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Abstract: In order to achieve better knowledge of the thermal barrier coatings (TBCs) by supersonic
atmospheric plasma spraying (SAPS) process, an experimental study was carried out to elaborate the
physicochemical properties of particles in-flight during the SAPS process. One type of commercially
available agglomerated and sintered yttria-stabilized-zirconia (YSZ) powder was injected into the SAPS
plasma jet and collected by the shock chilling method. The YSZ particles’ in-flight physicochemical
properties during the SAPS process, including melting state, morphology, microstructure, particle
size distribution, element composition changes, and phase transformation, have been systematically
analyzed. The melting state, morphology, and microstructure of the collected particles were
determined by scanning electron microscopy (SEM). The particle size distribution was measured by a
laser diffraction particle size analyzer (LDPSA). Element compositions were quantitatively analyzed
by an electron probe X-ray microanalyzer (EPMA). Additionally, the X-ray diffraction (XRD) method
was used to analyze the phase transformation. The results showed that the original YSZ powder
injected into the SAPS plasma jet was quickly heated and melted from the outer layer companied
with breakup and collision-coalescence. The outer layer of the collected particles containing roughly
hexagonal shaped grains exhibited a surface texture with high sphericity and the inside was dense
with a hollow structure. The median particle size had decreased from 45.65 to 42.04 µm. In addition to
this, phase transformation took place, and the content of the zirconium (Zr) and yttrium (Y) elements
had decreased with the evaporation of ZrO2 and Y2O3.

Keywords: plasma spray; in-flight particles; molten status; YSZ

1. Introduction

Thermal barrier coatings (TBCs), which can provide thermal insulation to hot components of
engines to protect them from corrosion and oxidation at high temperatures, play an important role in
advanced gas-turbine and diesel engines [1–3]. A typical TBCs system consists of two layers over a
super alloy substrate: a metallic bond-coat and a ceramic top-coat, where yttria-stabilized-zirconia
(Y2O3 stabilized ZrO2, YSZ) is a widely used material for the top coat owing to its low thermal
conductivity, high thermal expansion coefficient, and good mechanical properties [4,5]. To date,
electron beam physical vapor deposition (EB-PVD) and atmospheric plasma spraying (APS) are the
two main processes to prepare YSZ coatings. In particular, APS is a commercial, high-efficiency, process
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and easy to operate, in which raw powder is injected into the plasma jet with a carrier gas and quickly
heated and accelerated. Successive particles in-flight impinge onto the substrate followed by spreading
and rapid solidification to form single splats. The as-sprayed coating develops with the stacking of
these flattened splats [6,7].

At present, empirically tuning 3–6 main controllable parameters is the main method to find the
relationship between the spray parameters and the coating [8,9]. However, APS is a complicated
process in which more than 35 main parameters, both controllable parameters (such as the flow rate of
gas, power, etc.) and some uncontrollable parameters (like the erosion of the electrode, and fluctuations
in the particles’ injection geometry), are identified to influence the resulting microstructure and
corresponding coating properties [10]. Therefore, it is a great challenge to produce reproducible and
reliable plasma sprayed coatings. In recent years, particles’ in-flight properties have been studied
theoretically, numerically, and experimentally and this has suggested that no matter how complicated
the influence parameter is, the physicochemical properties of particles in-flight before impinging onto
the substrate are fundamental parameters influencing the quality of the as-sprayed coatings [11–16].
Liu et al. [11] used the Box–Behnken Design experimental method to analyze the effect of spray
parameters on the average velocity and surface temperature of La2Ce2O7 particles in-flight and their
influence on microstructure and mechanical properties. Bai et al. [12] adopted the one-factor-at-a-time
method to investigate the effect of four spray parameters on the average velocity and temperature of
nanostructured YSZ particles in-flight and to theoretically quantify the influence of in-flight particles’
melting state on the microstructure of as-sprayed coatings. Choudhury et al. [13] utilized an Artificial
Neural Network (ANN) to quantify the relationship between processing parameters and Al2O3-TiO2

particles’ in-flight characteristics, and to establish process controls by predicting the particles’ in-flight
characteristics in the APS process. Suffner et al. [14] investigated the rapid solidification behavior of
the Al2O3, ZrO2, and Y2O3 molten droplets after impacting on the liquid nitrogen cooled substrate.
Wei et al. [15] analyzed the melting state and refining behavior of particles’ flight during spraying
using a numerical method. Tekmen et al. [16] investigated the oxidation behavior of Al particles
in-flight and the effects of velocity and temperature on particles in-flight with an oxidation mechanism.

Lately, an advanced high efficiency and low energy consumption (lower than 80 kW) supersonic
atmospheric plasma spraying (SAPS) process has been successfully developed by the Academy of
Armored Forces Engineering (Beijing, China) [17,18]. The main components of this novel system are
a plasma gun, a powder feeder, a gas-supply system, a cooling water system, and a power supply
and control system. Figure 1 shows a schematic diagram of the supersonic plasma spraying system.
The key to this system is a novel SAPS gun with a Laval nozzle and internal feedstock injection mode,
which means the feedstock particles can be heated and accelerated adequately with no limitation to
the melting temperature of the sprayed materials, and it has greater advantage in fabricating high
performance ceramic, cermet, or metallic coatings than APS. However, the physicochemical properties
of YSZ particles in-flight during the SAPS process have not yet been systematically studied.

Motivated by the aforementioned considerations, this study is dedicated to understanding the
physicochemical properties of YSZ particles in-flight by using experimental methods to achieve
better knowledge of TBCs using the SAPS process. We note that it is difficult to directly observe
the physicochemical properties of YSZ particles in-flight during the SAPS process due to their
high temperature and velocity. In this paper, a shock chilling method was employed to trap the
YSZ in-flight particles at the usual spraying distance during the SAPS process. The YSZ particles
in-flight physicochemical properties including melting state, morphology, microstructure, particle
size distribution, element composition changes, and phase transformation were investigated in detail
during the SAPS process.
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Figure 1. Schematic diagram of the supersonic plasma spraying system.

2. Experimental Material and Methods

Experiments were carried out on a SAPS system (HEPJ-II, Beijing, China) and the plasma gun was
mounted on a 6-axis robot (MOTOMAN-2010, Ysakawa, Japan). Details of the spraying parameters
are listed in Table 1, in which argon and hydrogen were used as the primary and assistant gases,
respectively. One type of commercially available agglomerated and sintered (AS) 6–8 wt. % Y2O3-ZrO2

(YSZ) particles was used as feedstock. To collect particles in-flight before impinging onto the substrate,
an experimental apparatus was developed (as illustrated in Figure 2). During the SAPS process, YSZ
particles in-flight were rapidly solidified and collected in a collection apparatus containing liquid
nitrogen in which the cooling rate of the spraying particles exceeded 106 K/s that enabled a rapid
cooling rate [19]. Furthermore, liquid nitrogen, an inert cooling medium, was used to prevent chemical
reaction from occurring between the YSZ particles in-flight and the cooling medium. Thus, this shock
chilling method could be used to characterize the physicochemical properties of YSZ particles in-flight.
The collection apparatus was positioned vertically to the SAPS gun to enable the YSZ particles in-flight
to fly into the liquid nitrogen. The trapped particles were extracted from the resulting suspension by a
membrane filter with a pore diameter of 0.1 µm and then dried in a vacuum drying box. The external
and internal morphology of the original AS YSZ powders (referred as O-AS) and collected YSZ
particles (referred as C-AS) were determined by a scanning electron microscope (SEM, GeminiSEM 500,
ZEISS, Oberkochen, Germany). The particle size distribution of the O-AS powders and C-AS particles
was measured by a laser diffraction particle size analyzer (LDPSA, Horiba LA-950, Kyoto, Japan).
Element compositions of the O-AS powders and C-AS particles were quantitatively analyzed by using
wavelength dispersive X-ray spectroscopy (WDS) in an electron probe X-ray microanalyzer (EPMA,
EMAX-1770, Kyoto, Japan) with a resolution of 110 ppm and operating voltage at 20 kV. In order
to determine the element compositions of the original O-AS powders and C-AS particles accurately,
five measurement points were randomly obtained in one image during analysis. The final value was
calculated using 15 images selected randomly. The phase transformation of the O-AS powders was
characterized by X-ray diffraction (XRD, Philips X’Pert Pro, Almelo, Holland) under room temperature
with Cu Kα radiation of wavelength 1.5418 Å. The scanning 2θ angle ranged from 10◦ to 90◦ with a
step scanning rate of 0.02 ◦/min, while the voltage and electric current were held at 40 kV and 30 mA,
respectively. The samples were determined three times, respectively.
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Table 1. Spray parameters of yttria-stabilized-zirconia (YSZ) by supersonic atmospheric plasma
spraying (SAPS).

Current
(A)

Voltage
(V)

Ar Gas
(slpm #)

H2 Gas
(slpm)

Carrier
Gas

(slpm)

Powder
Feeding Rate

(g/min)

Spray
Distance

(mm)

Injector
Diameter

(mm)

Spraying
Angle

(◦)

430 150 120 24.2 7 35 100 2.2 90

# slpm: standard liter per minute.
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3. Results and Discussion

3.1. Characterization of the O-AS Powders and C-AS Particles

Characteristics of the O-AS powders are shown in Figure 3. The overall surface morphology
of the O-AS powders and the high magnification SEM micrograph of a single powder are shown
in Figure 3a,b, respectively. It can be seen that the O-AS powders are composed of agglomerated
primary granules with 1–2 µm diameter. The O-AS powders with a rough surface are near spherical
morphology which can ensure good flow ability. Figure 3c,d reveals the cross-sectional morphology of
the O-AS powders, which indicates that the inside of the particles has a relatively loose and porous
microstructure. Figures 4 and 5 show the surface and cross-sectional SEM micrographs of the C-AS
particles passed through the SAPS plasma jet. Compared with the O-AS powders (Figure 3), the C-AS
particles after the SAPS plasma jet exhibited a smoother surface with high sphericity (Figure 4a) due
to the surface of the O-AS powders being immediately melted by the high temperature of the SAPS
plasma jet when injected into the SAPS plasma jet and the surface of the melted particles becoming
spherical under the effect of surface tension [20]. The surface texture of the C-AS particles could
be clearly seen when the C-AS particles were more closely examined (see Figure 4b), which may be
due to the molten primary granules with 1–2 µm diameter being rapidly cooled and some roughly
hexagonal shaped grains being formed. Figure 4c,d displays the cross-sectional morphology of the
C-AS particles, which indicates that the C-AS particles with a hollow structure are denser than the
O-AS powders with a relatively loose and porous microstructure. This is because the formation of
a liquid outer layer prevented further escape of the gas from the O-AS powders and the inside of
the particles in-flight continued to melt with the increase of flight distance [21]. As can be seen in
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Figure 4, there are many smaller and exploded C-AS particles due to the trapped gas expanding when
heated, resulting in an explosion and breakup, which can be attributed to the effect of surface tension,
shear force, and pressure inside the particles in-flight. There are also some bigger particles, which
may be attributed to the collision and coalescence of the particles in-flight during the SAPS process
(see Figure 5a) [22]. Figure 5b shows the molten surface microstructure of the particles in-flight at the
initial SAPS process stage.
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3.2. Particle Size Distribution of the O-AS Powders and C-AS Particles

The particle size distribution of the O-AS powders and C-AS particles is given in Figure 6.
The median particle sizes (D50) of the original AS YSZ particles and collected YSZ particles were
45.65 µm and 42.04 µm, respectively. The values of D10, D50, and D90 are summarized in Table 2. As can
be seen from the result, the particle size of the O-AS powders which were injected into the plasma jet
obviously decreased during the SAPS process. The possible causes of the particles’ in-flight refining
were analyzed as follows: 1) as the particles in-flight melt during the SAPS process, the particles
in-flight become smaller and denser; 2) The molten particles in-flight may breakup during the SAPS
process that further results in the reduced particle size. The smaller particles in-flight are able to
form coatings with more complex maze structures which is beneficial for thermal insulation and
anti-oxidation [23].Coatings 2019, 9, x FOR PEER REVIEW 7 of 12 
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Table 2. Particle size distribution of the O-AS powders and C-AS particles.

State of the YSZ Particles
Particle Size (µm)

D10 D50 D90

O-AS powders 32.22 45.65 63.86
C-AS particles 30.16 42.04 60.34
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3.3. Element Composition Changes of the O-AS Powders

Element composition of the O-AS powders and C-AS particles measured by EPMA are shown in
Figure 7. It can be seen in Figure 7 that the element composition of the O-AS powders and C-AS particles
were the same. However, the content of zirconium (Zr, ~65.17 wt. %) and yttrium (Y, ~7.07 wt. %) in
the O-AS powders’ particles was higher than the C-AS particles (Zr, ~63.58 wt. %; Y, ~4.29 wt. %),
while the content of the oxygen element in the O-AS powders was lower. This was probably related to
the partial evaporation of ZrO2 and Y2O3 from the original AS YSZ particles during the SAPS process.
When the O-AS powders were injected into the plasma jet, in which the temperature was about 104 K
and much higher than the boiling point of ZrO2 (~4300 K) and Y2O3 (~4300 K), the evaporation of
ZrO2 and Y2O3 occurred [24]. As a result, the content of Zr and Y elements decreased. Furthermore,
the decrease of Y (~2.78 wt. %) was higher than Zr (~1.59 wt. %), which was ascribed to a higher vapor
pressure of Y2O3 than ZrO2 at the elevated temperature (see Figure 8) leading to a faster loss of Y2O3

than ZrO2 during the SAPS process [25].
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3.4. Phase Transformation of the O-AS Powders

Figure 9 shows the XRD patterns of the O-AS powders and C-AS particles. According to the
XRD patterns shown in Figure 9a, YO.15Zr0.85O1.93, monoclinic zirconia (m-ZrO2), and Cubic Zirconia
(c-ZrO2) were the main phases of the O-AS powders. It can be seen from Figure 9b that the C-AS
particles were mainly composed of YO.15Zr0.85O1.93 and c-ZrO2 phases. The disappearance of the
m-ZrO2 phase in the O-AS powders during the SAPS process was attributed to phase transformation.
As the O-AS powders were passed through the high temperature plasma jet, m-ZrO2 in the O-AS
powders changed into t-ZrO2 over 1443 K, and then t-ZrO2 transformed into c-ZrO2 above 2643 K [26].
The phase transformation of pure ZrO2 is reversible. However, with the addition of Y2O3 stabilizing
oxides in the crystalline of ZrO2 combined with relatively high cooling rates, the amount of phase
transformation crystalline ZrO2 can undergo is limited during the SAPS process. Pure ZrO2 experiences
the following phase transformation:

m-ZrO2
1443K
�

1223K
t-ZrO2

2643K
� c-ZrO2

2953K
� liq-ZrO2
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Figure 10 shows the surface and cross-sectional morphologies of C-AS particles. It can be
observed that larger pores appear inside and on the surface of spraying particles compared with O-AS
particles given in Figure 3. A schematic diagram representing the development of physicochemical
properties of YSZ particles in-flight during supersonic atmospheric plasma spray is shown in
Figure 11. The physicochemical properties of YSZ particles in-flight before impinging onto the
substrate can significantly influence the microstructure and phase composition of the as-sprayed
coatings. The relationship between the physicochemical properties of particles in-flight and the
properties of high efficiency supersonic atmospheric plasma-sprayed YSZ coatings still need to
be investigated.
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Figure 11. Schematic diagram of the development of physicochemical properties of YSZ particles
in-flight during the SAPS process.

4. Conclusions

In this study, YSZ particles in-flight were successfully collected by a shock chilling method
using a collection apparatus containing liquid nitrogen, and the physicochemical properties of the
melting state, morphology, microstructure, particle size, chemical composition changes, and phase
transformation during the SAPS process have been systematically investigated and the following
conclusions can be drawn:

(1) The O-AS powder injected into the SAPS plasma jet was quickly heated and melted from the outer
layer companied with breakup and collision-coalescence. The outer layer of the C-AS particles
containing roughly hexagonal shaped grains exhibited a surface texture with high sphericity and
the inside was dense with a hollow structure.
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(2) The molten YSZ particles in-flight became smaller and denser and may have broken up during
the SAPS process. As a result, there was a refining phenomenon of particles in-flight during the
SAPS process. The median particle size decreased from 45.65 to 42.04 µm.

(3) The element composition of the O-AS powder and C-AS particles were the same. However,
the content of Zr and Y (wt. %) in the O-AS powder particles was higher than the C-AS particles.
The content of Zr and Y (wt. %) decreased with the evaporation of ZrO2 and Y2O3 during the
SAPS process, respectively. Furthermore, the decrease of Y (~2.78 wt. %) was higher than Zr
(~1.59 wt. %).

(4) Phase transformation took place during the SAPS process. The O-AS powders were mainly
composed of Y0.15Zr0.85O1.93, m-ZrO2, and c-ZrO2 phases; the corresponding C-AS particles were
mainly composed of Y0.15Zr0.85O1.93 and c-ZrO2 phases. The m-ZrO2 phase vanished during the
SAPS process.
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