydroxide) [35,36]. At present,
oil reserves are decreasing, and there is growing social concern about the environmental
repercussions of both the extraction processes and the consumption of their derivative
products. Therefore, some researchers look to organic cocoa waste as a source for the
production of biofuels and other biopolymers [37]: for example, they can be also used as
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activated carbon and catalyst in biodiesel production [38,39]. The ground and pressed cocoa
pod husk can be transformed into bio-pellets [40], having similar combustion characteristics
and ash content in comparison to other biomass products.

According to Titiloye et al. [41], cocoa pod husk has a moisture content of 10%. The
contents of protein, starch, and reducing sugars are 8%, 3%, and 2%, respectively [42]. The
compositional analysis of the dry, ash-free basis reveals a weight percentage of cellulose,
hemicellulose, and lignin of 30%, 12%, and 34%, respectively; the remaining percentage
corresponds to extractives. Ash (Si, K, P, Mg, Ca, Al, Mn, Fe, Na) represents a 10–15 weight
percent of the cocoa pod husk [41,43].

The environmental impact of the construction sector must raise awareness around the
world [44–46]. With the aim of generating construction materials that are more respectful
with the environment, some research studies are considering a different path, the use
of materials from organic waste recycling [47]. Some studies use organic products that
have conventionally been used in the food industry or as decorative elements—whether
grown by means of conventional agriculture, or in cultivation farms built for construction
purposes—applying novel methods of production; other studies use biological growth
procedures to generate raw construction materials. These type of materials has been defined
by Hebel et al. as cultivated building materials [48]. Examples of these cultivated materials
are corn cob panels used for thermal insulation [49], bamboo fiber used as a reinforcing
material in concrete beams [50], or biopolymers made of lignin and natural fiber for various
construction applications [51], among them, as a facade material [48].

Acoustic quality is a factor that is increasingly being cared for in new buildings, given
the growing demand and social requirements [52]. To obtain acoustic comfort inside the
enclosures, acoustic absorbent materials are usually used, which reduce the reflected sound
energy, and therefore, the reverberation. Most of these materials are obtained from synthetic
materials, such as rock wool and glass wool [53], which have a high environmental impact.
Natural fibers have been considered in research for the sound absorption of rooms. They
have optimal characteristics as construction materials, as they are light, have a minimal
impact on health, there is a great availability of them in nature, and they have a low
environmental impact both in their obtaining and in the elaboration of the products [54].
For example, Glè et al. [55,56] studied the sound absorption properties of hemp fibers,
leading to the conclusion that the particles size is associated with the sounds absorption at
low-frequency; Tang et al. [57] evaluated the sound absorption of corn husk fibers arranged
in different layers, finding out that the acoustic absorption peak gradually moves to lower
frequency direction when increasing the number of layers; Oldham et al. [58] evaluated
the sound absorption of different type of fibrous materials, and with different treatments,
finding that jute fibers have similar sound absorption to mineral wool fibers.

Recent research has combined raw materials from agricultural product waste with
artificial materials (e.g., fiberglass with carbon fibers polymers), for different purposes,
seeking a compromise between sustainability and good performance [59,60]. Some of these
materials used as binders increase their durability over time and prevent the disaggregation
of the particles that make them up [61]. Furthermore, the properties of different materials
have been characterized using mathematical algorithms to predict their sound absorption
without the need to perform acoustic measurements. For example, a support vector machine
algorithm has been used to characterize the acoustic properties of corn stalk fibers tied with
clay [62]; artificial neural networks were calculated to assess sound absorbent properties of
asphalts [63], and the performance of different algorithms compared in [64] to evaluate the
sound absorption of giant reeds shredded.

The present research aims to evaluate the acoustic properties of cocoa pod husk as
an acoustic material, using silicone as a binder. Different proportions of materials and
thickness were evaluated. A Support Vector Machine (SVM) with Gaussian kernel was
used to predict the acoustic performance of composite materials. The article is organized as
follows. Section 2 describes in detail the materials and methodologies used in the study:
first, the methodologies used to assemble the samples from the waste material of the cocoa
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cultivation are described. Subsequently, the measurements of the acoustic behavior of
the material carried out with the impedance tube technique were described. Then, the
algorithms used to elaborate the simulation model based on the SVM were described.
Section 3 reports and discusses in detail the results obtained from the measurements of the
sound absorption coefficient and subsequently the results obtained through the numerical
simulation. Finally, Section 4 summarizes the results obtained from this study and discusses
the possible uses of the developed technology in real cases.

2. Materials and Methods
2.1. Characterization of the Cocoa Pod Husk Used in the Study

Two types of cocoa are mainly grown in Ecuador: cocoa “Arriba” and cocoa CCN-51.
These varieties are sown and cultivated in the following provinces: Esmeraldas, Manabí,
Los Ríos, Guayas, El Oro, Pichincha, Cotopaxi, Bolívar, Chimborazo, Santo Domingo de los
Tsachilas, Cañar, Azuay, and in part of the Oriente [65]. The CCN-51 cocoa, whose pod has
a reddish coloration during its growth and maturation, is tolerant to diseases [66] and has
high productivity. The trees of the CCN-51 cocoa plantations, planted in a 3 m × 3 m grid,
generate an annual production that varies between 45–60 quintals per hectare [65].

Clonal cocoa CCN-51 appeared for the first time in 1965 called Castro Naranjal Collec-
tion (CCN-51), by Eng. Agr. Homero Castro Zurita, as a highly pest-resistant and highly
productive variety [65]. By ministerial agreement, in 2005 this variety of cocoa was declared
by the Ecuadorian Ministry of Agriculture and Livestock as high productivity good due to
its contribution to 25% of national exports [65]. The cob is ripe and ready to harvest when
it turns yellow and/or reddish. At that time, the pulp that surrounds the seed is no longer
adhered to the walls of the husk (Figure 2).
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Figure 2. Ripe cocoa cob used in the study.

After a cocoa flower is pollinated and its ovules are fertilized, six months must pass
for it to become a physiologically mature pod, ready for harvesting [67].

The type of cocoa used in this research is CCN-51 and comes from the province of
Santo Domingo de los Tsachilas, Ecuador. For this research, 4 cocoa cobs were collected,
from 21 to 27 cm in length. Only the cocoa pod husk was used, after the extraction of the
cocoa seeds for the pre-fermentation and further fermentation processes. It was cut into
thin slices of 1–2.5 cm thick (Figure 3) [68]. The cocoa pod slices were naturally dried in the
open air for two days.
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Figure 3. Drying process. (a) Natural dried in the open air; (b) Oven used.

After this, they were cut into pieces of approximately 2 cm and were subjected to a
process of drying in the oven [69] until constant moisture content. The pieces of cocoa
pod husk were introduced in an oven for 6 h approximately at 60 ◦C. During this process,
the weight loss was calculated, comparing the initial with the final weight [62]. The final
moisture content was slightly smaller than the one obtained by Kilama et al. [70] and
Velazquez-Araque and Cárdenas [71], probably because our experiment was done a few
days after the harvest, and there could already be a decrease in the moisture of the cocoa
pod husk [72].

The cocoa pod pieces resulting after finishing the drying process had decreased in
volume and had brown-reddish color (Figure 4). Subsequently, manual mill for cereals and
grains was used to reduce the particle size, with the disk that grinds the medium-sized
(Figure 5) [61]. The mean particle size was 1 mm.
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Figure 5. Manual mill for grains used to get the disaggregated particles.

A binder was used to agglomerate the particulate material, silicone rubber, with
different percentages of cocoa pod particles by weight (90%, 75%, 50%, 25%). Silicone
rubbers are elastomers composed of silicone, which forms a polymer together with carbon,
hydrogen and oxygen. A bicomponent silicone rubber (specific weight 1.12 g/cm3; Vis-
cosity: 9.000 mPa.s; Hardening time: 18 h) was used for the realization of the specimens.
To make the samples, 2 wooden molds with different depths were built, into which the
mass composed of cocoa pod husk with silicone was poured. Subsequently, samples of the
panels (Figure 6) with a diameter slightly smaller than that of the impedance tube were
extracted to carry out the measurements and obtain the absorption coefficients.
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Figure 6. Samples of 25 mm (left) and 10 mm (right) of cocoa pod husk 90% mixed with silicon 10%.

Samples were made with two thicknesses, 10 mm and 25 mm. Consequently, the
acoustic features of 8 different samples were evaluated.

2.2. Acoustic Absorption Measurement Procedure

There are several ways to measure the sound absorption of a material. The most widely
used are the measurement of the reverberation time in a reverberation chamber [73], and
the measurement of the absorption coefficient in the Kundt tube. This last method is the one
used in the present research work and consists of determining the absorption coefficient
from the surface impedance of the material under normal incidence. It is important to
carry out these measurements in a normalized way to obtain comparable values with data



Fibers 2022, 10, 25 7 of 20

obtained in other investigations, being able to make comparisons between materials and the
performance of each one. For this reason, the ISO 10534-2: 1998 standard, “Determination
of the acoustic absorption coefficient and acoustic impedance in impedance tubes”, was
used as a basis for the measurements [74].

The impedance ACUPRO Spectronics was used to measure the sound absorption of
the samples (frequency range 50 Hz–5700 Hz), set up with two microphones. The inside
diameter of the tube is 34.9 mm, the outside diameter is 41.3 mm, and its length is 1200
mm. It was located at 250 mm in height. The JBL 2426J speaker was integrated into the
impedance tube. It allows a maximum sound pressure level within the tube of 150 dB.
The loudspeaker is mechanically isolated, so it does not have structural vibrations. The
DT9837A interface manages the audio inputs, outputs, and outputs, and transforms the
electrical signal into digital. The interface has four input channels for the conversion and
corresponding data recording and one output channel for sending the signal from the
computer. The signal reproduced by the loudspeaker is captured by the microphones
and is sent from the ACUPRO system to the interface, to later be amplified and sent with
the necessary voltage amplitude to the computer. The ACUPRO software was used for
processing the data. It is based on the international standards ISO 10534-2 [74] and ASTM E
1050-98 [75], which define the procedure to determine the sound absorption coefficient and
impedance using the transfer function method. The software was configured to estimate
the average of 150 measurements for the calculation of each absorption coefficient. To
homogenize possible results differences due to material irregularities, 6 measurements
were conducted, extracting, and inserting the sample each time. It was verified that the
sound pressure level of the background noise was less than 30 dB to avoid measurement
interferences. The absorption coefficients were calculated from 50 Hz until 5700 Hz in steps
of 7.5 Hz. Figure 7 shows the sample holder of the impedance tube.
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2.3. Support Vector Machine (SVM)-Based Method

The Support Vector Machine (SVM) developed by Vapnik [76] comprises a set of
supervised learning methods that allow the classification of certain patterns. Supervised
learning occurs when the user provides a set of data labelled with the class it belongs to. In
the classification, the assignment of an object or a pattern to a specific class already known
a priori is carried out. Usually, the input for a classification problem is represented by a set
of data called training set while the goal is to find a method that is capable of generalizing,
to classify new input data not present in the training phase. A classifier can solve this
problem using an algorithm that allows determining the model that best approximates the
relationship between the data attributes and the various classes.
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Each learning algorithm needs a training data set T, which consists of N data belonging
to C classes (Equation (1)).

T = {xn; yn} n = 1, . . . N; xn ∈ Rd ; yn ∈ C, (1)

Here:

• xn are the components of a d-dimensional vector containing the data attributes
• yn are the components of a one-dimensional vector containing the data classes
• d represents the number of classes
• T represents the set of data
• C represents the set of classes

The mapping function yn = f (x), which associates to each data its class of belonging is
not known, therefore the purpose of a supervised learning algorithm is precisely to find
this function. Each learning process is divided into two phases:

• training phase in which the algorithm analyses a training data extracted from the
entire set of available data, to build a model that approximates the mapping function.

• testing phase, where the model created is tested on a different set of data to evaluate
its performance.

Once the model has been created, its validation is carried out in which quality and
performance are assessed. The validation phase is carried out on a set of data called test
set, different from the one used for training. This phase foresees a comparison between the
data classes predicted by the model with the current ones; therefore, such classes must be
known a priori. However, two well-known problems can be encountered during model
development: underfitting and overfitting. The first occurs when the model created is too
simple and fails to classify well the training set and consequently not even the test set.
The concept of overfitting is very important especially for supervised learning techniques
(SVM): it occurs when the complexity of the model is very high, adapting optimally to
the training set. This leads to an extremely low training error, but the classifier is unable
to generalize, that is, to classify well the data belonging to the test set. The problem of
overfitting can occur in cases where the training set is limited or when training has been
carried out for too long.

The use of automatic learning algorithms provides at first to find the best criterion to
separate the classes and subsequently, once the optimal separator has been found, the test
phase can be carried out in which each sample will be assigned a class. The distribution
of the data in the plan can be different. We may be faced with linearly separable data and
linearly non-separable data. In the first case, a line (D = 2) or a hyperplane (D > 2) can be
drawn that separates the data belonging to one class from the data belonging to the other.

In the case of linearly separable data, to solve the classification problem, it is necessary
to find a hyperplane that separates the positive from the negative half-space. The hyper-
planes that divide the classes are potentially infinite. At first glance, it may seem that all
the solutions are good, but it emerges that by keeping the margin between the two classes
as large as possible, the risk of overfitting will be lower with a consequent reduction of
incorrect classifications on data that are not part of the training set. Therefore, the goal is to
find the optimal hyperplane that will be the one able to reduce the wrong classifications
(Figure 8).

In the case of a linearly separable training dataset, a hyperplane is defined by all the
points that satisfy the equation w · x = 0, characterized by an inner product and in which
w is a vector perpendicular to the hyperplane. We are looking for the parameters of the
hyperplane (w; b), so that the distance between the hyperplane and the observations are
maximized. We will call the Euclidean distance between the point xi and the hyperplane
as the geometric margin. The geometric margin of a single observation xi is calculated
through Equation (2).

δi =
yi (w·xi + b)
‖w‖ , (2)
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Given the training set T, the geometric margin of a hyperplane (w; b) with respect to T
is the smallest of the geometric margins with respect to the individual observations of the
training set, as returned by Equation (3).

δ = min
i=1...m

δi, (3)

In the search for the optimal separation hyperplane, our goal should be to maximize
the geometric margin of training and then position the hyperplane in such a way that its
distance from the nearest points is maximized. However, this is difficult to do directly as this
optimization problem is a non-convex problem. The solution to this problem will be a linear
decision surface with the greatest possible margin. The objective function is clearly a convex
function, which implies the possibility of finding its maximum. The general optimization
problem consists of a quadratic objective function and linear constraints and can therefore
be solved directly with the use of quadratic programming. As programming is often
computationally inefficient when dealing with large datasets, solving this optimization
problem is addressed using Lagrangian methods [77].

To also use the classification with hyperplanes for data that require separating non-
linear functions, it is necessary to resort to the technique of feature spaces (Figure 8). This
method, which is the basis of the SVM theory, consists of mapping the initial data in a
space of greater dimension: The data are mapped in a space in which they become linearly
separable and in which it will be possible to find a hyperplane that separates them [78].
To do this, the input data are scaled together, and to make this calculation simple, which
becomes very complicated in large spaces, a function called kernel is used which directly
returns the scalar product of the images. To generalize the problem, even in the non-linear
case, in which the kernel functions will be used, a Lagrangian formulation is required,
thanks to which the data will appear only in the form of a scalar product [79].

To do this, it is sufficient to use the so-called Kernel function which is defined as the
scalar product between two vectors in the transformed space and which can be calculated
without much computational capacity. We then define an appropriate mapping function
with Equation (4).

φ : Rn −→ Rm , m ≥ n, (4)
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In the transformed space, the shape functions defined by Equation (5) are called
Kernel functions:

K(x, z) = φ(x)·φ(z), (5)

In Equation (5), the vectors x and z belong to the original space. The process of
mapping data from the original input space to the future space is called a Kernel trick.
The Kernel trick is a rather universal approach; its application is not limited to use only in
support vector machines. In general, any classifier that depends only on the dot product of
the input data can capitalize on this technique [80].

Like in the case of classification, derived algorithms for solving a regression problem
will allow generalizing towards a non-linear hypothesis space by simply replacing the
internal products with a kernel function. The regression problem is to find a function that
approximates the mapping from an input domain to real numbers based on a training
sample: The objective function, therefore, will be aimed at minimizing the l2 norm of the
coefficient vector of the regression function, while the error is set in the constraints [81].

To obtain an estimate of the sound absorption coefficient from the measured data, the
Gaussian Kernel function was used. The Gaussian Kernel function is probably the most
used Kernel function and is defined by Equation (6).

K(x, z) = exp
(
−‖x− z‖2

)
, (6)

The Gaussian Kernel maps the input space into a space of infinite size. Thanks to
this property, it is very flexible and allows for the fitting of a very wide variety of decision
edges. The Gaussian kernel is often referred to as a Radial Basis Function (RBF) [82].

3. Results and Discussion
3.1. Measurements Results

Samples of different thicknesses and percentages of the binder were used to character-
ize the acoustic absorption of the cocoa pod husk. When a percentage of silicone below
10% was used, it was difficult to get the cocoa pod husk to mix with the silicone, and
particles of material remained unbounded. To avoid this, samples with at least 10% of
silicone were made. Samples with four different percentages of binder (10%, 25%, 50%, and
75%) and two different thicknesses (10 mm and 25 mm) were assembled. For each sample,
sound absorption measurements were conducted using the impedance tube. Figure 9
shows the results of the sound absorption measurements in a range of frequencies from
500 Hz to 5000 Hz. The results are reported in two graphics, one for each sample thickness,
considering the percentage of cocoa pod husk of each sample.

In relation to the percentage of silicone, from the analysis of Figure 9 can be assumed
that 90% of cocoa pod husk returns a sample with better sound-absorbing characteristics
at the lower frequencies. This trend is confirmed for the thickness of 10 and 25 mm. For
the sample of 10 mm and 90% of cocoa pod husk, the sound absorption coefficient is
higher than for the samples with 75% and 50% of cocoa (red and blue curves) from 860 Hz
until 2350 Hz. At 2143 Hz, a peak can be observed in the curve, with a sound absorption
coefficient close to one. For that sample thickness, increasing the percentage of silicone
leads to a shift of the sound absorption peaks toward the high frequencies (75% of cocoa
pod husk, 2550 Hz; 50%, 2452 Hz). Note that there is some heterogeneity in the size of the
particles that make up the proportion of the cocoa pod husk as the particles that come from
the grinding and filtering process are irregular in shape and do not have the same size.
That may be the reason why the behavior of the samples with 75 and 50% of cocoa pod
husk is very similar. For all the percentages of binder considered, there is a small secondary
peak very close to 3832 Hz, with an absorption coefficient ranging from 0.22 to 0.32. For
the sample with just 25% of cocoa pod husk, there is a drop in the absorption coefficient
values throughout the whole frequency range under study. The absorption coefficients of
this sample are only slightly above those of the samples with 75 and 50% of cocoa pod husk
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from 943 Hz to 1790 Hz. Consequently, increasing the percentage of binder improves the
performance at high frequencies, but just until a proportion of 50% of cocoa pod husk.
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Figure 9. Sound absorption coefficients of the samples of cocoa pod husk tied with silicone. Results
for four different percentages of cocoa pod husk particles (90%, 75%, 50%, and 25%): (a) sample of
25 mm of thickness; (b) sample of 10 mm of thickness.

For the 25 mm sample, the absorption coefficients are all below 0.8. The sample with
90% of cocoa pod husk is the one with better acoustic behavior for the range of frequencies
from 712 until 3600 Hz. It presents a peak of 0.74 at 1140 Hz, and decreases until 2353 Hz,
with an absorption coefficient of 0.26. Above this frequency, the absorption increases until
3720 Hz and remains almost constant until 5000 Hz. The sample with 75% of cocoa pod
husk has similar behavior to the previous one until 712 Hz.

However, the peak of the bell is flatter, leading to a maximum absorption coefficient
of 0.39 at 1020 Hz Above that frequency, as it happens to the sample with 90% of cocoa,
the absorption coefficient decreases until 2560, and increases again until 3720 Hz. The
sample with 50% of cocoa pod husk has worse performance than the ones with a higher
percentage of cocoa until approximately 2143 Hz. Above this frequency, its absorption
coefficient increases, reaching 0.62 at 4440 Hz. Therefore, when the percentage of silicone
increases, the acoustic performance worsens, and, in general, the absorption coefficients
decrease and are displaced to the right.

Not only the percentage of silicone but also the thickness of the sample influences the
acoustic performance of the material. For the samples of 10 mm with a content of 50% of
cocoa pod husk or higher, the absorption peaks happen between 2143 to 2550 Hz and are



Fibers 2022, 10, 25 12 of 20

very closed to one. The thicker sample shows a shift of the acoustic absorption coefficient
peaks toward lower frequencies, as occurs with some fiber composite materials [59,62].
Two remarkable peaks can be observed for the samples with 50% of cocoa pod husk or
higher: one at the lower frequencies (between 1020 Hz and 1200 Hz) and another at the
higher frequencies (between 3832 and 4440 Hz). For the thinner sample, the secondary peak
is very flat and with a small absorption coefficient. With 25% of cocoa and 75% of silicone,
the behavior is probably more similar to the one of the silicones itself. With this proportion
of binder, for the 25 mm sample, the coefficients are quite low for all the frequencies and
slightly higher at 1450 Hz (with a sound absorption coefficient of 0.48). A similar peak, but
lower, appears for the 10 mm sample at 1840 Hz (absorption coefficient of 0.26).

Figure 9 shows the trend of the sound absorption coefficients for the two specimens of
different thickness as the percentage of fibers contained in the specimen varies. Barring
uncertainties due to the artisanal nature of the specimen assembly process, Figure 9 shows
that the peaks of the curves flatten as the cocoa fiber content decreases. This is because
the pores of the material decrease and therefore its sound absorption capacity. In a porous
material, absorption occurs by transforming the sound energy into heat due to the friction
that the sound waves encounter inside the pores.

To have a term of comparison of the acoustic performance of the material based on the
cocoa pod husk particles made, the values of the sound absorption coefficient of different
natural and fibers were compared (Table 1).

Table 1. Sound absorption coefficient of different natural fibers [83] and fiberglass (from authors
measurement) compared to cocoa specimen.

Fiber Thickness (mm)
Frequency (Hz)

125 250 500 1000 2000

Cocoa 25 0.13 0.14 0.20 0.65 0.30
Wood 30 0.05 0.10 0.10 0.20 0.40
Hemp 30 0.01 0.15 0.25 0.51 0.70
Kenaf 40 0.08 0.18 0.32 0.70 0.94

Sheep Wool 40 0.10 0.14 0.36 0.73 0.94
Coconut 50 0.10 0.20 0.34 0.67 0.79

Fiberglass 25 0.18 0.20 0.36 0.70 0.84

Table 1 shows that the behavior of the material object of this study is comparable with
the other fibers. At low frequencies, although the thickness of the specimen is lower than
the others, the sound absorption coefficient is higher (125 Hz). At medium frequencies,
the performance of cocoa fibers is comparable to that of other materials. As it happens
in other studies [84], the performance of synthetic fibers is slightly higher for the same
thickness. At high frequencies, the other natural fibers return higher values of the sound
absorption coefficient, even if this is partly due to the greater thickness of the specimens.
The performance of the cocoa–silicone composite material, although is not the best among
the natural and synthetic fibers analyzed, is quite good, and the transformation of waste
from the cocoa production into a construction material for room acoustic applications can
justify its use.

3.2. Gaussian Support Vector Machine Model

The data collected through the Kundt tube measurements were subsequently reor-
ganized to use them as input to be sent to the regression model. Four input variables
(predictors) and one output variable (response) have been identified (Figure 10).

The predictors were set as frequency, percentage of cocoa, percentage of binder, thick-
ness of the specimen. The variable response is the sound absorption coefficient. A total of
26,062 records were collected equally distributed on the different settings of the samples.
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Figure 10. Architecture of the sound absorption coefficient prediction model based on support
vector machine.

To obtain a model capable of adequately generalizing the acoustic behavior of the
cocoa-based material, the data collected from the measurements were subjected to a cross
validation process. In the method called K-Fold [85], the data set available at the beginning
of the experiment is divided into K groups, of which K-1 are used for training and the
remaining group for the generalization test. This procedure is repeated for all the K groups
chosen, changing the group chosen for generalization each time. This has the advantage
that all examples are used, at least once, for both training and testing. The real error is
estimated as the average of the errors. The dataset was divided into five equal parts, trained
on four and tested on the rest. The analysis was iterated by permuting the parts of the
dataset allowing to evaluate the model on all available data. Table 2 shows the parameters
of the developed model.

Table 2. Support vector machine-based model parameters.

Model Type Fine Gaussian SVM

Kernel function Gaussian
Kernel scale 0.56

Box constraint 0.1445
Epsilon 0.0144

Number of iterations 2524
Bias 0.2779
Gap 6.832 × 10−4

DeltaGradient 0.0021

The SVM-based model was compared with a model based on linear regression, four
evaluation metrics were adopted to make a more rigorous comparison: mean square error
(MSE), root mean square error (RMSE), average absolute error (MAE), and R-squared.
MSE measures the variability present between real data and those returned by the model.
Variability is the amount of dispersion present in the data. MSE examines how measures
are distributed or concentrated around a central trend measure [86]. The mean square error
(MSE) is defined by Equation (7).

MSE =
1
N ∑N

i=1(xi − x̂i)
2, (7)

In Equations (7)–(9), the variables are defined as follows:

• xi is the true value.
• x̂i is the predicted value.
• N is the number of the observation.
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Mean squared error (RMSE) measures the error rate per square root of the MSE. RMSE
is the most easily interpretable statistic since it has the same units as the quantity plotted
on the vertical axis [87]. The mean square error (RMSE) is defined by Equation (8).

RMSE =

√
1
N ∑N

i=1(xi − x̂i)
2, (8)

Mean absolute error (MAE) measures the mean of errors in a series of predictions, re-
gardless of their direction. This descriptor calculates the average of the absolute differences
between prediction and actual observation where all individual differences have the same
weight [88]. The mean absolute error (MAE) is defined by Equation (9).

MAE =
1
N ∑N

i=1|xi − x̂i|, (9)

Finally, for the performance evaluation of the developed model, the correlation be-
tween the variables was evaluated. The correlation coefficient returns values in a range
of −1 to +1; both extreme values represent perfect relationships between variables, while
0 represents no relationship. A positive relationship indicates that records that get high
values in one variable tend to have high values in the second variable. If there are low
values on one variable, low values are on the second variable [89].

In Table 3, the results of evaluation metrics of predicting models (Gaussian SVM vs.
Linear Regression) are shown. We can see that the results obtained with the SVM-based
model returns significantly higher performance than simple linear regression: This confirms
the non-linear nature of the system. Furthermore, the correlation coefficient tells us that the
model can return values of the sound absorption coefficient very close to those obtained
with measurements with the Kundt tube.

Table 3. Performance evaluation metrics of predicting models.

Model MSE RMSE MAE R-Squared

Linear regression 0.032 0.178 0.129 0.15
Fine Gaussian SVM 0.0002 0.017 0.012 0.99

Figure 11 shows the sound absorption coefficient trend (500–5000 Hz) between the
measured value with the impedance tube and the simulated with the model based on SVM
(25 mm thick sample).

Figure 12 shows the sound absorption coefficient trend (500–5000 Hz) between the
measured value with the impedance tube and the simulated with the model based on SVM
(10 mm thick sample).

Figures 11 and 12 validate the results returned by the evaluation metrics used for
performance estimation. In fact, the simulated curves rely on those obtained from the
measurements. The simulated curves with different percentages of cocoa shell fragments
have the same peak frequency as those measured, even if the simulation model seems to
slightly undersize this value. The trends of the curves are also confirmed by showing a
softening of the slopes due to the optimization effect operated by the algorithms used in the
training phase of the model. The simulated data curves, therefore, show a more consistent
trend, operating a correction effect in correspondence with anomalies due to uncertainties
of the measurements.

To obtain a visual confirmation of the adaptability of the model to the measured values,
we can analyze how the values predicted by the model are distributed with respect to
the actual ones (Figure 13). This is a typical scatter diagram in which the values obtained
from the measurements are shown on the horizontal axis, while the corresponding values
obtained from the prediction made by the model are shown on the vertical axis. Each point
returns the actual and predicted SAC values.
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Figure 11. Sound absorption coefficient trend (500–5000 Hz) between the measured value with the
impedance tube and the simulated with the model based on SVM (25 mm thick sample): (a) sample
with 90% of cocoa fibers; (b) sample with 75% of cocoa fibers; (c) sample with 50% of cocoa fibers;
(d) sample with 25% of cocoa fibers.

In Figure 13, a straight line is also drawn (in red) corresponding to the ideal solution in
which at each observation the value of the returned SAC is identical, such as, the predicted
value is perfectly equal to the measured one. Therefore, the more the points are placed in
proximity to the straight line, the more the model was able to predict the acoustic behavior
of the material [90–93]. Figure 13 shows that the points are arranged around the line
representing the ideal condition. Furthermore, it is possible to note that the distribution
of the points seems to be equally arranged above and below the line: However, while the
points above the line are very close to it, those below the line are a little further away. This
fact confirms the trend, already highlighted above, that the SVM-based model seems to
underestimate the peaks of the sound absorption coefficient.
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4. Conclusions

In this study, a simulation model of the acoustic properties of samples assembled with
cocoa crop waste was developed. Initially, the methodologies for assembling samples of
different thicknesses were presented starting from shredded cocoa shells with the use of
a silicone-based binder. Subsequently, measurements of the sound absorption coefficient
were carried out using the normal impedance tube method. The procedure for measuring
the acoustic properties of the material was presented and the results analyzed in detail. A
model for predicting the acoustic properties of the samples assembled using an algorithm
based on the Support Vector Machines with a Gaussian kernel was then implemented.

Four evaluation metrics were applied to evaluate the performance of the SVM-based
model. The results were compared with those obtained with linear regression, showing
significantly higher values for the SVM-based model. A model for the prediction of the
acoustic absorption coefficient allows to evaluate the acoustic performance of a material for
each possible configuration, resulting in a considerable saving of resources and avoiding
the need for further acoustic measurements.
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