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Abstract: In the present analysis, peristaltic flow was discussed for MHD Newtonian fluid through
the gap between two coaxial tubes, where the viscosity of the fluid is treated as variable. In addition,
the inner tube was considered to be at rest, while the outer tube had the sinusoidal wave traveling
down its motion. Further, the assumptions of long wave length and low Reynolds number were
taken into account for the formulation of the problem. A closed form solution is presented for general
viscosity using the Adomian decomposition method. Numerical illustrations that show the physical
effects and pertinent features were investigated for different physical included phenomenon. It was
found that the pressure rise increases with an increase in Hartmann number, and frictional forces
for the outer and inner tube decrease with an increase in Hartmann number when the viscosity
is constant. It was also observed that the size of the trapping bolus decreases with an increase in
Hartmann number, and increases with an increase in amplitude ratio when the viscosity is parameter.
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1. Introduction

The study of peristaltic mechanism has gained considerable attention during the past few
decades [1–10]. Peristaltic mechanism involves certain physiological phenomena, like swallowing food
through the esophagus, vasomotion of small blood vessels, transport of urine from kidney to bladder,
chyme motion in the gastrointestinal tract, and movement of spermatozoa in human reproductive tract.

Peristaltic pumping is a form of liquid transport that occurs when a progressive wave of area
contraction or expansion propagates along the length of distensible duct. There are many engineering
processes in which peristaltic pumps are used to handle a wider range of fluids, particularly in the
chemical and pharmaceutical industries. This mechanism is also used in the transport of slurries,
sanitary fluids, and noxious fluids in the nuclear industry [11–13]. Extensive analytical, numerical, and
experimental studies have been undertaken involving such flows. Important studies to the present
topic include the works done by [14–19]. In all previous studies, fluid viscosity is assumed to be
constant. There are few attempts in which the variable viscosity in peristaltic phenomena has been
used. Mention may be made of the works by [20–22].

There are various analytical techniques to solve the differential equations arising in physics
and engineering. Thus, various perturbation and non perturbation techniques are in use. Recently,
Adomian decomposition has acquired great credence in tackling the linear and non-linear problems,
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and sometimes gives the closed form solution in the form of general functions like trigonometric
functions, Bessel functions, and so on. The impressive bibliography of the work done by the Adomian
decomposition method has been presented in papers by [23–30].

The intent of the paper is to present an integrated solution for different facets of the problem.
These include application of endoscopy in a viscous fluid with the variable viscosity and closed form
Adomian solutions, which are presented for unknown (general µ(r)) variable viscosity. In Section 2,
mathematical formulation of the present problem is described. Section 3 deals with the solution of
the problem using the Adomian decomposition method. Three typical examples were chosen and
their closed form solutions were presented, and comparison is given with the existing literature. In
Section 4, graphical results are presented to gauge the effects of certain physical parameters. Finally,
streamlines for the flow problems are also drawn.

2. Mathematical Formulation

Consider the magnetohydrodynamic flow of an electrically conducting viscous fluid through the
gap between two coaxial tubes. It is assumed that a uniform magnetic field B0 is applied transversely
to the flow. Further, considering that the magnetic Reynolds number is small, the induced magnetic
field is negligible. A schematic diagram of the geometry of the problem under consideration is shown
in Figure 1.
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The geometry of the wall surface is described as

R1 = a1 (1)

R2 = a2 + b cos
2π
λ
(Z− ct) (2)

where a1, and a2 are the radii of the inner and the outer tubes, respectively; b is the amplitude of the
wave; λ is the wavelength; c is the propagation velocity; and t is the time.

In the laboratory frame (R, Z), the flow is unsteady, but, by introducing a wave frame (r , z)
moving with velocity c away from the fixed frame, the flow can be treated as steady [10]. The coordinate
frames are related by the transformations.

z = Z− ct, r = R, w = W − c, u = U (3)

where (u, w) and
(
U, W

)
are the velocity components in radial and axial directions in moving and

fixed coordinates, respectively. Using the transformations (3), the equations that govern the flow are

∂u
∂r

+
∂w
∂z

+
u
r
= 0 (4)
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ρ
[
u∂u
∂r + w∂u

∂z

]
= −

∂p
∂r +

∂
∂r

(
2µ(r) ∂u

∂r

)
+

2µ(r)
r

[
∂u
∂r −

u
r

]
+ ∂
∂z

(
µ(r)

(
∂u
∂z + ∂w

∂r

)) (5)

ρ
[
u∂w
∂r + w∂w

∂z

]
= −

∂p
∂z +

∂
∂z

(
2µ(r) ∂w

∂z

)
+ 1

r
∂
∂r

(
rµ(r)

(
∂u
∂z + ∂w

∂r

))
−σB2

0(w + c)

(6)

where u and w are the velocity components in the r and z directions, respectively; ρ is the density; σ is
the electrically conductivity of the fluid; and µ is the variable viscosity. The governing equations can
be dimensionalized by the following non-dimensional parameters.

r = r
a2

, z = z
λ , w = w

c , u = λu
a2c , p =

a2
2p

λcµ , r1 = r1
a2

, δ = a2
λ

r2 = r2
a2

= 1 +ϕ cos(2πz), Re = ρca2
µ , M =

√
σ
µB0a2

(7)

where φ is the amplitude ratio, Re is the Reynolds number, δ is the dimensionless wave number, and
M is the magnetic parameter.

Using the above non-dimensional parameters in Equations (4)–(6), the following system of
equations is obtained.

1
r
∂(ru)
∂r

+
∂w
∂z

= 0 (8)

Reδ3
[
u∂u
∂r + w∂u

∂z

]
= −

∂p
∂r + δ

2 ∂
∂r

(
2µ(r) ∂u

∂r

)
+ δ2

(
2µ(r)

r

(
∂u
∂r −

u
r

))
+δ2

(
∂
∂z

(
µ(r)

(
∂u
∂z δ

2 + ∂w
∂r

))) (9)

δRe
[
u∂w
∂r + w∂w

∂z

]
=−

∂p
∂z + δ

2 ∂
∂z

(
2µ(r) ∂w

∂z

)
+ 1

r
∂
∂r

(
rµ(r)

(
∂u
∂z δ

2 + ∂w
∂r

))
−M2w

(10)

Using the long wavelength approximation and dropping terms of order δ and higher, the above
equations reduce to

∂p
∂r

= 0 (11)

1
r
∂
∂r

(
rµ(r)

∂w
∂r

)
=
∂p
∂z

+ M2w (12)

The relevant boundary conditions in new parameters are

w = −1 at r = r1

w = −1 at r = r2
(13)

3. Solution by Adomian Decomposition Method

In this section, the Adomian solution is determined for the velocity field. According to the
Adomian decomposition method, Equation (12) can be written in the operator form as

Lrw =
dp
dz

+ M2w (14)
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where the differential operator Lr is defined in the form

Lr =
1
r
∂
∂r

(
rµ(r)

∂
∂r

)
(15)

and the inverse operator L−1
r is defined by

L−1
r (.) =

∫ [
1

rµ(r)

∫
r(.) dr

]
dr (16)

Applying the inverse operator, Equation (12) takes the form

w(r, z) = L−1
r

[dp
dz + M2w

]
+ c1r + c2

w(r, z) = dp
dz I(r) + L−1

r

(
M2w

)
+ c1r + c2

(17)

in which

L−1
r

(
dp
dz

)
=

∫ [
1

rµ(r)

∫
r
(

dp
dz

)
dr

]
dr =

dp
dz

I(r) (17a)

and I(r) is given by

I(r) =
∫

r
2µ(r)

dr (18)

According to Adomian decomposition, it can be written as

w =
∞∑

n=0

wn (19)

Using the Adomian decomposition method, the solution w(r, z) can be elegantly computed by
the recurrence relation

w0 = c1r + c2

w1 =
dp
dz I(r) + M2L−1

r (w0)

wn+2 = M2L−1
r (wn+1), n ≥ 0

(20)

The above equations give

wn = M2n−2
(

dp
dz

+ M2c2

) (
L−1

r

)n−1
I(r) + M2nc1

(
L−1

r

)n−1
I1(r), n ≥ 1 (21)

in which

I1(r) =
∫

r2

3µ(r)
dr (22)

With the help of Equations (20) and (21), the closed form of w can be written as

w(r, z) = w0 +
∞∑

n=1
wn

w(r, z) = c1χ(r) + c2χ1(r) +
dp
dzχ2(r)

(23)

Using the boundary conditions (13), the values of constants c1 and c2 can be written as

c1 =
χ

1
(r1)−χ1

(r2)

χ(r1) χ1
(r2)−χ(r2) χ1

(r1)
−

dp
dz

[
χ

2
(r1) χ1

(r2)−χ2
(r2) χ1

(r1)

χ(r1) χ1
(r2)−χ(r2) χ1

(r1)

]
c2 = − 1

χ
1
(r2)
−

dp
dz

χ
2
(r2)

χ
1
(r2)
− c1

χ(r2)
χ

1
(r2)

(24)

where these χ′s are defined in Appendix A.
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The closed form solution (13) is represented in terms of integrals for any kind of general variable
viscosity. These integrals can be computed for particular values of variable viscosity µ. Here, three
cases of variable viscosity are taken into account, µ(r) = 1, r, and 1

r .

3.1. Case 1 (When µ = 1)

With the help of Equations (16), (18) and (22), the following are obtained:

I(r) =
r
2

dr =
r2

4
(25)

(
L−1

r

)n
I(r) =

(
r
2

)2n+2

[(n + 1)!]2
, n ≥ 1, 2, 3, . . . (26)

(
L−1

r

)n
I(r) =

(
r
2

)2n+2

[(n + 1)!]2
, n ≥ 1, 2, 3, . . . (27)

I1(r) =
∫

r2

3
dr =

r3

32 ,

(
L−1

r

)n
I1(r) =

∞∑
n=0

r2n+3

32.52.72 . . . .(2n + 3)2 (28)

The closed form of w(r, z) can be written as

w(r, z) = c1χ3
(r) + c2I0(Mr) +

1
M2

dp
dz

(−1 + I0(Mr)) (29)

Using boundary conditions (13), the solution of (29) can be written as

w(r, z) = a14χ3
(r) + a15I0(Mr) +

1
M2

dp
dz

(
−1− a15I0(Mr) − a14χ3

(r)
)

(30)

The constants appearing in the above equations are defined in the equations and I0 are the
modified Bessel functions, with the first kind of order 0.

3.1.1. Volume Flow Rate and Pressure Rise

The instantaneous volume flow rate Q(z) is given by

Q(z) =
∫ r2

r1

rw(r, z) dr =
dp
dz

a22 + a20 + a21 (31)

From Equation (31), the following is obtained:

dp
dz

=
1

a22

(
Q(z) − a20 − a21

)
(32)

The volume flow Q over a period is obtained as

Q = Q(z) +
(
1 +

ϕ2

2

)
− r2

1 (33)

and
dp
dz

=
1

a22

(
Q−

(
1 +

ϕ2

2

)
+ r2

1 − a20 − a21

)
(34)
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The pressure rise ∆p and the friction force (at the wall) on the outer and inner tubes are F(0) and
F(1), respectively, are

∆p =

∫ 1

0

dp
dz

dz (35)

F(0) =
∫ 1

0 r2
2

(
−

dp
dz

)
dz

F(1) =
∫ 1

0 r2
1

(
−

dp
dz

)
dz

(36)

3.1.2. Stream Function

The corresponding stream function
(
u = − 1

r
∂Ψ
∂z and w = 1

r
∂Ψ
∂r

)
can be written as

Ψ = a14g(r) −
1

M2

dp
dz

(
a14g(r) +

r2

2
+ a15

r
M

I1(Mr)
)
+ a15

r
M

I1(Mr) (37)

where the constants appears in the above equations are defined in Appendix A; I1 is a modified Bessel
functions of the first order; and a14, a15 are defined in Appendix A.

3.2. Case 2 (When µ = r)

Using Equations (16), (18), and (22), the following is implied for µ = r:

I(r) =
∫

r
2.r

dr =
r
2!

(38)

(
L−1

r

)n
I(r) =

∞∑
n=0

rn+1

(n + 2)!(1.2.3.4 . . . .(n + 1))
(39)

I1(r) =
∫

r2

3.r
dr =

r2

3!
(40)

(
L−1

r

)n
I1(r) =

r2

3!
+
∞∑

n=1

rn+2

(n + 3)!(3.4.5 . . . .(n + 2))
(41)

With the help of these values, and using boundary conditions, the closed form of w(r, z) can be
written as

w(r, z) = b14χ4
(r) + b18χ5

(r) +
dp
dz

(
χ

6
(r) + b19χ5

(r) − b15χ4
(r)

)
(42)

The constants appearing in the above equations are defined in Appendix A.

3.2.1. Volume Flow Rate and Pressure Rise

The instantaneous volume flow rate Q(z) is given by

Q(z) =
dp
dz

b29 + b27 + b25 (43)

The volume flow rate and the pressure gradient can be calculated as

Q = Q(z) +
(
1 +

ϕ2

2

)
− r2

1 (44)
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The pressure rise ∆p and the friction force (at the wall) on the outer and inner tubes F(0) and F(1)

can be computed using (35) and (36).

dp
dz

=
1

b29

(
Q−

(
1 +

ϕ2

2

)
+ r2

1 − b25 − b27

)
(45)

The constants appearing in the above equations are defined in Appendix A

3.2.2. Stream Function

Stream function, in this case, is defined as

Ψ = b14g0(r) + b18g1(r) +
dp
dz

(g2(r) + b19g1(r) − b15g0(r)) (46)

3.3. Case 3 (When µ = 1
r )

Using the similar procedure as discussed in previous sections, it can be written as

w(r, z) = d16χ7
(r) + d18χ8

(r) +
dp
dz

(
χ

9
(r) + d19χ8

(r) − d17χ7
(r)

)
(47)

The constants appearing in the above equations are defined in Appendix A.

3.3.1. Volume Flow Rate and Pressure Rise

The instantaneous volume flow rate Q(z) is given by

Q(z) =
dp
dz

d27 + d26 + d25 (48)

The volume flow Q over a period is obtained as

Q = Q(z) +
(
1 +

ϕ2

2

)
− r2

1 (49)

The pressure rise ∆p and the friction force F(0) and F(1) can be computed using (35) and (36).

dp
dz

=
1

d27

(
Q−

(
1 +

ϕ2

2

)
+ r2

1 − d25 − d26

)
(50)

3.3.2. Stream Function

Stream function for this case is

Ψ = d16h(r) + d18h1(r) +
dp
dz

(h2(r) + h1(r)d19 − h(r) d17) (51)

The constants appearing in the above equations are defined in Appendix A.

4. Results and Discussion

The objective of the current analysis is to present the closed form solutions of MHD Newtonian
fluid with variable viscosity. The expression for pressure rise per wavelength and frictional forces are
difficult to integrate analytically; therefore, numerical integration is used to evaluate the integrals.
Figures 2–4 are plotted for pressure rise and friction force against flow rate Q when viscosity is constant.
In Figure 2, it is observed that pressure rise increases with an increase of M up to Q < 1.7, after which
the curves intersect each other and, finally, it gives an opposite behavior. The effects M on F(0)(for
outer tube) and F(1) (for inner tube) are presented in Figures 3 and 4. It is depicted from Figures 3
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and 4 that with an increase in M, both F(0) and F(1) decrease M for small Q and, finally, the behavior is
reversed at the end. A comparison of the velocity field for constant viscosity case is made between
the Adomian decomposition solution and perturbation solutions obtained by [6]. (see Figure 5).
Figures 6–9 are prepared when (viscosity) µ = r. It is observed from Figure 6 that in the retrograde
(∆p > 0, Q < 0) and peristaltic pumping (∆p > 0, Q > 0) regions, the pressure rise decreases with an
increase in amplitude ratio ϕ. Figures 7 and 8 show that F(0) and F(1) give an opposite behavior
as compared with ∆p. The velocity field increases with the increase in M and the maximum value
of the velocity is at the center (see Figure 9). Figures 10–13 are prepared when the viscosity µ = 1

r .
It is observed from Figure 10 that with an increase in r1, the pressure rise decreases in the retrograde
(∆p > 0, Q < 0), peristaltic pumping (∆p > 0, Q > 0), and copuming (∆p < 0, Q > 0) regions. It is
depicted from Figures 11 and 12 that with an increase in r1, both F(0) and F(1) decrease for small Q and,
finally, the behavior is reversed at the end. The velocity profile for different values of M for the case
when viscosity is µ = 1

r is shown in Figure 13. It is observed from Figure 13 that the magnitude value
of the velocity profile decreases with an increase in M.
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Trapping Phenomenon

The trapping phenomenon is an interesting phenomenon in peristaltic motion, which is discussed
in Figures 14–18 for the case when µ = 1, µ = r, and µ = 1

r . Stream lines for different values of ϕ for
the case when µ = 1 are shown in Figure 14. It is observed from Figure 6 that with an increase in
amplitude ratio ϕ, the size of the trapping bolus increases. Stream lines for different values of M and ϕ
for the case when µ = r are shown in Figures 15 and 16. It is observed from Figure 15 that the size of
the trapping bolus decreases with an increase in Hartmann number M. The size of the trapping bolus
increases with an increase in amplitude ratio ϕ (see Figure 16). Stream lines for different values of M
and ϕ for the case when µ = 1

r are shown in Figures 17 and 18. It is observed from the Figures that the
size of the trapping bolus increases with an increase in Hartmann number M and amplitude ratio ϕ.Coatings 2019, 9, x FOR PEER REVIEW 14 of 20 
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Figure 16.Streamlines for two different values of φ for (a) φ 0.29= and (b) φ 0.3.= The other 

parameters are chosen as ,1=M ,45.0=Q 1.11 =r when μ r= . 

Figure 14. Streamlines for two different values of ϕ for (a) ϕ = 0.1 and (b) ϕ = 0.101. The other
parameters are chosen as M = 2, Q = 0.41, r1 = 0.65 when µ = 1.
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Figure 15. Streamlines for two different values of M for (a) M = 1 and (b) M = 0.6. The other parameters
are chosen as ϕ = 0.2, Q = 0.45, r1 = 1 when µ = r.
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parameters are chosen as M = 1, Q = 0.45, r1 = 1.1 when µ = r.
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5. Conclusions 

In the present analysis, peristaltic flow was discussed for MHD Newtonian fluid through the 
gap between two coaxial tubes, where the fluid viscosity was treated as variable. In addition, the 
inner tube was considered to be at rest, while the outer tube has the sinusoidal wave travelling down 
its motion. Further, the governing equations are simplified under the assumptions of long 
wavelength and low Reynolds number. The solution of the problem under discussion is computed 
analytically using the Adomian decomposition method. The results of the proposed problem are 
discussed through graphs. The main findings are summarized as follows: 

• It was found that the pressure rise increases with an increase in Hartmann number M  and 
frictional forces for the outer ( )0F and inner tube ( )1F  decreases with an increase in M  
when viscosity μ 1.=  

• It was also found that the pressure rise decreases with an increase in amplitude ratio φ  in the 
retrograde ( )0,0 <>Δ Qp and peristaltic pumping ( )0,0 >>Δ Qp regions and frictional 
forces give opposite behavior as compared with pressure rise when viscosity μ .r=  

• The pressure rise decreases in the retrograde ( )0,0 <>Δ Qp , peristaltic pumping 
( )0,0 >>Δ Qp and copuming ( )0,0 ><Δ Qp regions with an increase in 1r ,and frictional 
forces decrease for small values of volume flow rate Q  with an increase in 1r when viscosity 

Figure 17. Streamlines for two different values of M for (a) M = 0.2 and (b) M = 0.1. The other
parameters are chosen as ϕ = 0.1, Q = 0.4, r1 = 1.1 when µ = 1
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5. Conclusions

In the present analysis, peristaltic flow was discussed for MHD Newtonian fluid through the gap
between two coaxial tubes, where the fluid viscosity was treated as variable. In addition, the inner tube
was considered to be at rest, while the outer tube has the sinusoidal wave travelling down its motion.
Further, the governing equations are simplified under the assumptions of long wavelength and low
Reynolds number. The solution of the problem under discussion is computed analytically using the
Adomian decomposition method. The results of the proposed problem are discussed through graphs.
The main findings are summarized as follows:

• It was found that the pressure rise increases with an increase in Hartmann number M and frictional
forces for the outer F(0) and inner tube F(1) decreases with an increase in M when viscosity µ = 1.

• It was also found that the pressure rise decreases with an increase in amplitude ratio ϕ in the
retrograde (∆p > 0, Q < 0) and peristaltic pumping (∆p > 0, Q > 0) regions and frictional forces
give opposite behavior as compared with pressure rise when viscosity µ = r.

• The pressure rise decreases in the retrograde (∆p > 0, Q < 0), peristaltic pumping (∆p > 0, Q > 0)
and copuming (∆p < 0, Q > 0) regions with an increase in r1, and frictional forces decrease for
small values of volume flow rate Q with an increase in r1 when viscosity µ = 1

r .
• It was also noticed that the size of the trapping bolus increases with an increase in amplitude

ratio ϕ when viscosity µ = 1, while it increases with an increase in Hartmann number M and
amplitude ratio ϕ when viscosity µ = 1

r . However, it decreases with an increase in Hartmann
number M and increases with an increase in amplitude ratio ϕwhen viscosity µ = r.
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Nomenclature

a1 and a2 radii of the inner and the outer tubes
b amplitude of the wave
λ wavelength
c propagation velocity
t Time
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(u, w) velocity components in radial and axial directions in moving coordinates(
U, W

)
velocity components in radial and axial directions in fixed coordinates

ρ density
σ electrically conductivity of the fluid
µ variable viscosity
ϕ amplitude ratio
Re Reynolds number
δ dimensionless wave number
M magnetic parameter
Q volume flow rate
a′s and χ′s constants used to simplify the problem

Appendix A

χ(r1) =

[
r +

∞∑
n=0

M2n+2
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)n
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]
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χ(r2) =
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r +

∞∑
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(
L−1

r
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]
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χ1 (r1) =

[
1 +

∞∑
n=0

M2n+2
(
L−1

r

)n
I(r)

]
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]
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χ3 (r1) =
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M2n+2 r2n+3
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]
r=r1
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[
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]
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χ9 (r1) =

[
r3

3! +
∞∑

n=1
M2n r3n+3

3!(30.72.132....(3n+3) (3n+2))

]
r=r1

,

χ9 (r2) =

[
r3

3! +
∞∑

n=1
M2n r3n+3

3!(30.72.132....(3n+3) (3n+2))

]
r=r2

,

g(r) = r3

3 +
∞∑

n=0

(M2n+2r2n+5)
(2n+5) (32.52.72...(2n+3)2)

,

g0 (r) =
r3

3 + M2r4

4! +
∞∑

n=1

M2n+2rn+4

(n+4) (n+3)!(3.4.5...(n+2)) ,

g0 (r) =
r3

3 + M2r4

4! +
∞∑

n=1

M2n+2rn+4

(n+4) (n+3)!(3.4.5...(n+2)) ,

g1 (r) =
r2

2 +
∞∑

n=0

M2n+2rn+3

(n+3) (n+2)!(1.2.3.4...(n+1)) ,

g2 (r) =
∞∑

n=0

M2nrn+3

(n+3) (n+2)!(1.2.3.4...(n+1)) ,

h(r) = r3

3 +
∞∑

n=0

M2n+2r3n+6

(3n+6) (12.42.90...(3n+3) (3n+4)) ,

h1 (r) =
r2

2 + M2r5

3!5 +
∞∑

n=1

M2n+2r3n+5

(3n+5) 3!(30.72.132...(3n+3) (3n+2)) ,

h2 (r) =
r5

3! +
∞∑

n=1

M2nr3n+5

(3n+5) 3!(30.72.132...(3n+3) (3n+2)) ,

a11 = I0(Mr1) − I0(Mr2), a12 = χ3(r1)I0(Mr2) − χ3(r2)I0(Mr1),

a13 = χ3(r2) − χ3(r1), a14 = a11
a12

, a15 = a13
a12

, a16 =
r3

2−r3
1

3 ,

a17 =
∞∑

n=0
M2n+2 (r2n+5

2 −r2n+5
1 )

(2n+5) (32.52.72....(2n+3)2)
,

a18 =
r2I1(Mr2)−r1I1(Mr1)

M , a19 =
r2

2−r2
1

2 , a20 = a14(a16 + a17),

a21 = a15a18, a22 = −
(a19+a20+a21)

M2 ,

b11 = χ5(r1) − χ5(r2), b12 = χ4(r1) χ5(r2) − χ4(r2) χ5(r1),

b13 = χ6(r1) χ5(r2) − χ6(r2) χ5(r1), b14 = b11
b12

, b15 = b13
b12

,

b16 = χ4(r2) − χ4(r1), b17 = χ6(r1) χ4(r2) − χ6(r2) χ4(r1),

b18 = b16
b12

, b19 = b17
b12

, b20 =
M2(r4

2−r4
1)

4! ,

b21 =
∞∑

n=1
M2n+2 (rn+4

2 −rn+4
1 )

(n+4) (n+3)!(3.4.5....(n+2)) ,

b22 =
∞∑

n=0
M2n+2 (rn+3

2 −rn+3
1 )

(n+3) (n+2)!(1.2.3.4...(n+1)) ,

b23 = a16 + b20 + b21, b24 = b22 + a19, b25 = b14b23,

b27 = b18b24, b28 = b19b24, b29 = b22
M2 + b28 − b26,

d11 = χ8(r1) − χ8(r2), d12 = χ8(r2) χ7(r1) − χ7(r2) χ8(r1),

d13 = χ9(r1) χ8(r2) − χ9(r2) χ8(r1), d14 = χ9(r1) χ7(r2) − χ9(r2) χ7(r1),

d15 = χ7(r2) − χ7(r1), d16 = d11
d12

, d17 = d13
d12

, d18 = d15
d12

, d19 = d14
d12

,

d20 =
∞∑

n=0
M2n+2 (r3n+4

2 −r3n+4
1 )

(3n+6) (12.42.90....(3n+3) (3n+4)) , d21 = M2 (r5
2−r5

1)
30 ,

d22 =
∞∑

n=1
M2n+2 (r3n+5

2 −r3n+5
1 )

(3n+5) 3!(30.72.132...(3n+3) (3n+2)) ,

d23 = a16 + d20, d24 = a19 + d21 + d22, d25 = d16d23,

d26 = d18d24, d27 = 5
M2 d21 +

d22
M2 + d19d24 − d17d23.

References

1. Abd El Naby, A.H.; El Misiery, A.E.M. Effects of an endoscope and generalized Newtonian fluid on peristaltic
motion. Appl. Math. Comput. 2002, 128, 19–35. [CrossRef]

http://dx.doi.org/10.1016/S0096-3003(01)00153-9


Coatings 2019, 9, 524 17 of 18

2. Mekheimer, K.S. Non-linear peristaltic transport of magneto-hydrodynamic flow in an inclined planar
channel. Arab. J. Sci. Eng. 2003, 28, 183–202.

3. Elshahed, M.; Haroun, M.H. Peristaltic transport of Johnson-Segalman fluid under effect of a magnetic field.
Math. Probl. Eng. 2005, 6, 663–677. [CrossRef]

4. Ellahi, R.; Bhatti, M.; Pop, I. Effects of hall and ion slip on MHD peristaltic flow of Jeffrey fluid in a
non-uniform rectangular duct. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 1802–1820. [CrossRef]

5. Haroun, M.H. Effect of Deborah number and phase difference on peristaltic transport in an asymmetric
channel. Commun. Non-Linear Sci. Numer. Simul. 2007, 12, 1464–1480. [CrossRef]

6. Mekheimer, K.S.; AbdElmaboud, Y. Influence of heat transfer and magnetic field on peristaltic transport of
a Newtonian fluid in a vertical annulus. Application of an endoscope. Phys. Lett. A 2008, 372, 1657–1665.
[CrossRef]

7. Ellahi, R.; Zeeshan, A.; Hussain, F.; Asadollahi, A. Peristaltic blood flow of couple stress fluid suspended
with nanoparticles under the influence of chemical reaction and activation energy. Symmetry 2019, 11, 276.
[CrossRef]

8. Nadeem, S.; Akram, S. Peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel.
Z. Nat. A 2009, 64, 559–567. [CrossRef]

9. Ellahi, R.; RiazANadeem, S. A theoretical study of Prandtlnanofluid in a rectangular duct through peristaltic
transport. Appl. Nanosci. 2014, 4, 753–760. [CrossRef]

10. Siddiqui, A.M.; Farooq, A.A.; Rana, M.A. Study of MHD effects on the cilia-induced flow of a Newtonian
fluid through a cylindrical tube. Magnetohydrodynamics 2014, 50, 249–261.

11. Radhakrishnamacharya, G.; Murthy, V.R. Heat transfer to peristaltic transport in a non-uniform channel.
Def. Sci. J. 1993, 43, 275–280. [CrossRef]

12. Radhakrishnamacharya, G.; Srinivasulu, C. Influence of wall properties on peristaltic transport with heat
transfer. C. R. Mec. 2007, 335, 369–373. [CrossRef]

13. Prakash, J.; Tripathi, D.; Tiwari, A.K.; Sait, S.M.; Ellahi, R. Peristaltic Pumping of Nanofluids through a
Tapered Channel in a Porous Environment: Applications in Blood Flow. Symmetry 2019, 11, 868. [CrossRef]

14. Shapiro, A.H.; Jaffrin, M.Y.; Weinberg, S.L. Peristaltic pumping with long wave length at low Reynolds
number. J. Fluid Mech. 1969, 37, 799–825. [CrossRef]

15. Jaffrin, M.Y.; Shaprio, A.H. Peristaltic pumping. Annu. Rev. Fluid Mech. 1971, 3, 13–36. [CrossRef]
16. Eberhart, R.C.; Shitzer, A. Heat Transfer in Medicine and Biology, 1st ed.; Springer: Berlin/Heidelberg,

Germany, 1985.
17. Pozrikidis, C. A study of peristaltic flow. J. Fluid Mech. 1987, 180, 515–527. [CrossRef]
18. Eytan, O.; Elad, D. Analysis of intra-uterine fluid motion induced by uterine contractions. Bull. Math. Biol.

1999, 61, 221–238. [CrossRef] [PubMed]
19. Riaz, A.; Al-Olayan, H.A.; Zeeshan, A.; Razaq, A.; Bhatti, M.M. Mass Transport with Asymmetric Peristaltic

Propulsion Coated with Synovial Fluid. Coatings 2018, 8, 407. [CrossRef]
20. Abd El Naby, A.; El Misery, A.E.M.; El Shamy, I.I. Effects of an endoscope and fluid with variable viscosity

on peristaltic motion. Appl. Math. Comput. 2004, 158, 497–511. [CrossRef]
21. Mekheimer, K.S.; AbdElmaboud, Y. Simultaneous effects of variable viscosity and thermal conductivity on

peristaltic flow in a vertical asymmetric channel. Can. J. Phys. 2014, 92, 1541–1555. [CrossRef]
22. Husseny, S.Z.A.; AbdElmaboud, Y.; Mekheimer, K.S. The flow separation of peristaltic transport for Maxwell

fluid between two coaxial tubes. Abstr. Appl. Anal. 2014, 2014, 269151. [CrossRef]
23. Adomian, G. Non-Linear Stochastic Operator Equations; Academic Press: Orlando, FL, USA, 1986.
24. Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Kluwer Academic Publishers:

Boston, MA, USA, 1994.
25. Eldabe, N.T.; Elghazy, E.M.; Ebaid, A. Closed form solution to a second order boundary value problem and

its application in fluid mechanics. Phys. Lett. A 2007, 363, 257–259. [CrossRef]
26. Wazwaz, A.M. Exact solutions to nonlinear diffusion Equations obtained by the decomposition method.

Appl. Math. Comput. 2001, 123, 109–122. [CrossRef]
27. Wazwaz, A.M. A new method for solving singular initial value problems in the second order ordinary

differential Equations. Appl. Math. Comput. 2002, 128, 47–57. [CrossRef]
28. Wazwaz, A.M. Partial Differential Equations, Method and Applications; Balkema Publishers: Avereest,

The Netherlands, 2002.

http://dx.doi.org/10.1155/MPE.2005.663
http://dx.doi.org/10.1108/HFF-02-2015-0045
http://dx.doi.org/10.1016/j.cnsns.2006.03.002
http://dx.doi.org/10.1016/j.physleta.2007.10.028
http://dx.doi.org/10.3390/sym11020276
http://dx.doi.org/10.1515/zna-2009-9-1004
http://dx.doi.org/10.1007/s13204-013-0255-4
http://dx.doi.org/10.14429/dsj.43.4286
http://dx.doi.org/10.1016/j.crme.2007.05.002
http://dx.doi.org/10.3390/sym11070868
http://dx.doi.org/10.1017/S0022112069000899
http://dx.doi.org/10.1146/annurev.fl.03.010171.000305
http://dx.doi.org/10.1017/S0022112087001939
http://dx.doi.org/10.1006/bulm.1998.0069
http://www.ncbi.nlm.nih.gov/pubmed/17883209
http://dx.doi.org/10.3390/coatings8110407
http://dx.doi.org/10.1016/j.amc.2003.09.008
http://dx.doi.org/10.1139/cjp-2013-0465
http://dx.doi.org/10.1155/2014/269151
http://dx.doi.org/10.1016/j.physleta.2006.11.010
http://dx.doi.org/10.1016/S0096-3003(00)00064-3
http://dx.doi.org/10.1016/S0096-3003(01)00021-2


Coatings 2019, 9, 524 18 of 18

29. Wazwaz, A.M. Adomian decomposition method for a reliable treatment of the Emden-Fowler equationuation.
Appl. Math. Comput. 2005, 161, 543–560.

30. AbdElmaboud, Y.; Mekheimer, K.S.; Abdelsalam, S.I. Study of nonlinear variable viscosity in finite-length
tube with peristalsis. Appl. Bionics Biomech. 2014, 11, 197–206. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2014/618637
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mathematical Formulation 
	Solution by Adomian Decomposition Method 
	Case 1 (When  = 1) 
	Volume Flow Rate and Pressure Rise 
	Stream Function 

	Case 2 (When  = r) 
	Volume Flow Rate and Pressure Rise 
	Stream Function 

	Case 3 (When  = 1r ) 
	Volume Flow Rate and Pressure Rise 
	Stream Function 


	Results and Discussion 
	Conclusions 
	
	References

